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Quasi-Steady Loads
• Examples are any load that does not change 

much during a switching period.
– Motors
– Loudspeakers
– Batteries to be charged
– Almost any load that includes a filtering effect
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Quasi-Steady Loads

• We often make loads quasi-steady by adding 
series inductance or parallel capacitance so they 
will not change rapidly.

• From the converter, such loads act – on short 
time scales – like ideal sources.
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Transient Loads
• Some loads change so fast that switch action 

does not do much.
• Good example:  large microprocessor.

– A processor with a 1000 MHz clock can change its 
current needs every 1 ns.

– A lot of change can occur in between switching 
actions inside the power converter.
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Transient Loads

• Transient loads must be addressed through 
energy storage, since switch action is not 
sufficient to provide the correct voltage or 
current.

• The energy storage needs become part of the 
power converter design.
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Transient Loads

• Example:  A certain microprocessor can be 
modelled as a capacitance (inside the 
CMOS chip) switching into the input 
voltage at 1000 MHz.

• Consider a 10000 pF capacitor switching 
into a 1 V source at this rate.

• Each time we switch, charge CV = 10000 
pC must be delivered.  At this rate, this is 
10 A of current (or 10 W).
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Transient Load Example

• With a 5 V to 1 V converter, the diode 
carries the load current most of the time.

• The concept:  provide enough output 
capacitance that the load effect will make 
little difference.

• For example, a 10 uF capacitor should be 
able to charge 0.01 uF about 100 times 
before the voltage falls 10%.
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Transient Loads

• This gives us 100 ns rather than 1 ns until the 
next switching is needed.

• This is still a power converter running at about 
10 MHz.

• The reality is that even more capacitance is 
needed.
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Source and Load Limitations

• For any real source or load, connection 
wiring is required.

• Connections always introduce resistance, 
but also inductance.
– The inductance arises because any current 

generates a magnetic field.
– The interaction between the field and the circuit 

is modelled as inductance.
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Current Sources

• Fundamentally, this means all sources 
and loads ultimately act like current 
courses, at least at short enough time 
scales.

• We originally claimed that voltage and 
current sources are about equally 
common, but the reality is that everything 
is a current source (on a fast scale).
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Current Sources

• At a fast enough time scale, the inductance will 
always be greater than the critical value.

• We will need to get an idea of wire inductance 
effects and evaluate their impact on switching.
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Wire Inductance

• A wire has self-inductance, since the current in it 
generates a magnetic field that interacts with the 
return conductor.

• The field also interacts with part of the current 
inside the wire.



Engineering at IllinoisEngineering at Illinois

909

Wire Inductance

• There is internal inductance owing to the field 
inside the wire.

• External inductance is the interaction between 
field outside the wire and the current.

• Both are self-inductance, rather than mutual 
inductance.
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Wire Inductance

• The self-inductance of a long wire is a 
classic electromagnetics problem.

• L (in henries) per unit length is   
wire/(8) + /(2) ln D/R.

• D is the center-to-center distance between 
the wire and the return conductor.  R is wire 
radius.

• The value  is the permeability.
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Wire Inductance

• The first term, wire/(8), is the internal self-
inductance.

• For aluminum, copper, silver, gold, wire = 0
= 4 x 10-7 H/m.

• For steel or nickel, it is much higher.
• For 0, the term is 50 nH/m.
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External Inductance

• The external term /(2) ln D/R depends on 
 of the insulating material.  This is usually 
0.

• The spacing is not a very sensitive function.
• For D/R = 10, the value is about 460 nH/m.
• Add the internal effect, yields about 500 

nH/m
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Self-Inductance

• For copper wire and air, plastic, or varnish 
insulation, we have: 

• For wire, 2 nH/cm is a lower bound.

D/R L
100 950 nH/m
10 500 nH/m typical
3 250 nH/m minimum
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Wire Inductance

• But, we need two wires (the second for return).
• Inductance is minimized when the wires are 

close together.
• Why?  This tends to cancel external magnetic 

fields.
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Wire Inductance

• For a wire pair, 10 nH/cm is a typical value.
• 4 nH/cm is a dead minimum for a

very tightly twisted pair.
• How to reduce these?

