
Plan of the Lecture

I Review: stability; Routh–Hurwitz criterion

I Today’s topic: basic properties and benefits of feedback
control

Goal: understand the difference between open-loop and
closed-loop (feedback) control; examine the benefits of feedback:
reference tracking and disturbance rejection; reduction of
sensitivity to parameter variations; improvement of time
response.

Reading: FPE, Section 4.1; lab manual



Two Basic Control Architectures

I Open-loop control
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I Feedback (closed-loop) control
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Here, W is a disturbance; K is not necessarily a static gain



Basic Objectives of Control
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I track a given reference

I reject disturbances

I meet performance specs

Intuitively, the difference between the open-loop and the
closed-loop architectures is clear (think cruise control ...)



Open-Loop Control
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I cheaper/easier to implement (no sensor required)

I does not destabilize the system

e.g., if both K and P are stable (all poles in OLHP),

Y

R
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is also stable:

{poles of KP} = {poles of K} ∪ {poles of P}



Feedback Control
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I more difficult/expensive to implement (requires a sensor
and an information path from controller to actuator)

I may destabilize the system:
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has new poles, which may be unstable

I but: feedback control is the only way to stabilize an
unstable plant (this was the Wright brothers’ key insight)



Benefits of Feedback Control
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Feedback control:

I reduces steady-state error to disturbances

I reduces steady-state sensitivity to model uncertainty
(parameter variations)

I improves time response



Case Study: DC Motor

Inputs: va – input voltage

τe – load/disturbance torque

Outputs: ωm – angular speed of the motor

Transfer function:

Ωm =
A

τs+ 1
Va +

B

τs+ 1
Te

τ – time constant

A,B – system gains

A

⌧s + 1
⌦m

Te

Va

B/A

+
+

motor

Objective: have Ωm approach and track a given reference Ωref

in spite of disturbance Te.



Two Control Configurations

I Open-loop control
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I Feedback (closed-loop) control
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Disturbance Rejection

Goal: maintain ωm = ωref in steady state in the presence of
constant disturbance.

Open-loop:
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– the controller receives no information about the disturbance
τe (the only input is ωref , no feedback signal from anywhere else)

– so, let’s attempt the following: design for no disturbance (i.e.,
τe = 0), then see how the system works in general



Disturbance Rejection: Open-Loop Control

First assume zero disturbance:
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Transfer function:

A

τs+ 1
(stable pole at s = −1/τ)

We want DC gain = 1

Ωm =
A

τs+ 1
Va =

KolA

τs+ 1
Ωref

Let’s just use constant gain: Kol = 1/A

ωm(∞) =
1

A
·A · ωref = ωref (for Te = 0)

What happens in the presence of nonzero Te?

Ωm =
A

τs+ 1

1

A︸ ︷︷ ︸
DC gain=1

Ωref +
B

τs+ 1︸ ︷︷ ︸
DC gain=B

Te

=⇒ ωm(∞) = ωref︸︷︷︸
step input

+B τe︸︷︷︸
step input



Disturbance Rejection: Open-Loop Control

Steady-state motor speed for constant reference and constant
disturbance:

ωm(∞) = ωref +Bτe
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Conclusion: in the absence of disturbances, reference tracking
is good, but disturbance rejection is pretty poor. Steady-state
error is determined by B, and we have no control over it (and,
in fact, cannot change this through any choice of controller
Kol, no matter how clever)



Disturbance Rejection: Feedback Control
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Va = KclE = Kcl (Ωref − Ωm)

Ωm =
A

τs+ 1
Kcl (Ωref − Ωm) +

B

τs+ 1
Te

Solve for Ωm: (τs+ 1)Ωm = AKcl (Ωref − Ωm) +BTe

(τs+ 1 +AKcl)Ωm = AKclΩref +BTe

Ωm =
AKcl

τs+ 1 +AKcl
Ωref +

B

τs+ 1 +AKcl
Te



Disturbance Rejection: Feedback Control
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Ωm =
AKcl

τs+ 1 +AKcl︸ ︷︷ ︸
DC gain=

AKcl
1+AKcl

Ωref +
B

τs+ 1 +AKcl︸ ︷︷ ︸
DC gain= B

1+AKcl

Te

(provided all transfer functions are strictly stable)

Assuming that the reference ωref and the disturbance τe are
constant, we apply FVT:

ωm(∞) =
AKcl

1 +AKcl
ωref +

B

1 +AKcl
τe



Disturbance Rejection: Feedback Control

Steady-state speed for constant reference and disturbance:
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Conclusions:

I
AKcl

1 +AKcl
6= 1, but can be brought arbitrarily close to 1

when Kcl →∞. Thus, steady-state tracking is good with
high gain, but never quite as good as in open-loop case.

