

Power Electronics Day 8 -- Components

P. T. Krein

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

© 2011 Philip T. Krein. All rights reserved.

UNIVERSITT OF ILLINOIS AT URBANA-CHANIFA

Quasi-Steady Loads

- Examples are any load that does not change much during a switching period.
 - Motors
 - Loudspeakers
 - Batteries to be charged
 - Almost any load that includes a filtering effect

Quasi-Steady Loads

- We often make loads quasi-steady by adding series inductance or parallel capacitance so they will not change rapidly.
- From the converter, such loads act on short time scales like ideal sources.

- Some loads change so fast that switch action does not do much.
- Good example: large microprocessor.
 - A processor with a 1000 MHz clock can change its current needs every 1 ns.
 - A lot of change can occur in between switching actions inside the power converter.

- Transient loads must be addressed through energy storage, since switch action is not sufficient to provide the correct voltage or current.
- The energy storage needs become part of the power converter design.

- Example: A certain microprocessor can be modelled as a capacitance (inside the CMOS chip) switching into the input voltage at 1000 MHz.
- Consider a 10000 pF capacitor switching into a 1 V source at this rate.
- Each time we switch, charge CV = 10000 pC must be delivered. At this rate, this is 10 A of current (or 10 W).

Transient Load Example

- With a 5 V to 1 V converter, the diode carries the load current most of the time.
- The concept: provide enough output capacitance that the load effect will make little difference.
- For example, a 10 uF capacitor should be able to charge 0.01 uF about 100 times before the voltage falls 10%.

- This gives us 100 ns rather than 1 ns until the next switching is needed.
- This is still a power converter running at about 10 MHz.
- The reality is that even more capacitance is needed.

Source and Load Limitations

- For *any* real source or load, connection wiring is required.
- Connections always introduce resistance, but also inductance.
 - The inductance arises because any current generates a magnetic field.
 - The interaction between the field and the circuit is modelled as inductance.

Current Sources

- Fundamentally, this means all sources and loads ultimately act like current courses, at least at short enough time scales.
- We originally claimed that voltage and current sources are about equally common, but the reality is that everything is a current source (on a fast scale).

Current Sources

- At a fast enough time scale, the inductance will always be greater than the critical value.
- We will need to get an idea of wire inductance effects and evaluate their impact on switching.

- A wire has self-inductance, since the current in it generates a magnetic field that interacts with the return conductor.
- The field also interacts with part of the current inside the wire.

- There is internal inductance owing to the field inside the wire.
- External inductance is the interaction between field outside the wire and the current.
- Both are self-inductance, rather than mutual inductance.

- The self-inductance of a long wire is a classic electromagnetics problem.
- L (in henries) per unit length is $\mu_{wire}/(8\pi) + \mu/(2\pi) \ln D/R$.
- D is the center-to-center distance between the wire and the return conductor. R is wire radius.
- The value μ is the permeability.

- The first term, $\mu_{wire}/(8\pi)$, is the *internal self-inductance*.
- For aluminum, copper, silver, gold, $\mu_{wire} = \mu_0 = 4\pi \times 10^{-7}$ H/m.
- For steel or nickel, it is much higher.
- For μ_0 , the term is 50 nH/m.

External Inductance

- The external term $\mu/(2\pi)$ In D/R depends on μ of the insulating material. This is usually μ_0 .
- The spacing is not a very sensitive function.
- For D/R = 10, the value is about 460 nH/m.
- Add the internal effect, yields about 500 nH/m

Self-Inductance

• For copper wire and air, plastic, or varnish insulation, we have:

D/R	L	
100	950 nH/m	
10	500 nH/m	typical
3	250 nH/m	minimum

• For wire, 2 nH/cm is a lower bound.

- But, we need two wires (the second for return).
- Inductance is minimized when the wires are close together.
- Why? This tends to cancel external magnetic fields.

Wire Inductance

- For a wire pair, 10 nH/cm is a typical value.
- 4 nH/cm is a dead minimum for a very tightly twisted pair.
- How to reduce these?
 - The ultimate twisted pair: Litz wire.
 - Bus bar.