– The ultimate twisted pair:  Litz wire.
– Bus bar.
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Implications

• Think about a converter -- built with wires.
• Example:  Buck converter with  10 cm of wire 

between source and switches.
• This gives about 100 nH total – 50 nH in each 

leg.
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Switching Effects

• KCL problem!  If we switch current instantly, the 
inductance generates infinite voltage.

• The saving factor is that switches take time to 
operate.

• What if 10 A is switched in 40 ns?
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Switching Effects

• Then vL=L di/dt 100 nH(10A)/(40 ns).
• The inductor voltage is 25 V.
• Now think about 100 cm of wire and 50 A of 

current -- 1250 V!
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Effects

• Effects include
– Time delay from source to input
– The switches see a much higher than expected 

voltage.
– Ground reference node – where should it be?  

Ground bounce.
– Voltage tolerance. The extra inductor voltage 

introduces ripple and error. 
– Extra losses and KCL problems.
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Example

• Example:  A boost converter delivers its 
square wave to a capacitive load through 
2 cm of wire.

• The square wave is 20 A in amplitude, 
and the switching requires just 50 ns with 
a switching frequency of 250 kHz.

• If we estimate based on vL = L di/dt, we 
get vL  (20 nH)(20 A)/(50 ns) = 8 V.
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Example

• Large impact of inductance on ripple waveforms.
• Real systems also show ringing and resonant 

behavior as well.
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Critical L and C

• We know that L > Lcrit assures both iL > 0 and 
i < ±100%.

• Similarly for C.
• In general, the ratio L/Lcrit serves as a measure 

of quality.
• If L = Lcrit, we have a current source, but it is 

not ideal.
• L >> Lcrit defines an ideal current source.
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Critical L and C

• Since critical L and C are usually easy to 
compute, we can determine how much L or C 
to provide to make a source or load “ideal.”

• This is another approach to the “interface 
problem:”  add passive storage elements to 
make a real source or load more nearly ideal.
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Dc Source Interfaces

• To form a dc current source, simply add a series 
inductance (well) above the critical value.

• To form a dc voltage source, add parallel 
capacitance (well) above the critical value.
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Example:  Battery Source

• A battery has series L and R.
• Even ignoring the L, the resistance carries 

current part of the time:  Ploss = D IL2 Rs.
• With an interface capacitor, the battery sees 

current (D IL) instead.
• The loss is (D IL)2 Rs, which is lower by  a 

factor of D.
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Interface Example

• A battery with internal resistance of 0.1 
supplies a buck-boost converter.

• The load is 200 W, and the nominal 
conversion is +12 V to  -12 V.

• 50 kHz switching; L >> Lcrit.
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L

i t

I L

R

i d

C
12 V



R sL s
Interface Example

• Let L >> Lcrit, C >> Ccrit, fswitch = 50 kHz.
• Ignore Ls for now.
• Voltage drop:  it Rs = q1 IL Rs
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Analysis

• The load current is (200W)/(12V) = 16.7 A.
• Notice that the transfer voltage is 

vt = q1(Vbat - IL x 0.1 ) + q2(Vout).
• The diode current is id = q2IL.
• Averages:  Iload = D2IL = 16.7 A; 

<vt> = D1(Vbat - 0.1IL) + D2Vout = 0; 
D1 + D2 = 1.
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Analysis

• This gives three equations in the unknowns 
D1, D2, and IL.

• Combine to give:  
12D1 - 16.7(0.1)D1/(1 - D1) -12(1-D1) = 0.

• Two solutions:  D1 = 0.607 (the correct one), 
D1 = 0.823 (a high-loss answer).
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Loss Values

• With this result, IL = 42.4 A.
• The loss with no interface is IL2(0.1 ) while 

switch #1 is on.
• The average power loss is 

D1(42.4 A)2(0.1 ) = 109 W.
• Efficiency is 64.7%.
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L

i t

I L

R

i d

C
12 V



R sL s
Loss Values

• Ploss = D1 ( 42.42 Rs ) = 109 W
• Pin = 309 W,  = 64.7%.

42.4 A
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Now, an Interface

• Instead, let us provide a large capacitor at the 
battery terminals.

• Now the battery is exposed to the average 
input current instead of the inductor current.

• The transfer voltage is  
vt = q1(Vbat - Iin x 0.1 ) + q2(Vout).
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With Interface

• Cin is the source interface.
• Now it = q1IL, but Iin = <iin> = <it> = D1IL.
• Vin = Vbat – Iin Rs = Vbat – D1 IL Rs.

