# Plan of the Lecture

- ▶ Review: stability; Routh-Hurwitz criterion
- Today's topic: basic properties and benefits of feedback control

*Goal:* understand the difference between open-loop and closed-loop (feedback) control; examine the benefits of feedback: reference tracking and disturbance rejection; reduction of sensitivity to parameter variations; improvement of time response.

*Reading:* FPE, Section 4.1; lab manual

Two Basic Control Architectures

▶ Open-loop control



► Feedback (closed-loop) control



Here, W is a *disturbance*; K is not necessarily a static gain

# Basic Objectives of Control



- ▶ track a given reference
- ▶ reject disturbances
- meet performance specs

Intuitively, the difference between the open-loop and the closed-loop architectures is clear (think cruise control ...)

# **Open-Loop Control**



- ▶ cheaper/easier to implement (no sensor required)
- ► does not destabilize the system

e.g., if both K and P are stable (all poles in OLHP),

$$\frac{Y}{R} = KP$$

is also stable:

 $\{\text{poles of } KP\} = \{\text{poles of } K\} \cup \{\text{poles of } P\}$ 

# Feedback Control



- more difficult/expensive to implement (requires a sensor and an information path from controller to actuator)
- ▶ may destabilize the system:

$$\frac{Y}{R} = \frac{KP}{1+KP}$$

has new poles, which may be unstable

but: feedback control is the only way to stabilize an unstable plant (this was the Wright brothers' key insight)

# Benefits of Feedback Control



#### Feedback control:

- ▶ reduces steady-state error to disturbances
- reduces steady-state sensitivity to model uncertainty (parameter variations)
- improves time response

### Case Study: DC Motor



Transfer function:



Objective: have  $\Omega_{\rm m}$  approach and track a given reference  $\Omega_{\rm ref}$  in spite of disturbance  $T_{\rm e}$ .

# Two Control Configurations

▶ Open-loop control



► Feedback (closed-loop) control



# **Disturbance** Rejection

Goal: maintain  $\omega_{\rm m} = \omega_{\rm ref}$  in steady state in the presence of *constant* disturbance.

Open-loop:



- the controller receives no information about the disturbance  $\tau_{\rm e}$  (the only input is  $\omega_{\rm ref}$ , no feedback signal from anywhere else)

– so, let's attempt the following: design for no disturbance (i.e.,  $\tau_{\rm e} = 0$ ), then see how the system works in general

### Disturbance Rejection: Open-Loop Control

Transfer function:

First assume zero disturbance:



$$\frac{A}{\tau s+1} \text{ (stable pole at } s = -1/\tau \text{)}$$

We want DC gain = 1

$$\Omega_{\rm m} = \frac{A}{\tau s + 1} V_{\rm a} = \frac{K_{\rm ol} A}{\tau s + 1} \Omega_{\rm ref}$$

Let's just use constant gain:  $K_{\rm ol} = 1/A$ 

$$\omega_{\rm m}(\infty) = \frac{1}{A} \cdot A \cdot \omega_{\rm ref} = \omega_{\rm ref} \qquad ({\rm for} \ T_{\rm e} = 0)$$

What happens in the presence of nonzero  $T_{\rm e}$ ?



# Disturbance Rejection: Open-Loop Control

Steady-state motor speed for constant reference and constant disturbance:

$$\omega_{\rm m}(\infty) = \omega_{\rm ref} + B\tau_{\rm e}$$



Conclusion: in the absence of disturbances, reference tracking is good, but disturbance rejection is pretty poor. Steady-state error is determined by B, and we have no control over it (and, in fact, cannot change this through any choice of controller  $K_{\rm ol}$ , no matter how clever)

#### Disturbance Rejection: Feedback Control



$$V_{\rm a} = K_{\rm cl}E = K_{\rm cl}\left(\Omega_{\rm ref} - \Omega_{\rm m}\right)$$
$$\Omega_{\rm m} = \frac{A}{\tau s + 1}K_{\rm cl}\left(\Omega_{\rm ref} - \Omega_{\rm m}\right) + \frac{B}{\tau s + 1}T_{\rm e}$$