15

Implications

- Think about a converter -- built with wires.
- Example: Buck converter with 10 cm of wire between source and switches.
- This gives about 100 nH total 50 nH in each leg.

Switching Effects

- KCL problem! If we switch current instantly, the inductance generates infinite voltage.
- The saving factor is that switches take time to operate.
- What if 10 A is switched in 40 ns?

Switching Effects

- Then $v_L = L \operatorname{di/dt} \approx 100 \operatorname{nH}(10A)/(40 \operatorname{ns})$.
- The inductor voltage is 25 V.
- Now think about 100 cm of wire and 50 A of current -- 1250 V!

- Effects include
 - Time delay from source to input
 - The switches see a much higher than expected voltage.
 - Ground reference node where should it be?
 Ground bounce.
 - Voltage tolerance. The extra inductor voltage introduces ripple and error.
 - Extra losses and KCL problems.

Example

- Example: A boost converter delivers its square wave to a capacitive load through 2 cm of wire.
- The square wave is 20 A in amplitude, and the switching requires just 50 ns with a switching frequency of 250 kHz.
- If we estimate based on v_L = L di/dt, we get v_L ≈ (20 nH)(20 A)/(50 ns) = 8 V.

Example

- Large impact of inductance on ripple waveforms.
- Real systems also show ringing and resonant behavior as well.

Critical L and C

- We know that L > L_{crit} assures both i_L > 0 and $\Delta i < \pm 100\%$.
- Similarly for C.
- In general, the ratio L/L_{crit} serves as a measure of quality.
- If L = L_{crit}, we have a current source, but it is not ideal.
- L >> L_{crit} defines an ideal current source.

Critical L and C

- Since critical L and C are usually easy to compute, we can determine how much L or C to provide to make a source or load "ideal."
- This is another approach to the "interface problem:" add passive storage elements to make a real source or load more nearly ideal.

Dc Source Interfaces

- To form a dc current source, simply add a series inductance (well) above the critical value.
- To form a dc voltage source, add parallel capacitance (well) above the critical value.

Example: Battery Source

- A battery has series L and R.
- Even ignoring the L, the resistance carries current part of the time: $P_{loss} = D I_{L}^{2} R_{s}$.
- With an interface capacitor, the battery sees current (D I_L) instead.
- The loss is (D I_L)² R_s, which is lower by a factor of D.

Interface Example

- A battery with internal resistance of 0.1 Ω supplies a buck-boost converter.
- The load is 200 W, and the nominal conversion is +12 V to -12 V.
- 50 kHz switching; L >> L_{crit}.

- Let L >> L_{crit} , C >> C_{crit} , $f_{switch} = 50$ kHz.
- Ignore L_s for now.
- Voltage drop: $i_t R_s = q_1 I_L R_s$

Analysis

- The load current is (200W)/(12V) = 16.7 A.
- Notice that the transfer voltage is $v_t = q_1(V_{bat} - I_L \times 0.1 \Omega) + q_2(V_{out}).$
- The diode current is $i_d = q_2 I_L$.
- Averages: $I_{load} = D_2 I_L = 16.7 \text{ A};$ $\langle v_t \rangle = D_1 (V_{bat} - 0.1 I_L) + D_2 V_{out} = 0;$ $D_1 + D_2 = 1.$

Analysis

- This gives three equations in the unknowns
 D₁, D₂, and I_L.
- Combine to give:
 12D₁ 16.7(0.1)D₁/(1 D₁) -12(1-D₁) = 0.
- Two solutions: $D_1 = 0.607$ (the correct one), $D_1 = 0.823$ (a high-loss answer).

Loss Values

- With this result, $I_L = 42.4$ A.
- The loss with no interface is I²(0.1 Ω) while switch #1 is on.
- The average power loss is $D_1(42.4 \text{ A})^2(0.1 \Omega) = 109 \text{ W}.$
- Efficiency is 64.7%.

- $P_{loss} = D_1 (42.4^2 R_s) = 109 W$
- Pin = 309 W, η = 64.7%.