L

i t

I L

R

i d

C
12 V



R sL s

i in

C in
V in

+

_
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With Interface

• vt = q1(Vbat – D1 IL Rs) + q2(Vout).
• <vt> = 0 = D1 (Vbat – D1 IL Rs) + D2 Vout

• Also, id = q2IL, and <id> = Iload = 16.7 A.
• Then 0 = D1(Vbat – D1/D2 Iload Rs) + D2Vout
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With Interface
• Is this really any different?  Now, 12D1 -

16.7(0.1)D1
2/(1 - D1) -12(1-D1) = 0.

• The solutions are D1 = 6/11 (or 0.545) and D1
= 6/7 (or 0.857).  The first is correct, since the 
second involves high loss.

• IL = (16.7 A)/D2 = 36.7 A, and Iin = 20 A.
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Current and Loss

• The loss is Iin2 R = 40 W.
• The efficiency is 83.3%.
• We cut out almost 70 W of loss just by adding 

an interface.
• The loss dropped by 64%, just be adding one 

part!
 Source interfaces are essential for good 
design.
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Source Impedance
• Ideal voltage (dc or ac):

– Definite v(t) function no matter what the current.
– No loss (just output or input power).
– No imposed current is associated with any voltage 

drop.
• This means Z = 0 (except that power flows at 

fsource).
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Source Impedance

• The effect is well known:  a dc voltage source 
acts like a short circuit to ac signals.

• It is also true that an ac voltage source acts 
like a short circuit (except at its own 
frequency).



Engineering at IllinoisEngineering at Illinois

939

Source Impedance

• Ideal current, ac or dc:
– Definite current i(t) no matter what the voltage.
– No loss (just power flow).
– Any imposed voltage does not generate an 

associated current.
• Z  (except for fsource)
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Real Sources/Loads

• Series or parallel resistance causes loss.
• Series L causes impedance to rise with 

frequency.
• If ac sources must handle dc voltage or current, 

special problems arise.
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Dealing with Z

• For dc voltage, a parallel capacitor will make Z 
fall with increasing frequency.

• A capacitor makes the source more ideal in 
several ways.

• For dc current, series L makes Z rise, and the 
source is more ideal.
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Ac Sources

• Consider ac voltage:  We want Z = 0, except that 
the interface should not cause trouble at fsource.

• Parallel L-C can do this:  If we set 1/(LC) = 2 
fsource, then this interface has no effect at fsource, 
but can have Z  0 elsewhere.
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Ac Sources

• For ac current, series L-C is appropriate.
• Once again, we should choose the resonant 

frequency to match that of the source.
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General Cases

• If we can avoid subharmonics, then these 
reduce to parallel C and series L.

• If not, true resonant pairs might be necessary.



Engineering at IllinoisEngineering at Illinois

945

Traps

• True resonant pairs end up with large parts 
when the frequencies are low.

• So far, we have focused on eliminating all
frequencies other than the wanted one – any 
value f  fin.

• Although the number of unwanted components 
is infinite, often the unwanted frequencies are 
known.
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Tuned Traps

• We can focus instead on the unwanted 
frequencies, and block them specifically.

• This is the idea of a tuned trap:  make 
Z = 0 or Z  for specific unwanted frequencies 
rather than for a whole range.



Engineering at IllinoisEngineering at Illinois

947

Rectifier

• Example:  Source interface for a six-pulse 
rectifier.

• We know the currents contain harmonics that 
are odd multiples of the ac line input.

• Resonant interfaces can be added at key 
unwanted frequencies to help reduce them.
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Summary so far

• For dc sources, inductors and capacitors well 
above critical values serve as interfaces.

• For ac sources, series L and parallel C work in 
restricted frequency ranges.

• For ac sources, resonant LC filters and traps 
can be used to create more ideal 
characteristics.
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Capacitor Types
• Simple dielectrics:

– Two conductive plates
with a planar dielectric in between.

– A wide variety of dielectric materials.
• Electrolytics:

– The dielectric is formed 
electrochemically on a metal.

• Double-layer
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In General

• We define electrical permittivity, , and C = A/d.  
A is the plate area, d is the plate spacing.

