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Quasi-Steady Loads

« Examples are any load that does nc
much during a switching per|0d
— Motors
— Loudspeakers
— Batteries to be charged
— Almost any load that

::::::
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Quasi-Steady Loads

* We often make loads quasi-stead
series inductance or parallel capax
will not change rapidly.

» From the converter, such
time scales — like ideal soul
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Transient Loads

« Some loads change so fast that *
does not do much.

- Good example: large micropr

— A processor with a 1000 MHz
current needs every 1 ns.

— A lot of change can ,E
actions inside the pov
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Transient Loads

« Transient loads must be addressed
energy storage, since switch actiol
sufficient to provide the
current. p

« The energy storage
power converter design.
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Transient Loads

 Example: A certain microprocessor can be
modelled as a capacitance (inside the
CMOS chip) switching into the input
voltage at 1000 MHz.

 Consider a 10000 pF capacitor switching
Into a 1 V source at this rate.

« Each time we switch, charge CV = 10000
PC must be delivered. At this rate, this Is
10 A of current (or 10 W).

m 902
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Transient Load Example

e Witha 5V to 1V converter, the diode
carries the load current most of the time.

 The concept:. provide enough output

capacitance that the load effect will make
little difference.

 For example, a 10 uF capacitor should be
able to charge 0.01 uF about 100 times
before the voltage falls 10%.

m 903
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Transient Loads

+ This gives us 100 ns rather than
next switching Is needed.

e This is still a power converte
10 MHz.

e The reality Is that even
needed. r
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Source and Load Limitations

« For any real source or load, connection
wiring Is required.

« Connections always introduce resistance,
but also inductance.

— The inductance arises because any current
generates a magnetic field.

— The interaction between the field and the circuit
IS modelled as inductance.

1 905
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Current Sources

- Fundamentally, this means all sou
and loads ultimately act like
courses, at least at short
scales.

« We originally claimed that
current sources are abo
is a current source (
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Current Sources

. At a fast enough time scale, the indt
always be greater than the critical

» We will need to get an idea u_
effects and evaluate their imy
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Wire Inductance

» A wire has self-inductance, since th
generates a magnetic field that-_._
return conductor.

* The field also interacts WI'[\‘(.
Inside the wire. |
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Wire Inductance

» There is internal inductance owing tc
Inside the wire.

+ External inductance is the
field outside the wire and the.

» Both are self- mductance
inductance.
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Wire Inductance

* The self-inductance of a long wire Is a
classic electromagnetics problem.

L (in henries) per unit length Is
Wyire/ (87) + W/(27) In D/R.

e D Is the center-to-center distance between
the wire and the return conductor. R IS wire
radius.

 The value pu Is the permeabillity.

m 910
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Wire Inductance

+ The first term, p;/(8m), is the i
Inductance.

* For alumintriESu
=47 x 107 H/m. ..

« For steel or nickel,
For po, the term is 5
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External Inductance

 The external term p/(2r) In D/R :
u of the insulating material. This is

Ho-
+ The spacing is not a very sensi
e For D/R = 10, the value is
Add the internal effect
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Self-Inductance

+ For copper wire and air, plastic, or \
Insulation, we have:

D/R L

100 950 nH/m

10 500 nH/m typical

3 250 nH/m minimum

e For wire, 2 nH/cm Is
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Wire Inductance

» But, we need two wires (the secon

e Inductance I1s minimized wh
close together. F

» Why? This tends to

fields. y
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Wire Inductance

» For a wire pair, 10 nH/cm is a typical valu*'
o 4 nH/cm is a dead minimum fora s=———=
very tightly twisted pair. N——— %
« How to reduce these? *
— The ultimate twisted pair: Litz wire.
— Bus bar.
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 Think about a converter -- built ‘

» Example: Buck converter with 1
between source and switches

» This gives about 100 nH tot:
leg.

i ;
2
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Switching Effects

« KCL problem! If we switch
inductance generates infinite volt

» The saving factor is that SWIt]
operate.

» Whatif 10 A'is switche"‘
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 The inductor voltage is 25 V.
« Now think about 100 cm
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Effects

o Effects include
— Time delay from source to input

— The switches see a much higF
voltage. y

— Ground reference
Ground bounce.

— Voltage tolerance. Tt
introduces ripple a

— Extra losses anc
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Example

« Example: A boost converter delivers its
sguare wave to a capacitive load through
2 cm of wire.

e The square wave Is 20 A in amplitude,
and the switching requires just 50 ns with
a switching frequency of 250 kHz.

 If we estimate based on v, = L di/dt, we
get v, = (20 nH)(20 A)/(50 ns) = 8 V.