Now, an Interface

- Instead, let us provide a large capacitor at the battery terminals.
- Now the battery is exposed to the average input current instead of the inductor current.
- The transfer voltage is $v_t = q_1(V_{bat} - I_{in} \times 0.1 \Omega) + q_2(V_{out}).$

- C_{in} is the source interface.
- Now $i_t = q_1 I_L$, but $I_{in} = \langle i_{in} \rangle = \langle i_t \rangle = D_1 I_L$.
- $V_{in} = V_{bat} I_{in} R_s = V_{bat} D_1 I_L R_s$.

With Interface

- $V_t = q_1(V_{bat} D_1 I_L R_s) + q_2(V_{out}).$
- $\langle V_t \rangle = 0 = D_1 (V_{bat} D_1 I_L R_s) + D_2 V_{out}$
- Also, $i_d = q_2 I_L$, and $\langle i_d \rangle = I_{load} = 16.7 \text{ A}$.
- Then $0 = D_1(V_{bat} D_1/D_2 I_{load} R_s) + D_2V_{out}$

With Interface

- Is this really any different? Now, 12D₁ 16.7(0.1)D₁²/(1 D₁) -12(1-D₁) = 0.
- The solutions are $D_1 = 6/11$ (or 0.545) and $D_1 = 6/7$ (or 0.857). The first is correct, since the second involves high loss.
- $I_L = (16.7 \text{ A})/D_2 = 36.7 \text{ A}$, and $I_{in} = 20 \text{ A}$.

Current and Loss

- The loss is $I_{in}^2 R = 40 W$.
- The efficiency is 83.3%.
- We cut out almost 70 W of loss just by adding an interface.
- The loss dropped by 64%, just be adding one part!
- → Source interfaces are essential for good design.

Source Impedance

- Ideal voltage (dc or ac):
 - Definite v(t) function no matter what the current.
 - No loss (just output or input power).
 - No imposed current is associated with any voltage drop.
- This means Z = 0 (except that power flows at f_{source}).

Source Impedance

- The effect is well known: a dc voltage source acts like a short circuit to ac signals.
- It is also true that an ac voltage source acts like a short circuit (except at its own frequency).

Source Impedance

- Ideal current, ac or dc:
 - Definite current i(t) no matter what the voltage.
 - No loss (just power flow).
 - Any imposed voltage does not generate an associated current.
- $Z \rightarrow \infty$ (except for f_{source})

Real Sources/Loads

- Series or parallel resistance causes loss.
- Series L causes impedance to rise with frequency.
- If ac sources must handle dc voltage or current, special problems arise.

Dealing with Z

- For dc voltage, a parallel capacitor will make Z fall with increasing frequency.
- A capacitor makes the source more ideal in several ways.
- For dc current, series L makes Z rise, and the source is more ideal.

Ac Sources

- Consider ac voltage: We want Z = 0, except that the interface should not cause trouble at f_{source}.
- Parallel L-C can do this: If we set $1/\sqrt{(LC)} = 2 \pi$ f_{source}, then this interface has no effect at f_{source}, but can have Z \rightarrow 0 elsewhere.

Ac Sources

- For ac current, series L-C is appropriate.
- Once again, we should choose the resonant frequency to match that of the source.

General Cases

- If we can avoid subharmonics, then these reduce to parallel C and series L.
- If not, true resonant pairs might be necessary.

- True resonant pairs end up with large parts when the frequencies are low.
- So far, we have focused on eliminating *all* frequencies other than the wanted one any value $f \neq f_{in}$.
- Although the number of unwanted components is infinite, often the unwanted frequencies are known.

Tuned Traps

- We can focus instead on the unwanted frequencies, and block them specifically.
- This is the idea of a tuned trap: make
 Z = 0 or Z →∞ for specific unwanted frequencies
 rather than for a whole range.

Rectifier

- Example: Source interface for a six-pulse rectifier.
- We know the currents contain harmonics that are odd multiples of the ac line input.
- Resonant interfaces can be added at key unwanted frequencies to help reduce them.

Summary so far

- For dc sources, inductors and capacitors well above critical values serve as interfaces.
- For ac sources, series L and parallel C work in restricted frequency ranges.
- For ac sources, resonant LC filters and traps can be used to create more ideal characteristics.