Solve for  $\Omega_{\rm m}$ :  $(\tau s + 1)\Omega_{\rm m} = AK_{\rm cl} (\Omega_{\rm ref} - \Omega_{\rm m}) + BT_{\rm e}$  $(\tau s + 1 + AK_{\rm cl})\Omega_{\rm m} = AK_{\rm cl}\Omega_{\rm ref} + BT_{\rm e}$ 

$$\Omega_{\rm m} = \frac{AK_{\rm cl}}{\tau s + 1 + AK_{\rm cl}} \Omega_{\rm ref} + \frac{B}{\tau s + 1 + AK_{\rm cl}} T_{\rm cl}$$

### Disturbance Rejection: Feedback Control



$$\Omega_{\rm m} = \underbrace{\frac{AK_{\rm cl}}{\tau s + 1 + AK_{\rm cl}}}_{\rm DC \ gain = \frac{AK_{\rm cl}}{1 + AK_{\rm cl}}} \Omega_{\rm ref} + \underbrace{\frac{B}{\tau s + 1 + AK_{\rm cl}}}_{\rm DC \ gain = \frac{B}{1 + AK_{\rm cl}}} T_{\rm e}$$

(provided all transfer functions are strictly stable)

Assuming that the reference  $\omega_{ref}$  and the disturbance  $\tau_e$  are constant, we apply FVT:

$$\omega_{\rm m}(\infty) = \frac{AK_{\rm cl}}{1 + AK_{\rm cl}} \omega_{\rm ref} + \frac{B}{1 + AK_{\rm cl}} \tau_{\rm e}$$

### Disturbance Rejection: Feedback Control

Steady-state speed for constant reference and disturbance:



Conclusions:

 $\frac{AK_{\rm cl}}{1 + AK_{\rm cl}} \neq 1$ , but can be brought arbitrarily close to 1 when  $K_{\rm cl} \rightarrow \infty$ . Thus, steady-state tracking is good with high gain, but never quite as good as in open-loop case.  $\frac{B}{1 + AK_{\rm cl}}$  is small (arbitrarily close to 0) for large  $K_{\rm cl}$ . Thus, see the better disturbance rejection then with

Thus, *much* better disturbance rejection than with open-loop control.

Consider again our DC motor model, with no disturbance:



Bode's sensitivity concept: In the "nominal" situation, we have the motor with DC gain = A, and the overall transfer function, either open- or closed-loop, has some other DC gain (call it T).

Now suppose that, due to modeling error, changes in operating conditions, etc., the motor gain changes:

$$A \longrightarrow A + \underbrace{\delta A}_{\text{small}}$$

This will cause a perturbation in the overall DC gain:

 $T \longrightarrow T + \delta T$  (from calculus, to 1st order,  $\delta T \approx \frac{\mathrm{d}T}{\mathrm{d}A} \delta A$ )

 $A \longrightarrow A + \delta A$  (small perturbation in system gain)  $T \longrightarrow T + \delta T$  (resultant perturbation in overall DC gain)



Hendrik Wade Bode (1905–1982) Bode's sensitivity:

$$S \triangleq \frac{\delta T/T}{\delta A/A}$$

S =relative error

 $= \frac{\text{normalized (percentage) error in } T}{\text{normalized (percentage) error in } A}$ 

Let's compute  ${\mathcal S}$  for our DC motor control example, both openand closed-loop.

Open-loop:

- ▶ nominal case  $T_{\rm ol} = K_{\rm ol}A = \frac{1}{A}A = 1$
- ▶ perturbed case

$$\begin{array}{l} A \longrightarrow A + \delta A \\ T_{\rm ol} \longrightarrow K_{\rm ol}(A + \delta A) = \underbrace{\frac{1}{A}}_{\substack{\rm design \\ \rm choice}} (A + \delta A) = \underbrace{\frac{1}{T_{\rm ol}}}_{T_{\rm ol}} + \underbrace{\frac{\delta A}{A}}_{\delta T_{\rm ol}} \end{array}$$
Sensitivity:  $\mathcal{S}_{\rm ol} = \frac{\delta T_{\rm ol}/T_{\rm ol}}{\delta A_{\rm ol}/A_{\rm ol}} = \frac{\delta A/A}{\delta A/A} = 1$ 

For example, a 5% error in A will cause a 5% error in  $T_{\rm ol}$ .