T 920
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Example

e Large impact of inductance on r

« Real systems also show rlngl_f
nehavior as well. ;
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Critical L and C

» We know that L > L assures .
Al < +100%

* In general, the ratio L/L
of quality.

3 If L Lcnt; We have ,‘..
not ideal.

L >> L, define
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Critical L and C

e Since critical L and C are usually easy to
compute, we can determine how much L or C
to provide to make a source or load “ideal.”

e This Is another approach to the “interface
problem:” add passive storage elements to
make a real source or load more nearly ideal.

1 923
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Example: Battery Source

« A battery has series L and R.

 Even ignoring the L, the resistance carries
current part of the time: P =D |,? R..

 With an interface capacitor, the battery sees
current (D 1) instead.

 The lossis (D 1,)? R, which is lower by a
factor of D. i)

925
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Interface Example

* A battery with internal resist‘ﬁ
supplies a buck-boost
e The load is 200 W, and
conversionis +12Vto -
+ 50 kHz switching; L >3
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Interface Example
Ls R

0.10Q
12V o

+ LetL>> L, C>>Cy
» Ignore L, for now.

e Voltage drop: I F
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Analysis

» The load current is (ZOOW)/(~'

. Notice that the transfer
: ql(vbat y X O 1 Q) + 1

The diode current IS Id
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 This gives three equations in
D,, D,, and |,.

 Combine to give:
12D; - 16.7(0.1)Dy/(1 - Dy) -

- Two solutions: D, = 0.607

D, = 0.823 (a high-loss .
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L oss Values

o With this result, |, = 42.4 A.

» The loss with no interface is I, %(
switch #1 Is on.

* The average power loss
D,(42.4 A)(0.1 Q) = 109

Efficiency is 64.7%.
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L oss Values
Ls R

0.1Q
12V e

¥ Ploss = D]_ ( 42 .42
. Pin =309 W, n =6
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Now, an Interface

battery termmals

 Now the battery is exposec
input current instead of th

* The transfer voltage
—_ ql(Vbat - lin X
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Ls R With Interface

g

iin
+
I L -

e C, isthe source
2 NOW it — qllL’ bUt Iln
. Vin r Vbat_ |
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With Interface

* Vi = Q1(Vbat . Dl IL Rs) + CIZ(Vout)m*'.-
* V> =0=D; (Vpir—D; IL Rg) +

* AL id = QL and <id> = || "’
e Then 0 = D4(V,,— D;
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With Interface

* Is this really any different? Now,

» The solutions are D, = 6/11 (or :

= 6/7 (or 0.857). The first
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Current and Loss

 Thelossis |, 2R =40 W.
* The efficiency Is 83.3%.

« We cut out almost 70 w o-f'
an interface.

» The loss dropped by
part! y

- Source interfaces

design.
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Source Impedance

* |deal voltage (dc or ac):
— Definite v(t) function no matter what ‘
— No loss (just output or input !
- No imposed current is associa
drop.
* This means Z=0 w
f

SOUI’CG)
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Source Impedance 1

» The effect is well known: a dc v
acts like a short circuit to ac s

* Itis also true that an ac V:'
like a short circuit (exce-.
frequency).
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Source Impedance

* Ideal current, ac or dc:
— Definite current i(t) no matter w
— No loss (just power flow).

~ Any imposed voltage does @
associated current.

« Z - (except for fgce.
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Real Sources/Loads

 Series or parallel resistance

» Series L causes |mpedance
frequency.

« If ac sources must handle‘

special problems arise.
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Dealing with Z

* For dc voltage, a parallel CapaC|to_??
fall with increasing frequency

» A capacitor makes the source
several ways. 4

» For dc current, series L ma

source is more ideal.
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the interface should not cause g

» Parallel L-C can do this: If we s
fsource1 then this interface
but can have Z — 0 elsewh
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» For ac current, series L-C is apprc

» Once again, we should choose
frequency to match that of the
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General Cases

» If we can avoid subharmonics, the
reduce to parallel C and series L
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Traps

e True resonant pairs end up with large parts
when the frequencies are low.

« So far, we have focused on eliminating all
frequencies other than the wanted one — any
value f = f._.

e Although the number of unwanted components
IS Infinite, often the unwanted frequencies are
known.

I 945
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» We can focus instead on the unwan
frequencies, and block them spec

e This is the idea of a tuned trap:
Z = 0 or Z —o for specific un

rather than for a whole



Engineering at lllinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Rectifier

- Example: Source interface for a six-f
rectifier.