• The permittivity of free space is 0 = 8.854 pF/m.
• Large plate areas and small spacings are 

needed.
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Voltage Limits

• Any capacitor has a voltage rating, 
determined by the dielectric breakdown 
strength.

• The electric field is V/d.  Typically, the limit 
is 10 MV/m or so.  For a typical 25 um 
dielectric, this gives 250 V or more.
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Value Example

• It is difficult to build capacitors with large 
values.

• Example:  Let A = 1 m2, d = 5 um.
• Since   10 pF/m, the capacitance C = A/d is 

about (10 pF/m)(1 m2)/(5 um) = 2 uF.
• This is a big object for such a modest value.
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Simple Dielectrics

• Typical voltage ratings:  100 V and up.
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Circuit Models

• Because of wires, connections, and resistance, 
a capacitor really involves several extra 
components:

R L

R

+ _

w w

leak

v

i

C
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Circuit Model

• The wire must show resistance and 
inductance.

• The insulator should have some leakage 
resistance.

• In a converter, we should consider large 
unwanted components to understand 
capacitor action.
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Circuit Model

• Focus on a single radian frequency .
• The parallel RC can be reduced to a series 

equivalent.
• We are left with R, L, and C as a series 

combination.
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Circuit Model
R

R

w

leak

R w L wj

L wj

1 + ² R leak
² C²

1( )R leak 

C
1
j R leak² C

1 + ² R leak
² C²

-j
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Circuit Model

• This looks complicated, but is easy to simplify 
because we expect a very long “leakage time 
constant” RleakC.

• If RleakC is a long time, the ratio RleakC/T is large.
• In turn, the quantity 2Rleak

2C2 >>1.

² R leakC²
1

R w L wj C
1
j
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Circuit Model

• Define equivalent series inductance, ESL, equal 
to Lw.

• Define equivalent series resistance, ESR, equal 
to Rw + 1/(2Rleak

2C2):

ESL
C

ESR
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Implications

• This is a resonant circuit.
• Below resonance, the reactance is negative (we 

have C).
• Above resonance, the reactance is positive -- we 

have L!
• This is the standard model of a capacitor.
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Some Concerns

• To get capacitive filtering, we need to operate 
below the self-resonant frequency, 
fr = 1/[2(ESL)C].

• This is nontrivial.  For example, 20 nH and 
500 uF yields 50 kHz as an upper limit.



Engineering at IllinoisEngineering at Illinois

962

Summary So Far

• ESL  related to the geometry (wires, layout, 
internal construction)

• ESR  wire effects plus transformed leakage 
resistance

• C  the internal charge storage A/d.
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Behavior

• Consider |Z| and Z.
• Well below self-resonance, the impedance falls 

with frequency, and the angle is -90°.
• Well above self-resonance, the impedance 

rises with frequency, and the angle is +90°.
• At self-resonance, Z = ESR, and the angle is 

zero.
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Behavior

• The very best capacitors have low ESL and ESR 
values, and show a sharp self-resonance.

• Capacitors with higher ESR will show a 
shallower resonance effect, with a gradual 
change in the angle.
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Some Concerns

• From a source impedance perspective, we have 
|Z| that ultimately rises at high frequency.

• There is loss in the resistance.
• We want the resistive voltage drop to be 

negligible.
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Finding ESR

• ESR comprises a leakage resistance effect plus 
series resistance of wires and materials.

• For simple dielectrics, we might estimate it with 
low wire resistance.

• Then ESR  1/(2RleakC2).
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Finding ESR
• We define the dissipation factor, df, as the ratio 

R/X for the series model (at low frequency).  
Here X = 1/(C).

• This is df =(ESR)C 1/(RleakC).
• The dissipation factor is also called the loss 

tangent, tan .

C
ESR
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Finding ESR
• The loss tangent is a geometry-independent 

material property.
– C = A/d
– Rleak = d/A
– RleakC =   a material property

• For many good dielectric materials, the loss 
tangent is roughly constant with frequency.

• This allows us to say ESR  (tan )/(C).
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Finding ESR

• More generally, ESR = (tan )/(C) + Rw.
• For electrolytic capacitors, the connection 

resistance cannot be neglected, and ESR is 
more dominated by Rw.
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Construction

• Most capacitors ultimately have two conducting 
surfaces and insulation in between.

