
Plan of the Lecture

I Review: basic properties and benefits of feedback control

I Today’s topic: introduction to
Proportional-Integral-Derivative (PID) control

Goal: study basic features and capabilities of PID control
(industry standard since 1950’s): arbitrary pole placement;
reference tracking; disturbance rejection

Reading: FPE, Sections 4.1–4.3; lab manual



Recap: Benefits of Feedback Control

From last lecture: feedback control

I reduces steady-state error to disturbances

I reduces steady-state sensitivity to model uncertainty
(parameter variations)

I improves time response

So far, we have only looked at proportional feedback (scalar
gain) and 1st-order plants. Now we will add two more basic
ingredients and examine their effect on higher-order systems.

We will consider the following plant transfer function:

G(s) =
1

s2 − 1

I unstable: poles at s = ±1 (one pole in RHP)

I 2nd-order

– not as easy as DC motor, which was 1st-order and stable.



Proportional Feedback

1

s2 � 1
YKPR

+

�
E U

KP – “proportional gain” (P-gain) U = KPE

Let’s try to find a value of KP that would stabilize the system:

Y

R
=

KP

s2 − 1

1 +
KP

s2 − 1

=
KP

s2 − 1 +KP

— the polynomial in the denominator has zero coefficient of s
=⇒ necessary condition for stability is not satisfied.

The feedback system is not stable for any value of KP!!



Derivative Feedback

Let’s feed the derivative of the error , multiplied by some gain,
back into the plant:

1

s2 � 1
YKDsR

+

�
E U

Motivation: derivative = rate of change; faster change =⇒
more control needed.

Caveat: multiplication by s is not a causal element (why?)

Derivative action and lack of causality: recall

ė(t) ≈ e(t+ δ)− e(t)
δ

(for small δ)

— if δ > 0, e(t+ δ) is in the future of e(t)!!



Disclaimer 1 about D-Feedback: Lack of Causality

Consider some state-space models:

ẋ = Ax+Bu

y = Cx

sX = AX +BU

Y = CX

(s−A)X = BU

Y

U
=

CB

s−A ≡
q(s)

p(s)

deg(q) < deg(p) — strictly proper transfer function

ẋ = Ax+Bu

y = Cx+Du

sX = AX +BU

Y = CX +DU

(s−A)X = BU

Y =
CB

s−AU +DU

=
CB +D(s−A)

s−A U ≡ q(s)

p(s)

deg(q) = deg(p) — proper transfer function

Causal systems have proper transfer functions.



Lack of Causality

But if u = Kė, then U = KsE =⇒ U

E
= Ks =

q(s)

p(s)

deg(q) > deg(p)— improper system (lack of causality)

So, E 7→ KDsE is not implementable directly, but we can
implement an approximation, e.g.

KDas

a+ s
−→ KDs as a→∞

(this can be done using op-amps).

Alternatively, we can approximate derivative action using finite
differences:

ė(t) ≈ e(t+ δ)− e(t)
δ

,

but then we must tolerate delays — must wait until time t+ δ
to issue a control signal meant for time t.



Disclaimer 2 about D-Feedback: Noise Amplification

Differentiators amplify noise (noise −→ rapid changes in the
reference).

In the lab, D-feedback is implemented differently, in the
feedback path. This way, we avoid differentiating the reference,
which may be rapidly changing:

YG(s)R
+

�

KDs

Before:
Y

R
=

KDsG(s)

1 +KDsG(s)

Now:
Y

R
=

G(s)

1 +KDsG(s)

Poles: 1 +KDsG(s) = 0

— same poles, but different zeros.

Now the reference signal is smoothed out by the plant G(s)
before entering the differentiator, which minimizes distortion
due to noise.



Back to Analysis: Derivative Feedback

1

s2 � 1
YKDsR

+

�
E U

Y

R
=

KDs

s2 − 1

1 +
KDs

s2 − 1

=
KDs

s2 +KDs− 1

— still not good: the denominator has a negative coefficient
=⇒ not stable; also we have picked up a zero at the origin.