* We know the currents f
are odd multiples of the ac line

» Resonant interfaces can be
unwanted frequencies to |
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Summary so far

« For dc sources, inductors and capacitors well
above critical values serve as interfaces.

« For ac sources, series L and parallel C work in
restricted frequency ranges.

 For ac sources, resonant LC filters and traps
can be used to create more ideal
characteristics.

m 948
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e Simple dielectrics:

— Two conductive plates
with a planar dielectric in between.

— A wide variety of dielectric materials.
» Electrolytics:

— The dielectric is formed
electrochemically on a metal.

 Double-layer
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« We define electrical permittivity, g,
A is the plate area, d is the plate ¢

* The permittivity of free Spac_-
 Large plate areas and |
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* Any capacitor has a voltage
determined by the dlelectnc .
strength.

* The electric field is V/d. ~
IS 10 MV/m or so.
dielectric, this
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Value Example

+ Itis difficult to build capacitors v
values.

. Example: LetA=1m? d=5

e Since e~ 10 pF/m’ the ﬁ
about (10 pF/m)(1 m2

This is a big object for
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Simple Dielectrics
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Circuit Models

« Because of wires, connections, -
a capacitor really involves sever

components:
. R L
| w
O——
=+
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Circuit Model

« The wire must show re3|stancef'f
Inductance.

» The insulator should have@‘
resistance.

* In a converter, we sh .
unwanted compone ent
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Circuit Model

 Focus on a single radian frequen

+ The parallel RC can be reduce
equivalent. r

* We are left with R, L, @
combination.
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Circult ModelR

leak

¢/
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Circuit Model

* This looks complicated, but is easy to simplify

because we expect a very long “leakage time
constant” R, C.

* If R.,C Is along time, the ratio R, C/T Is large.
e In turn, the quantity ®°R,.,,°C? >>1.

1 1
R\, joL, ©2RC? Jo C
—/NW— 55—V VWV o
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« Define equivalent series mductan
toL,,.

« Define equivalent series reS|
to R, + 1/(0?R ¢, °C?):

ESR
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Implications

e This Is a resonant circuit.

+ Below resonance, the reactan
have C).

. Above resonance, the rea_,r—
have L! '

This is the standard _
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Some Concerns

» To get capacitive filtering, we neec
below the self-resonant frequ
f. = 1/[2rnV(ESL)C].

» This is nontrivial. For exam

500 uF yields 50 kHz as ¢
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Summary So Far

 ESL - related to the ge Ometry !
internal construction) |

- ESR > wire effects plus transf
resistance

e C - the internal charg
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e Consider |Z| and £Z.

» Well below self-resonance, the ir
with frequency, and the angle i

 Well above Self—resonanc,
rises with frequency, and t

* At self-resonance, Z
ZEro.
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Behavior

« The very best capacitors have low E
values, and show a sharp self-res

+ Capacitors with higher ESR wil
shallower resonance effectl...
change in the angle.
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» From a source impedance perSp,"
|Z| that ultimately rises at high fre

* There is loss in the resistan(;“

 We want the resistive
negligible. 4



Engineering at lllinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

- ESR comprises a leakage resistanc
series resistance of wires and me

« For simple dielectrics, we a*
low wire resistance.

+ Then ESR ~ /(7R 0xC?).
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Finding ESR
« We define the dissipation factor, df,
R/X for the series model (at
Here X = 1/(0C).

ESR
O VVVAA

+ This is df =(ESR)oC ~

 The dissipation fact
tangent, tan o.




Engineering at lllinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Finding ESR

 The loss tangent is a geometry e
material property.
— C =¢A/d
Rleak pd/A
— R.aC = pe € a material
» For many good dielectric
tangent is roughly con:

 This allows us to sa\
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 More generally, ESR = (tan d)/(

* For electrolytic capacitors, th
resistance cannot be
more dominated by R,,.
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Construction

* Most capacitors ultimately have é
surfaces and insulation in betwee

» The simple dielectric construct
with clear plates and insulate
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Simple Dielectric M aterialm'

e Polymer films.
e Ceramics.
 Paper, mica, and other insul:

.
e
n

e
=

e Ceramics for high e.
cost.

+ Almost every plan:
been tried (anc
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Structure

* The planar structure might be flat (common
with ceramics) or rolled (common with
polymers or paper).

 Aluminum conductors are common.

« For polymer films the limits are on “thinness” of
the films and conductors.

« Multi-layer ceramic capacitors place several
layers in parallel.

I 972
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Characteristics

« Simple dielectrics tend to foIIo
model very well.

» Voltage ratings are high.
» For polymers, ¢ is low (pe

» For polymers, thin spac
capacitance per unit.
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Characteristics

» Ceramic capacitors are built in simy
form.