• The simple dielectric construction is most direct, 
with clear plates and insulated spacers.
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Simple Dielectric Materials
• Polymer films.
• Ceramics.
• Paper, mica, and other insulators.

• Ceramics for high .  Others for low loss or low 
cost.

• Almost every planar insulation material has 
been tried (and sold).
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Structure
• The planar structure might be flat (common 

with ceramics) or rolled (common with 
polymers or paper).

• Aluminum conductors are common.
• For polymer films the limits are on “thinness” of 

the films and conductors.
• Multi-layer ceramic capacitors place several 

layers in parallel.
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Characteristics

• Simple dielectrics tend to follow the standard 
model very well.

• Voltage ratings are high.
• For polymers,  is low (perhaps 20 to 30).
• For polymers, thin spacings but low 

capacitance per unit volume.
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Characteristics

• Ceramic capacitors are built in simple dielectric 
form.

• For ceramics,  up to 10000.
• The spacing must be thicker, although voltage 

ratings are still limited (by the material 
strength).

• Often sensitive to moisture.
• Expensive in “large” values. 
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Characteristics
• Many polymers provide df < 0.01, or 

tan  < 1%, and sometimes below 0.1%.
• Ceramics tend to have tan  in the range of 

1% to 5%.
• Define quality factor Q = Zc/ESR, where Zc is 

the characteristic impedance Zc = (ESL/C).
• Most simple dielectrics have high Q.
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Electrolytics

• What does it take to get high C values in small 
packages?
– Thin spacings
– Large areas
– High  values

• How to accomplish all of this?
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Electrolytics

• Certain metals have interesting insulating 
oxides.

• Classic example:  alumina.  This is a very 
high-quality oxide with good electrical 
properties.

• It forms a uniform protective layer on the 
surface of pure aluminum.
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Electrolytics

• Most other oxides might shrink (to form 
exposed cracks) or grow (to lose contact with 
the metal).

• Aluminum and tantalum have the best oxide 
properties from an electrical standpoint.
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Electrolytics

• Concept:
– Etch material, or start with a fine powder, to get high 

surface area.
– Electroplate the material with its own oxide.
– Create electrical connections to the material and to 

the outer side of its oxide.
• The connections are the hard part.
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Electrolytics

• Problem:  If we can plate the material, we can 
“unplate” it, too.

• Electrolytics have polarity.
• Reverse polarity will degrade the oxide layer and 

cause short circuit failure.
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Construction

Expanded view shows oxidized metal slug.  
Voids must contain electrolyte.

Electrolyte

Oxide
layer

Metal

Typical of tantalum types – sintered.
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Electrolytics
• Connections:

– The metal is connected directly to a wire lead.
– A sheet is etched for surface area, or
– The powder is sintered to form connections among 

the particles.
• The other side could be connected with a liquid 

or solid conductor:  the electrolyte.
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Electrolytics

• The electrolyte that makes the second contact 
can be wet (often water-based) or dry (such as 
the manganese dioxide material used in dry 
cell batteries).

• The ESR values are higher for a given C than 
simple dielectrics because of the higher 
effective “wire” resistance.
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Electrolytics

• Since the electrolyte introduces series 
resistance, the ESR is nearly constant with 
frequency.

• Electrolytics tend to have “short” failure modes:  
polarity reversal or heating will be concentrated 
at the thinnest part of the oxide, and it will 
degrade and short circuit.
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Converter Effects

• We need to choose a capacitor with self-
resonance well above the strong unwanted 
frequencies to be filtered.

• Below self-resonance, the circuit model is the 
ESR in series with C.
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Sample Case

• Consider a boost converter.
• The output voltage ought to be fixed.
• Notice that the series ESR does not alter a key 

fact:  <iC> = 0.
• In reality, leakage does allow small current flow 

(mA).
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Boost Example

• Relationships are the same, but output ripple is 
different.

+

_
C

ESR

L >> Lcrit
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Converter Relationships

• Transistor voltage:  q2Vout.  The average is 
D2Vout = Vin.

• Diode current:  q2IL.  The average is D2IL = Iout.
• The ESR does not change the general behavior.
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Ripple Effects
• For ripple, however, the output is now vC + 

vESR = vout.
• We expect vC to be triangular as before, but 

what about vESR?
• With the diode off, iout flows out of the 

capacitor; vC falls and vESR makes vout lower.