Sensitivity to Parameter Variations Closed-loop:

▶ nominal case 
$$T_{\rm cl} = \frac{AK_{\rm cl}}{1 + AK_{\rm cl}}$$

▶ perturbed case

$$A \longrightarrow A + \delta A$$
  $T_{cl} \longrightarrow T_{cl} + \underbrace{\delta T_{cl}}_{\text{how to}}$ 

Taylor expansion:

$$T(A + \delta A) = T(A) + \frac{\mathrm{d}T}{\mathrm{d}A}(A)\delta A + \text{higher-order terms}$$

In our case:

$$\frac{\mathrm{d}T_{\mathrm{cl}}}{\mathrm{d}A} = \frac{K_{\mathrm{cl}}}{1 + AK_{\mathrm{cl}}} - \frac{AK_{\mathrm{cl}}^2}{(1 + AK_{\mathrm{cl}})^2} = \frac{K_{\mathrm{cl}}}{(1 + AK_{\mathrm{cl}})^2}$$
$$\delta T_{\mathrm{cl}} = \frac{K_{\mathrm{cl}}}{(1 + AK_{\mathrm{cl}})^2} \delta A$$

From before:

$$\delta T_{\rm cl} = \frac{K_{\rm cl}}{(1 + AK_{\rm cl})^2} \delta A$$
$$T_{\rm cl} = \frac{AK_{\rm cl}}{1 + AK_{\rm cl}}$$

Therefore

$$\delta T_{\rm cl}/T_{\rm cl} = \frac{\frac{K_{\rm cl}}{(1+AK_{\rm cl})^2}\delta A}{\frac{AK_{\rm cl}}{1+AK_{\rm cl}}} = \frac{1}{1+AK_{\rm cl}}\delta A/A$$
  
Sensitivity:  $S_{\rm cl} = \frac{\delta T_{\rm cl}/T_{\rm cl}}{\delta A/A} = \frac{1}{1+AK_{\rm cl}} \quad (\ll 1 \text{ for large } K_{\rm cl})$ 

With high-gain feedback, we get smaller relative error due to parameter variations in the plant model.

## Time Response

We still assume no disturbance:  $\tau_{\rm e} = 0$ .

So far, we have focused on DC gain only (steady-state response). What about *transient response*?

Open-loop

$$\Omega_{\rm m} = \frac{AK_{\rm ol}}{\tau s + 1} \Omega_{\rm ref}$$

Pole at  $s = -\frac{1}{\tau} \implies$  transient response is  $e^{-t/\tau}$ Here,  $\tau$  is the *time constant*: the time it takes the system

response to decay to 1/e of its starting value.

In the open-loop case, smaller time constant means faster convergence to steady state. This is not affected by the choice of  $K_{\rm ol}$  in any way!

### Time Response Closed-loop



$$\Omega_{\rm m} = \frac{AK_{\rm cl}}{\tau s + 1 + AK_{\rm cl}} \Omega_{\rm ref}$$

Closed-loop pole at  $s = -\frac{1}{\tau} (1 + AK_{cl})$ (the only way to move poles around is via feedback) Now the transient response is  $e^{-\frac{1+AK_{cl}}{\tau}t}$ , with

time constant = 
$$\frac{\tau}{1 + AK_{\rm cl}}$$

— for large  $K_{cl}$ , we have a much smaller time constant, i.e., faster convergence to steady-state.

# Summary

#### Feedback control:

- reduces steady-state error to disturbances
- reduces steady-state sensitivity to model uncertainty (parameter variations)
- ▶ improves time response

Word of caution: high-gain feedback only works well for 1st-order systems; for higher-order systems, it will typically cause underdamping and instability.

Thus, we need a more sophisticated design than just static gain. We will take this up in the next lecture with *Proportional-Integral-Derivative* (PID) control.