Capacitor Types

- Simple dielectrics:
 - Two conductive plates
 with a planar dielectric in between.
 - A wide variety of dielectric materials.
- Electrolytics:
 - The dielectric is formed electrochemically on a metal.
- Double-layer

In General

- We define electrical permittivity, ε , and C = ε A/d. A is the plate area, d is the plate spacing.
- The permittivity of free space is $\varepsilon_0 = 8.854 \text{ pF/m}$.
- Large plate areas and small spacings are needed.

Voltage Limits

- Any capacitor has a voltage rating, determined by the dielectric breakdown strength.
- The electric field is V/d. Typically, the limit is 10 MV/m or so. For a typical 25 um dielectric, this gives 250 V or more.

Value Example

- It is difficult to build capacitors with large values.
- Example: Let $A = 1 \text{ m}^2$, d = 5 um.
- Since $\epsilon \approx 10$ pF/m, the capacitance C = ϵ A/d is about (10 pF/m)(1 m²)/(5 um) = 2 uF.
- This is a big object for such a modest value.

Simple Dielectrics

- The wire must show resistance and inductance.
- The insulator should have some leakage resistance.
- In a converter, we should consider large unwanted components to understand capacitor action.

- Focus on a single radian frequency ω .
- The parallel RC can be reduced to a series equivalent.
- We are left with R, L, and C as a series combination.

- This looks complicated, but is easy to simplify because we expect a very long "leakage time constant" R_{leak}C.
- If $R_{leak}C$ is a long time, the ratio $R_{leak}C/T$ is large.
- In turn, the quantity $\omega^2 R_{leak}^2 C^2 >> 1$.

- Define equivalent series inductance, ESL, equal to L_w.
- Define equivalent series resistance, ESR, equal to R_w + 1/(ω²R_{leak}²C²):

Implications

- This is a resonant circuit.
- Below resonance, the reactance is negative (we have C).
- Above resonance, the reactance is positive -- we have L!
- This is the standard model of a capacitor.

Some Concerns

- To get capacitive filtering, we need to operate below the self-resonant frequency, $f_r = 1/[2\pi\sqrt{(ESL)C}]$.
- This is nontrivial. For example, 20 nH and 500 uF yields 50 kHz as an upper limit.

Summary So Far

- ESL → related to the geometry (wires, layout, internal construction)
- ESR → wire effects plus transformed leakage resistance
- C \rightarrow the internal charge storage ε A/d.

Behavior

- Consider |Z| and $\angle Z$.
- Well below self-resonance, the impedance falls with frequency, and the angle is -90°.
- Well above self-resonance, the impedance *rises* with frequency, and the angle is +90°.
- At self-resonance, Z = ESR, and the angle is zero.

Behavior

- The very best capacitors have low ESL and ESR values, and show a sharp self-resonance.
- Capacitors with higher ESR will show a shallower resonance effect, with a gradual change in the angle.

Some Concerns

- From a source impedance perspective, we have |Z| that ultimately rises at high frequency.
- There is loss in the resistance.
- We want the resistive voltage drop to be negligible.

Finding ESR

- ESR comprises a leakage resistance effect plus series resistance of wires and materials.
- For simple dielectrics, we might estimate it with low wire resistance.
- Then ESR $\approx 1/(\omega^2 R_{\text{leak}} C^2)$.

• The dissipation factor is also called the *loss* tangent, tan δ .

Finding ESR

• The loss tangent is a geometry-independent material property.

 $-C = \varepsilon A/d$

$$-R_{leak} = \rho d/A$$

 $-R_{leak}C = \rho \epsilon \leftarrow a material property$

- For many good dielectric materials, the loss tangent is roughly constant with frequency.
- This allows us to say ESR $\approx (\tan \delta)/(\omega C)$.

Finding ESR

- More generally, ESR = $(\tan \delta)/(\omega C) + R_w$.
- For electrolytic capacitors, the connection resistance cannot be neglected, and ESR is more dominated by R_w.

Construction

- Most capacitors ultimately have two conducting surfaces and insulation in between.
- The simple dielectric construction is most direct, with clear plates and insulated spacers.

Simple Dielectric Materials

- Polymer films.
- Ceramics.
- Paper, mica, and other insulators.
- Ceramics for high ϵ . Others for low loss or low cost.
- Almost every planar insulation material has been tried (and sold).