Engineering at IllinoisEngineering at Illinois

990

Ripple Effects
• Diode off:

iC = -Iout
vC  falling
vout = vC – Iout ESR

• Diode on:
iC = IL – Iout
vC  rising
vout = vC + (IL – Iout) ESR
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Ripple Effects

• With the diode on, current IL - iout flows into the 
capacitor.

• The voltage vC rises, and vout is higher than vC.
• What is the change?

vout = vC + vESR.
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Ripple Effects

• vC:
– Diode off, iC = -iout = C dvC/dt, vC = iout D1T/C.

• vESR:
– vESR = (IL - iout)ESR - (-iout)ESR
– vESR = IL ESR
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Ideal Case

• If Rw is small, ESR = (tan )/(C).
• The total change, when the ESR value can be 

found from tan , is 
vout = iout D1 T/C + IL tan /(C).

• This reduces to 
vout = iout D1 T/C + (2/D2)iout (tan T/C.

• The change is still proportional to iout T/C, but is 
larger.
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Nonideal case

• If Rw is not small, the ESR jump also 
includes a term RwIL that is independent 
of frequency.

• However, in electrolytics, the electrolyte 
resistance depends on area, so higher C 
generally gives lower Rw.

• In any case, ripple is proportional to 1/C.
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Nonideal Case

• At the highest current levels (especially at low 
voltage), ESR jump dominates the ripple.

• The capacitor in a 5 V or lower converter is 
often selected based on ESR, not really on its 
value of C.
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Numerical Example

• A 12 V to 48 V boost converter, 200 W, 50 kHz 
switching.

• Find C to provide +0.5% ripple, given that tan 
= 0.20 and that Rw gives a minimum ESR of 10 
m.

+

_
C

ESR

L >> Lcrit
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Change
• The inductor current is 16 2/3 A.  The output 

current is 4 1/6 A.
• D1 is 0.75 and D2 is 0.25.
• Ripple should not exceed 0.48 V.
• The change vC is iout D1 T/C = 62.5 x 10-6/C.
• With no ESR, C > 130 uF works.
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With ESR

• The ESR value: 0.01+ tan /(C).
• The change is 16 2/3 A times this, or 0.1667 V + 

10.6 x 10-6/C.
• The total required is now 233 uF, almost double.
• Notice that ripple below 0.35% cannot be 

achieved, because of Rw.
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Summary So Far

• Real capacitors have a self-resonant 
frequency, and are useful below this frequency.

• In a power converter, the unwanted (ripple) 
frequencies determine this usefulness.

• We must include ESR to get accurate results.
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Summary So Far

• ESR voltage drop adds a square wave ripple 
on top of the usual triangular ripple.

• This is called the ESR jump.
• At high currents and low voltages, ESR jump 

can dominate ripple.
• ESR is linked to both a loss tangent and series 

resistance effects.



Engineering at IllinoisEngineering at Illinois

1001

Wire Resistance

• Wires have resistance, with R = l/A ( --
resistivity, l -- length).

• The power loss per unit volume of material is 
iRMS

2R/(lA) = iRMS
2/A2.

• Current per unit area is current density, J.  The 
loss per unit volume is J2.
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Wire Resistance
• We would expect some limit on loss per unit 

volume.
• Perhaps a block of metal can dissipate 1 

W/cm3 without problems.
• This implies a limit on current density.
• For copper,  = 1.724 x 10-8 -m.
• At 1 W/cm3, the limit is 7.62 x 106 A/m2.
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Current Density Limits

• In power electronics practice, it is usual to limit 
current densities to the range of 106 to 107 A/m2, 
or 100 to 1000 A/cm2.

• The higher values apply when heat is less 
important.
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Wire Size
• Consider a #18 AWG wire, which has a 

diameter very close to 1 mm.
• The cross section area is r2 = 0.78 mm2.
• At 1000 A/cm2, this implies a limit of 

7.8 A.
• Sure enough, real products never push above 

10 A in a #18 wire, and often closer to 5 A.
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Wire Size

• In the U.S., we use “American Wire Gauge,” 
which is a complicated logarithmic scale.