 For ceramics, € up to

* The spacing must be
ratings are still limited (
strength).

e Often sensitive to
Expensive in “larg
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Characteristics

 Many polymers provide df < 0.01, or
tan o0 < 1%, and sometimes below 0.1%.

e Ceramics tend to have tan ¢ in the range of
1% to 5%.

» Define quality factor Q = Z/ESR, where Z_ IS
the characteristic impedance Z, = V(ESL/C).

 Most simple dielectrics have high Q.

T 975
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Electrolytics

 What does it take to get high C va
packages? y
— Thin spacings
— Large areas
— High ¢ values

- How to accomplish all ¢
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+ Certain metals have interesting ir
oxides. 4

* Classic example: alumina.
nigh-quality oxide with _{e
properties. -'

+ It forms a uniform prot
surface of pure alur




Engineering at lllinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

e Most other oxides might Shrin
exposed cracks) or grow
the metal). )

» Aluminum and tantalum h
properties from an elect
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e Concept:

— Etch material, or start with a flne a
surface area.

— Electroplate the material W|t
— Create electrical connecti""
the outer side of its O)(id"-

» The connections are th:
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Electrolytics

» Problem: If we can plate the
“unplate” it, too.

» Electrolytics have polarity

* Reverse polarity will ¢
cause short circuit
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Typical of tantalum types — sintered.

Expanded view shows oxidized metal slug.
Voids must contain electrolyte.
1 981
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Electrolytics

e Connections:
— The metal is connected directly
— A sheet is etched for surface
— The powder is sintered to f

the particles.
* The other side could b
or solid conductor:
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Electrolytics

* The electrolyte that makes the second contact
can be wet (often water-based) or dry (such as
the manganese dioxide material used in dry
cell batteries).

« The ESR values are higher for a given C than
simple dielectrics because of the higher
effective “wire” resistance.

T 983
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Electrolytics

e Since the electrolyte introduces series
resistance, the ESR Is nearly constant with
frequency.

« Electrolytics tend to have “short” failure modes:
polarity reversal or heating will be concentrated
at the thinnest part of the oxide, and it will
degrade and short circulit.

T 984
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Converter Effects

» We need to choose a capacitor witr
resonance well above the stron"
frequencies to be filtered. i

 Below self-resonance, thef
ESR in series with C.
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« Consider a boost converter.
» The output voltage ought to be fi;

 Notice that the series ESR d
fact: <i->=0.

* In reality, leakage doeS“
(mA).



Engineering at lllinois

U

Boost Example
>2 Lerit

",

 Relationships are
different.
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Converter Relationships
* Transistor voltage: qZVout- The
DZVOU'[ = Vin' 4

 Diode current: g,l,. The
 The ESR does not chang,~
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Ripple Effects

* For ripple, however, the output F
VEsr = Vout: r
» We expect v, to be trlangular-’

what about Vggr?

+ With the diode off, i, flows
capacitor; v falls and vg
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Ripple Effects
e Diode off:

lc = 'Iout

e Diode on:
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Ripple Effects

» With the diode on, current I - iy fl
capacitor.

* The voltage v, rises, and v
« What is the change?

AV, = AV + AVegg.
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Ripple Effects

* Avg::
— Diode off, i¢ = iy, = C dv/dt, Av,
* AVgsg:
I AVESR (I out) ESR -
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|deal Case

o |f R IS small, ESR = (tan 8) /(

« The total change, when the ,
found from tan o, IS
Avo ut — lout D T/C + | t an

e This reduces to
AVout lout D T/ C +

larger.
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Nonideal case

* If R, is not small, the ESR
includes a term R |, that is inde
of frequency.

* However, In electrolytics,_
resistance depends on al
generally gives lower F

* In any case,
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e At the highest current levels (espsf
voltage), ESR jump dominates the

» The capacitor in a5 V or lower
often selected based on E
value of C.
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Numerical Example

e A 12V to 48 V boost converter, 200 W, 50 kHz
switching.
 Find C to provide +0.5% ripple, given that tan o

= 0.20 and that R, gives a minimum ESR of 10
mqQ).

L >> I—crit

— T >

|| %g ESR

1 1

996
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Change

 The inductor current is 16 2/3
currentis 4 1/6 A. F

* D;is0.75and D, Is 0.25.
+ Ripple should not excee: o
* The change Av, Is |out,‘
With no ESR, C >
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With ESR

 The ESR value: 0.01+ tan

- The change is 16 2/3 A times this,
10.6 x 10°%/C.