Structure

- The planar structure might be flat (common with ceramics) or rolled (common with polymers or paper).
- Aluminum conductors are common.
- For polymer films the limits are on "thinness" of the films and conductors.
- *Multi-layer ceramic* capacitors place several layers in parallel.

Characteristics

- Simple dielectrics tend to follow the standard model very well.
- Voltage ratings are high.
- For polymers, ε is low (perhaps $2\varepsilon_0$ to $3\varepsilon_0$).
- For polymers, thin spacings but low capacitance per unit volume.

Characteristics

- Ceramic capacitors are built in simple dielectric form.
- For ceramics, ε up to $1000\varepsilon_0$.
- The spacing must be thicker, although voltage ratings are still limited (by the material strength).
- Often sensitive to moisture.
- Expensive in "large" values.

Characteristics

- Many polymers provide df < 0.01, or tan δ < 1%, and sometimes below 0.1%.
- Ceramics tend to have tan δ in the range of 1% to 5%.
- Define quality factor Q = Z_c/ESR , where Z_c is the characteristic impedance $Z_c = \sqrt{(ESL/C)}$.
- Most simple dielectrics have high Q.

- What does it take to get high C values in small packages?
 - Thin spacings
 - Large areas
 - High ϵ values
- How to accomplish all of this?

- Certain metals have interesting insulating oxides.
- Classic example: alumina. This is a very high-quality oxide with good electrical properties.
- It forms a uniform protective layer on the surface of pure aluminum.

- Most other oxides might shrink (to form exposed cracks) or grow (to lose contact with the metal).
- Aluminum and tantalum have the best oxide properties from an electrical standpoint.

- Concept:
 - Etch material, or start with a fine powder, to get high surface area.
 - Electroplate the material with its own oxide.
 - Create electrical connections to the material and to the outer side of its oxide.
- The connections are the hard part.

- Problem: If we can plate the material, we can "unplate" it, too.
- Electrolytics have polarity.
- Reverse polarity will degrade the oxide layer and cause short circuit failure.

Engineering at Illinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Typical of tantalum types – sintered.

Expanded view shows oxidized metal slug. Voids must contain electrolyte.

- Connections:
 - The metal is connected directly to a wire lead.
 - A sheet is etched for surface area, or
 - The powder is sintered to form connections among the particles.
- The other side could be connected with a liquid or solid conductor: the electrolyte.

- The electrolyte that makes the second contact can be wet (often water-based) or dry (such as the manganese dioxide material used in dry cell batteries).
- The ESR values are higher for a given C than simple dielectrics because of the higher effective "wire" resistance.

- Since the electrolyte introduces series resistance, the ESR is nearly constant with frequency.
- Electrolytics tend to have "short" failure modes: polarity reversal or heating will be concentrated at the thinnest part of the oxide, and it will degrade and short circuit.

Converter Effects

- We need to choose a capacitor with selfresonance well above the strong unwanted frequencies to be filtered.
- Below self-resonance, the circuit model is the ESR in series with C.

Sample Case

- Consider a boost converter.
- The output voltage ought to be fixed.
- Notice that the series ESR does not alter a key fact: <i_C> = 0.
- In reality, leakage does allow small current flow (mA).

• Relationships are the same, but output ripple is different.

Converter Relationships

- Transistor voltage: q_2V_{out} . The average is $D_2V_{out} = V_{in}$.
- Diode current: q_2I_L . The average is $D_2I_L = I_{out}$.
- The ESR does not change the general behavior.

Ripple Effects

- For ripple, however, the output is now v_{C} + $v_{ESR} = v_{out}$.
- We expect v_{C} to be triangular as before, but what about v_{ESR} ?
- With the diode off, i_{out} flows out of the capacitor; v_C falls and v_{ESR} makes v_{out} lower.

- Ripple Effects
 - $i_{c} = -I_{out}$ $v_{c} \rightarrow falling$ $v_{out} = v_{c} - I_{out} ESR$
- Diode on:

• Diode off:

$$i_{C} = I_{L} - I_{out}$$

$$v_{C} \rightarrow rising$$

$$v_{out} = v_{C} + (I_{L} - I_{out}) ESR$$

Ripple Effects

- With the diode on, current I_L i_{out} flows into the capacitor.
- The voltage v_{c} rises, and v_{out} is higher than v_{c} .
- What is the change?