• There is an easy way to remember it, though:  
– #18 wire is very close to 1 mm diameter.
– Every 3 steps in gauge yields a factor of 2 in area.
– #15 is twice as big as #18, #12 is 4x, etc.
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Current Rating

• If #18 can carry 5 A easily, we expect #12 to 
carry 20 A.

• Sure enough, #12 AWG is used for 20 A 
house circuits.

• #24 wire can carry about 1.2 A without 
trouble.

• A table in the book gives sizes and current 
capacity examples.
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Current Density Limits

• Since we seek efficiency, lower current 
densities are good.

• Example:  #22 AWG wire carrying 3.26 A 
(1000 A/cm2) has loss (per meter of length) of 
0.57 W/m.

• This might seem low, but #18 loses only 0.23 
W/m for this length.
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Current Density Limits

• #22 with 10 A loses 5.4 W/m -- and gets hot.
• Voltage drop can also be an issue.  Consider a 5 

V, 200 W supply -- 5 V and 40 A.
• Even at 500 A/cm2 (#8 wire), the drop is 84 

mV/m.
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Drop Issues

• Example:  Use #8 wire to connect a 5 V supply 
to a 200 W load, 25 cm away.

• Total wire length:  0.5 m.
• Drop:  42 mV (0.84%).
• Loss:  1.7 W -- almost 1% of output.
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Drop Issues

• Think about 2 V at 20 A (not an uncommon 
microcomputer supply).

• How big a wire, how much drop?
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Drop Issues

• Perhaps we can use #12 AWG?
• The resistance is 5.3 m/m.
• At 20 A, the voltage drop is 0.11 V/m.
• 10 cm of wire yields 0.011 V drop, which is more 

than 0.5% of the intended 2 V.
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Drop Issues

• It is also worth considering the inductance 
effect.

• A 10 cm wire has about 50 nH of inductance.
• A current change of 0 A to 20 A in 10ns will 

yield 100 V induced along the wire!
• Even 1 nH would yield 2 V drop.
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Drop Issues

• Fast transient loads with low voltage supply 
levels cannot really be supplied through 
conventional wires.

• Small capacitors must be present right at the 
load.

• Even then, stray inductance is a problem.
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Thermal Issues

• Loss leads to heat generation.
• Nearly all metals have a resistivity that rises with 

temperature.  This is especially important for 
resistor design.
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Temperature Coefficient
• Example case:  Copper.
• The resistivity increases by +0.39% for each 

1 C (1 K) increase.
• This seems small, but consider that a 20 K 

rise gives a 7.8% increase.  Not good for 
resistors if precise values are desired.
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Application Example

• An interesting effect occurs in heaters or lamps.
• For example, if we want an oven heating 

element at 350°C, made from copper, the “hot” 
resistance is 2.29 times that at 20°C.

• Sizing is a challenge.
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Application Example
• Now, set it up for 4000 W at 230VRMS.  This 

requires 13.2  at the high temperature.
• The current is 17.4 A.
• Copper at the low temperature would have 

resistance of only 5.78 , and I = 39.8 A.  
Inrush!
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Frequency Issue

• Internal self-inductance forces the current 
toward the surface of a conductor as frequency 
increases.

• The “skin depth” is d = [)], or 
(0.166) [1] (in meters), for copper.



Engineering at IllinoisEngineering at Illinois

1019

Frequency Issue

• At 50 kHz, this is 0.3 mm -- enough to matter for 
wire bigger than about #22.

• The net effect is an increase of resistance with 
-1/2.

• Litz wire and thin bus bar can avoid this. (Why?)



Engineering at IllinoisEngineering at Illinois

1020

Resistance

• To avoid large changes, resistors should be 
made of materials with low thermal coefficients 
of resistivity.

• Classic example:  nichrome (80% nickel, 20% 
chromium) with 0.01% change per degree.
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Resistance

• Nichrome is very widely used in heating 
applications.

• For our oven, the change is only 3.3% over the 
full range, and the inrush problem is avoided.
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Resistors -- Points

• We want to make resistors from thermally 
constant materials.

• Resistors (especially those wound with wire) 
have inductance and capacitive effects.

• For “film” resistors, the frequency effects are 
small.
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Resistors -- Points

• For wirewound resistors, inductive effects can be 
very large -- perhaps 10 nH for each cm of total 
wire length.

• We could wind them with dual opposite wires.  
This cancels much of the inductance.