 The total required is now

» Notice that ripple below 0.3
achieved, because of
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Summary So Far

» Real capacitors have a self-re @
frequency, and are useful belo

* In a power converter, the un
frequencies determine this

» We must include ESR tc
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Summary So Far

« ESR voltage drop adds a square wave ripple
on top of the usual triangular ripple.

e This is called the ESR jump.

« At high currents and low voltages, ESR jump
can dominate ripple.

« ESR is linked to both a loss tangent and series
resistance effects.

T 1000
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Wire Resistance

» Wires have resistance, with R = p“
resistivity, | -- length).

» The power loss per unit volume
rus?RI(A) = igys?plAZ.

» Current per unit area is cul

loss per unit volume |S
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Wire Resistance

« We would expect some limit on los:
volume. 4

W/cm? without problems

 This implies a limit on
 For copper, p =
At 1 W/cm3, the limit
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Current Density Limits

* In power electronics practice, It I
current densities to the range
or 100 to 1000 A/cm?.

 The higher values apply W"
iImportant. '
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Wire Size

« Consider a #18 AWG wire, whic
diameter very close to 1 mm.

« The cross section area is

» At 1000 A/cm?, this i -
7.8 A. y

e Sure enough, real o
10 A'in a #18 wire,
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Wire Size

* Inthe U.S., we use “American W
which is a complicated logarithn

» There is an easy way to reme

— #18 wire isvery closeto 1 r

— Every 3 steps in gauge yie

— #15 is twice as big as #:
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Current Rating

 |f #18 can carry 5 A easily, we ¢
carry 20 A.

e Sure enough, #12 AWG |s
house circuits.

e #24 wire can carry
trouble.

« Atable in the boo

capacity example
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Current Density Limits

« Since we seek efficiency, lower currer
densities are good.

« Example: #22 AWG wire
(1000 A/cm?) has loss (per
0.57 W/m.

 This might seem low,
W/m for this length.
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Current Density Limits 1

+ #22 with 10 A loses 5.4 W/m -- and

 Voltage drop can also be an
V, 200 W supply -- 5 V and 40

« Even at 500 A/lcm? (#8
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* Example: Use #8 wire to
to a 200 W load, 25 cm away

e Total wire length: 0.5 m.
* Drop: 42 mV (0.84%).
Loss: 1.7 W -- almost 19
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Drop Issues

» Think about 2 V at 20 A (not
microcomputer supply).

. How big a wire, how ﬁ
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Drop Issues

» Perhaps we can use #12 AWG
* The resistance Is 5.3 mQ/m.
+ At20 A, the voltage drop is 0.

» 10 cm of wire yields 0.011 \
than 0.5% of the intende:
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Drop Issues

effect.

e A 10 cm wire has about 5

e A current Change of 0
y|e|d 100 V induced g

Even 1 nH would
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» Fast transient loads with low voltage
levels cannot really be supphed
conventional wires.

« Small capacitors must be p
load. ‘_

« Even then, stray
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Thermal Issues

* Loss leads to heat generation.

- Nearly all metals have a resistiv
temperature. This Is
resistor design.
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Temperature Coefficient

« Example case: Copper.

* The resistivity increases by +O *
1° C (1 K) increase. i

» This seems small, but conside
rise gives a 7.8% increase.
resistors if precise values
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Application Example

» An interesting effect occurs in heater

* For example, If we want an ovel
element at 350°C, made
resistance Is 2.29 times ‘

e Sizing Is a challenge.
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Application Example

 Now, set it up for 4000 W at 230V-f
requires 13.2 Q at the high tem”’

e The currentis 17.4 A.

+ Copper at the low temperatu
resistance of only 5. 78
Inrush!
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Frequency Issue

 Internal self-inductance forces
toward the surface of a conduc,--
Increases. 4

+ The "skin depth” is d = V[2p/(
(0.166) V[1/w] (in meters 4




Engineering at lllinois

Frequency Issue

» At 50 kHz, this is 0.3 mm -- ‘.-
wire bigger than about #22.

* The net effect Is an mcrease
w12 i

Litz wire and thin bus bﬂ‘
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« To avoid large changes, resistors
made of materials with low ther
of resistivity.

e Classic example:
chromium) with 0.01% chan
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Resistance

* Nichrome is very widely used i
applications. 4

* For our oven, the change
full range, and the inrush pr
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Resistors -- Points

 We want to make resistors from
constant materials. =

« Resistors (especially those
nave inductance and capac

—or “film” resistors, the fr
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Resistors -- Points

 For wirewound resistors,
very large -- perhaps 10 nH for -
wire length.

» We could wind them with dual
This cancels much of the in