But:

I P-control affected the coefficient of s0 (constant term)

I D-control affected the coefficient of s

— let’s combine them!!



Proportional-Derivative (PD) Control

1

s2 � 1
YKP + KDsR

+

�
E U

Y

R
=

KP +KDs

s2 − 1

1 +
KP +KDs

s2 − 1

=
KP +KDs

s2 +KDs+KP − 1

— now, if we set KD > 0 and KP > 1, then the transfer
function will be stable.

Even more: by choosing KP and KD, we can arbitrarily assign
coefficients of the denominator, and therefore the poles of the
transfer function:

PD control gives us arbitrary pole placement!!



Proportional-Derivative (PD) Control

1

s2 � 1
YKP + KDsR

+

�
E U

Y

R
=

KP +KDs

s2 +KDs+KP − 1

By choosing KP,KD, we can achieve arbitrary pole placement!!

Also note that the addition of P-gain moves the zero:

KDs+KP = 0 LHP zero at − KP

KD

But what’s missing? DC gain =
Y

R

∣∣∣∣∣
s=0

=
KP

KP − 1
6= 1

— can’t have perfect tracking of constant reference.



Proportional-Integral-Derivative (PID) Control

Let us try

U =

(
KP +KDs+

KI

s

)
E – the classic three-term controller

In fact, let’s also throw in a constant disturbance:

1

s2 � 1
YKP + KDs + KI/sR

+

�
E U

+

+

W

We will see that, with PID control, the goals of

I tracking a constant reference r

I rejecting a constant disturbance w

can be accomplished in one shot.



Proportional-Integral-Derivative (PID) Control

1

s2 � 1
YKP + KDs + KI/sR

+

�
E U

+

+

W

Y =
1

s2 − 1
(U +W ), U =

(
KP +KDs+

KI

s

)
(R− Y )

so Y =
KP +KDs+ KI

s

s2 − 1
(R− Y ) +

1

s2 − 1
W

Simplify:

(s2 − 1)Y =

(
KP +KDs+

KI

s

)
(R− Y ) +W(

s2 − 1 +KP +KDs+
KI

s

)
Y =

(
KP +KDs+

KI

s

)
R+W

(s3 − s+KPs+KDs
2 +KI)Y = (KPs+KDs

2 +KI)R+Ws



Proportional-Integral-Derivative (PID) Control

1

s2 � 1
YKP + KDs + KI/sR

+

�
E U

+

+

W

(s3 − s+KPs+KDs
2 +KI)Y = (KPs+KDs

2 +KI)R+Ws

Therefore,

Y =
KDs

2 + KPs + KI

s3 + KDs2 + (KP − 1)s + KI

R

+
s

s3 + KDs2 + (KP − 1)s + KI

W



Proportional-Integral-Derivative (PID) Control

1

s2 � 1
YKP + KDs + KI/sR

+

�
E U

+

+

W

Y =
KDs

2 + KPs + KI

s3 + KDs2 + (KP − 1)s + KI

R

+
s

s3 + KDs2 + (KP − 1)s + KI

W

Stability:

I need KD > 0, KP > 1, KI > 0 (necessary condition)
and KD(KP − 1) > KI (Routh–Hurwitz for 3rd-order)

I can still assign coefficients arbitrarily by choosing
KP,KI,KD



Proportional-Integral-Derivative (PID) Control

1

s2 � 1
YKP + KDs + KI/sR

+

�
E U

+

+

W

Y =
KDs

2 + KPs + KI

s3 + KDs2 + (KP − 1)s + KI

R

+
s

s3 + KDs2 + (KP − 1)s + KI

W

Reference tracking:

DC gain(R→ Y ) =
KDs

2 +KPs+KI

s3 + (KP − 1)s+KDs2 +KI

∣∣∣∣∣
s=0

= 1

— so, with the addition of I-feedback, we remove earlier
limitation and achieve perfect tracking!