 $\Delta v_{out} = \Delta v_{C} + \Delta v_{ESR}$.

Ripple Effects

• ΔV_C :

- Diode off, $i_{c} = -i_{out} = C dv_{c}/dt$, $\Delta v_{c} = i_{out} D_{1}T/C$.

- ΔV_{ESR} :
 - $\Delta v_{ESR} = (I_L i_{out})ESR (-i_{out})ESR$
 - $\Delta v_{ESR} = I_{L} ESR$

Ideal Case

- If R_w is small, ESR = $(\tan \delta)/(\omega C)$.
- The total change, when the ESR value can be found from tan δ , is $\Delta v_{out} = i_{out} D_1 T/C + I_L \tan \delta/(\omega C).$
- This reduces to $\Delta v_{out} = i_{out} D_1 T/C + (2\pi/D_2)i_{out} (\tan \delta) T/C.$
- The change is still proportional to i_{out} T/C, but is larger.

Nonideal case

- If R_w is not small, the ESR jump also includes a term R_wI_L that is independent of frequency.
- However, in electrolytics, the electrolyte resistance depends on area, so higher C generally gives lower R_w.
- In any case, ripple is proportional to 1/C.

Nonideal Case

- At the highest current levels (especially at low voltage), ESR jump dominates the ripple.
- The capacitor in a 5 V or lower converter is often selected based on ESR, not really on its value of C.

996

Numerical Example

- A 12 V to 48 V boost converter, 200 W, 50 kHz switching.
- Find C to provide $\pm 0.5\%$ ripple, given that tan $\delta = 0.20$ and that R_w gives a minimum ESR of 10 m Ω .

Change

- The inductor current is 16 2/3 A. The output current is 4 1/6 A.
- D₁ is 0.75 and D₂ is 0.25.
- Ripple should not exceed 0.48 V.
- The change Δv_{C} is $i_{out} D_1 T/C = 62.5 \times 10^{-6}/C$.
- With no ESR, C > 130 uF works.

With ESR

- The ESR value: 0.01+ tan $\delta/(\omega C)$.
- The change is 16 2/3 A times this, or 0.1667 V + 10.6 x 10⁻⁶/C.
- The total required is now 233 uF, almost double.
- Notice that ripple below 0.35% cannot be achieved, because of R_w.

Summary So Far

- Real capacitors have a self-resonant frequency, and are useful below this frequency.
- In a power converter, the unwanted (ripple) frequencies determine this usefulness.
- We must include ESR to get accurate results.

Summary So Far

- ESR voltage drop adds a square wave ripple on top of the usual triangular ripple.
- This is called the ESR jump.
- At high currents and low voltages, ESR jump can dominate ripple.
- ESR is linked to both a loss tangent and series resistance effects.

Wire Resistance

- Wires have resistance, with R = ρl/A (ρ -resistivity, I -- length).
- The power loss per unit volume of material is $i_{RMS}^2 R/(IA) = i_{RMS}^2 \rho/A^2$.
- Current per unit area is current density, J. The loss per unit volume is ρJ^2 .

Wire Resistance

- We would expect some limit on loss per unit volume.
- Perhaps a block of metal can dissipate 1 W/cm³ without problems.
- This implies a limit on current density.
- For copper, $\rho = 1.724 \times 10^{-8} \Omega$ -m.
- At 1 W/cm³, the limit is $7.62 \times 10^6 \text{ A/m}^2$.

Current Density Limits

- In power electronics practice, it is usual to limit current densities to the range of 10⁶ to 10⁷ A/m², or 100 to 1000 A/cm².
- The higher values apply when heat is less important.

Wire Size

- Consider a #18 AWG wire, which has a diameter very close to 1 mm.
- The cross section area is $\pi r^2 = 0.78 \text{ mm}^2$.
- At 1000 A/cm², this implies a limit of 7.8 A.
- Sure enough, real products never push above 10 A in a #18 wire, and often closer to 5 A.