I
B

1 +AKcl
is small (arbitrarily close to 0) for large Kcl.

Thus, much better disturbance rejection than with
open-loop control.



Sensitivity to Parameter Variations
Consider again our DC motor model, with no disturbance:

A

⌧s + 1
⌦m

Va

motor

Kol⌦ref

open-loop
controller

A

⌧s + 1
⌦mKcl⌦ref

+

�

Bode’s sensitivity concept: In the “nominal” situation, we have
the motor with DC gain = A, and the overall transfer function,
either open- or closed-loop, has some other DC gain (call it T ).

Now suppose that, due to modeling error, changes in operating
conditions, etc., the motor gain changes:

A −→ A+ δA︸︷︷︸
small

perturbation

This will cause a perturbation in the overall DC gain:

T −→ T + δT (from calculus, to 1st order, δT ≈ dT

dA
δA)



Sensitivity to Parameter Variations

A −→ A+ δA (small perturbation in system gain)

T −→ T + δT (resultant perturbation in overall DC gain)

Hendrik Wade Bode

(1905–1982)

Bode’s sensitivity:

S ,
δT/T

δA/A

S = relative error

=
normalized (percentage) error in T

normalized (percentage) error in A



Sensitivity to Parameter Variations

Let’s compute S for our DC motor control example, both open-
and closed-loop.

Open-loop:

I nominal case Tol = KolA = 1
AA = 1

I perturbed case

A −→ A+ δA

Tol −→ Kol(A+ δA) =
1

A︸︷︷︸
design
choice

(A+ δA) = 1︸︷︷︸
Tol

+
δA

A︸︷︷︸
δTol

Sensitivity: Sol =
δTol/Tol
δAol/Aol

=
δA/A

δA/A
= 1

For example, a 5% error in A will cause a 5% error in Tol.



Sensitivity to Parameter Variations
Closed-loop:

I nominal case Tcl =
AKcl

1 +AKcl
I perturbed case

A −→ A+ δA Tcl −→ Tcl + δTcl︸︷︷︸
how to

compute this?

Taylor expansion:

T (A+ δA) = T (A) +
dT

dA
(A)δA+ higher-order terms

In our case:

dTcl
dA

=
Kcl

1 +AKcl
− AK2

cl

(1 +AKcl)2
=

Kcl

(1 +AKcl)2

δTcl =
Kcl

(1 +AKcl)2
δA



Sensitivity to Parameter Variations

From before:

δTcl =
Kcl

(1 +AKcl)2
δA

Tcl =
AKcl

1 +AKcl

Therefore

δTcl/Tcl =

Kcl
(1+AKcl)2

δA

AKcl
1+AKcl

=
1
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δA/A

Sensitivity: Scl =
δTcl/Tcl
δA/A

=
1

1 +AKcl
(� 1 for large Kcl)

With high-gain feedback, we get smaller relative error due to
parameter variations in the plant model.



Time Response

We still assume no disturbance: τe = 0.

So far, we have focused on DC gain only (steady-state
response). What about transient response?

Open-loop

Ωm =
AKol

τs+ 1
Ωref

Pole at s = −1

τ
=⇒ transient response is e−t/τ

Here, τ is the time constant: the time it takes the system
response to decay to 1/e of its starting value.

In the open-loop case, smaller time constant means faster
convergence to steady state. This is not affected by the choice
of Kol in any way!



Time Response
Closed-loop
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Ωm =
AKcl

τs+ 1 +AKcl
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Closed-loop pole at s = − 1
τ (1 +AKcl)

(the only way to move poles around is via feedback)

Now the transient response is e−
1+AKcl

τ
t, with

time constant =
τ

1 +AKcl

— for large Kcl, we have a much smaller time constant, i.e.,
faster convergence to steady-state.



Summary

Feedback control:

I reduces steady-state error to disturbances

I reduces steady-state sensitivity to model uncertainty
(parameter variations)

I improves time response

Word of caution: high-gain feedback only works well for
1st-order systems; for higher-order systems, it will typically
cause underdamping and instability.

Thus, we need a more sophisticated design than just static gain.
We will take this up in the next lecture with
Proportional-Integral-Derivative (PID) control.