Proportional-Integral-Derivative (PID) Control

1

s2 � 1
YKP + KDs + KI/sR

+

�
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Y =
KDs

2 + KPs + KI

s3 + KDs2 + (KP − 1)s + KI

R

+
s

s3 + KDs2 + (KP − 1)s + KI

W

Disturbance rejection:

DC gain(W → Y ) =
s

s3 + (KP − 1)s+KDs2 +KI

∣∣∣∣∣
s=0

= 0

— so, integral gain also gives complete attenuation of constant
disturbances!!



Wind-Up Phenomenon

P
U

Y1/s
+
�R

E

saturation

When the actuator saturates, the error continues to be
integrated, resulting in large overshoot.

We say that the integrator “winds up:” the error may be small,
but its integrated past history builds up.

There are various anti-windup schemes to deal with this
practically important issue. (Essentially, we attempt to detect
the onset of saturation and turn the integrator off.)



System Type

The fact that 1/s leads to perfect tracking of constant
references and perfect rejection of constant disturbances is a
special case of a more general analysis.

P
U

YK
+
�R

E

Consider the reference r(t) =
tk

k!
1(t) ←→ R(s) =

1

sk+1

Error signal: E =
1

1 +KP
R =

1

1 +KP

1

sk+1

FVT gives (assuming stability):

e(∞) = sE(s)
∣∣∣
s=0

=
1

1 +KP

1

sk

∣∣∣∣∣
s=0

— let’s see how the forward gain affects tracking performance.



System Type

P
U

YK
+
�R

E

System type: the number n of poles the forward-loop
transfer function KP has at the origin. It is the degree of
the lowest-degree polynomial that cannot be tracked in
feedback with zero steady-state error.

Note: the system type is calculated from the forward-loop
transfer function, although the conclusions we will draw are
about the closed-loop system.



System Type

P
U

YK
+
�R

E

R(s) =
1

sk+1
=⇒ E =

1

1 +KP
R =

1

1 +KP

1

sk+1

e(∞) = sE(s)
∣∣∣
s=0

=
1

1 +KP

1

sk

∣∣∣∣∣
s=0

— let’s see how forward gain KP affects tracking performance.

Let’s suppose that KP has nth-order pole at s = 0: KP =
K0

sn

sE(s) =
1(

1 + K0
sn

)
sk

=
sn−k

sn +K0
— what about sE(s)

∣∣∣
s=0

?



System Type

P
U

YK
+
�R

E

Let’s suppose that KP has nth-order pole at s = 0: KP =
K0

sn

sE(s)=
1(

1 + K0
sn

)
sk

=
sn−k

sn +K0
— what about sE(s)

∣∣∣
s=0

?

Recall: reference r(t) is a polynomial of degree k

Three cases to consider —

I n > k: e(∞) = 0 perfect tracking

I n = k: e(∞) = const 6= 0 imperfect tracking

I n < k: e(∞) =∞ no tracking



System Type: Examples

P
U

YK
+
�R

E

System type is the degree of the lowest-degree polynomial that
cannot be tracked in feedback with zero steady-state error.

I Type 0: no pole at the origin. This is what we had without
the I-gain: nonzero SS error to constant references.

I Type 1: a single pole at the origin. This is what we get
with I-gain: can track (respectively, reject) constant
references (respectively, disturbances) with zero error.

I can check that we have a nonzero (but finite) error when
tracking ramp references

I Type 2: a double pole at the origin. Can track ramp
references without error, but not t2, t3, ...



PID Control: Summary & Further Comments

P-gain simplest to implement, but not always sufficient for
stabilization

D-gain helps achieve stability, improves time response (more
control over pole locations)

I arbitrary pole placement only valid for 2nd-order response;
in general, we still have control over two dominant poles

I cannot be implemented directly, so need approximate
implementation; D-gain also amplifies noise

I-gain essential for perfect steady-state tracking of constant
reference and rejection of constant disturbance

I but 1/s is not a stable element by itself, so one must be
careful: it can destabilize the system if the feedback loop is
broken (integrator wind-up)