Wire Size

- In the U.S., we use "American Wire Gauge," which is a complicated logarithmic scale.
- There is an easy way to remember it, though:
 - #18 wire is very close to 1 mm diameter.
 - Every 3 steps in gauge yields a factor of 2 in area.
 - #15 is twice as big as #18, #12 is 4x, etc.

Current Rating

- If #18 can carry 5 A easily, we expect #12 to carry 20 A.
- Sure enough, #12 AWG is used for 20 A house circuits.
- #24 wire can carry about 1.2 A without trouble.
- A table in the book gives sizes and current capacity examples.

Current Density Limits

- Since we seek efficiency, lower current densities are good.
- Example: #22 AWG wire carrying 3.26 A (1000 A/cm²) has loss (per meter of length) of 0.57 W/m.
- This might seem low, but #18 loses only 0.23 W/m for this length.

Current Density Limits

- #22 with 10 A loses 5.4 W/m -- and gets hot.
- Voltage drop can also be an issue. Consider a 5
 V, 200 W supply -- 5 V and 40 A.
- Even at 500 A/cm² (#8 wire), the drop is 84 mV/m.

- Example: Use #8 wire to connect a 5 V supply to a 200 W load, 25 cm away.
- Total wire length: 0.5 m.
- Drop: 42 mV (0.84%).
- Loss: 1.7 W -- almost 1% of output.

- Think about 2 V at 20 A (not an uncommon microcomputer supply).
- How big a wire, how much drop?

- Perhaps we can use #12 AWG?
- The resistance is 5.3 m Ω /m.
- At 20 A, the voltage drop is 0.11 V/m.
- 10 cm of wire yields 0.011 V drop, which is more than 0.5% of the intended 2 V.

- It is also worth considering the inductance effect.
- A 10 cm wire has about 50 nH of inductance.
- A current change of 0 A to 20 A in 10ns will yield 100 V induced along the wire!
- Even 1 nH would yield 2 V drop.

- Fast transient loads with low voltage supply levels cannot really be supplied through conventional wires.
- Small capacitors must be present right at the load.
- Even then, stray inductance is a problem.

Thermal Issues

- Loss leads to heat generation.
- Nearly all metals have a resistivity that rises with temperature. This is especially important for resistor design.

Temperature Coefficient

- Example case: Copper.
- The resistivity increases by +0.39% for each 1° C (1 K) increase.
- This seems small, but consider that a 20 K rise gives a 7.8% increase. Not good for resistors if precise values are desired.

Application Example

- An interesting effect occurs in heaters or lamps.
- For example, if we want an oven heating element at 350°C, made from copper, the "hot" resistance is 2.29 times that at 20°C.
- Sizing is a challenge.

Application Example

- Now, set it up for 4000 W at $230V_{RMS}$. This requires 13.2 Ω at the high temperature.
- The current is 17.4 A.
- Copper at the low temperature would have resistance of only 5.78 Ω, and I = 39.8 A.
 Inrush!

Frequency Issue

- Internal self-inductance forces the current toward the surface of a conductor as frequency increases.
- The "skin depth" is $d = \sqrt{[2\rho/(\omega\mu)]}$, or (0.166) $\sqrt{[1/\omega]}$ (in meters), for copper.

Frequency Issue

- At 50 kHz, this is 0.3 mm -- enough to matter for wire bigger than about #22.
- The net effect is an increase of resistance with $\omega^{-1/2}$.
- Litz wire and thin bus bar can avoid this. (Why?)

Resistance

- To avoid large changes, resistors should be made of materials with low thermal coefficients of resistivity.
- Classic example: nichrome (80% nickel, 20% chromium) with 0.01% change per degree.

Resistance

- Nichrome is very widely used in heating applications.
- For our oven, the change is only 3.3% over the full range, and the inrush problem is avoided.

Resistors -- Points

- We want to make resistors from thermally constant materials.
- Resistors (especially those wound with wire) have inductance and capacitive effects.
- For "film" resistors, the frequency effects are small.

Resistors -- Points

- For wirewound resistors, inductive effects can be very large -- perhaps 10 nH for each cm of total wire length.
- We could wind them with dual opposite wires. This cancels much of the inductance.

