Power Electronics
 Day 5 - Dc-dc Converters; Classical Rectifiers

P. T. Krein

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign
(C) 2011 Philip T. Krein. All rights reserved.

Engineering at Illinois

Example

- Input: +5 V to +15 V
- Output: $-12 \mathrm{~V} \pm 0.5 \%$
- Power: 10 W to 20 W
- Switching: 100 kHz
- Find a circuit, and then L, C, and duty ratios to meet these needs.

Duty Ratios

- The converter gives $\mathrm{V}_{\text {out }}=-D_{1} \mathrm{~V}_{\text {in }} /\left(1-D_{1}\right)$, when $\mathrm{V}_{\text {out }}$ is defined as on this drawing.
- With +5 V in and -12 V out, $12 \mathrm{~V}=\mathrm{D}_{1}(5 \mathrm{~V}) /\left(1-\mathrm{D}_{1}\right)$.
- The solutions: $\mathrm{D}_{1}=12 / 17, \mathrm{D}_{2}=5 / 17$.
- With +15 V in and -12 V out,
$(12 \mathrm{~V})=\mathrm{D}_{1}(15 \mathrm{~V}) /\left(1-\mathrm{D}_{1}\right)$.
- The solutions: $D_{1}=12 / 27=4 / 9$, $D_{2}=15 / 27=5 / 9$. They add to 1 .

Currents

- To meet the need, D_{1} must be adjustable from $4 / 9$ to $12 / 17$, or 0.444 to 0.706 .
- At 10 W , the average output current is $(10 \mathrm{~W}) /(12 \mathrm{~V})=0.833 \mathrm{~A}$.
- The input current depends on duty.
- Let us allow $\pm 5 \%$ inductor current ripple (somewhat arbitrary).

Inductor Current

- Since $I_{\text {out }}=D_{2} I_{L}$, the inductor current is $\mathrm{I}_{\text {out }} / \mathrm{D}_{2}$. For 10 W to 20 W , the output is 0.833 A to 1.67 A
- D_{2} ranges from $5 / 17$ to $5 / 9$, so Is could be as high as $1.67 /(5 / 17)=5.67 \mathrm{~A}$. It could be as low as $0.833 /(5 / 9)=1.5 \mathrm{~A}$.

Inductor Value

- The $\pm 5 \%$ current variation limit is most restrictive with the lighter load (10 W).
- When switch \#2 is on, the inductor sees -12 V , and its current falls.
- $12 \mathrm{~V}=\mathrm{v}_{\mathrm{L}}=\mathrm{L} \mathrm{di} / \mathrm{dt}=\mathrm{L} \Delta \mathrm{i} / \Delta \mathrm{t}$. The time is $D_{2} T$, with $T=10$ us.
- We want $(12 \mathrm{~V})\left(\mathrm{D}_{2} \mathrm{~T}\right) / \mathrm{L}=\Delta \mathrm{i}$, and $\Delta \mathrm{i}<(0.1)(0.833) / \mathrm{D}_{2}$.

The Current Change

- This reduces to $L>144 D_{2}^{2} T$.
- We need it to work for all allowed duty values. Highest is $5 / 9$.
- A 0.444 mH inductor should meet the requirements over the entire range.

Capacitor Value

- Output capacitor must carry the load current when switch \#2 is off.
- Consider this interval:

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{C}}=\mathrm{I}_{\text {out }} \text { when \#2 is off, and } \\
& \mathrm{i}_{\mathrm{C}}=\mathrm{Ctv} \mathrm{dv} / \mathrm{dt} \\
&=\mathrm{C} \Delta \mathrm{v} / \Delta \mathrm{t} \leftarrow \text { since } \mathrm{i}_{\mathrm{c}} \text { is constant } \\
& \text { during the interval when \# } 2 \text { is off }
\end{aligned}
$$

Engineering at Illinois

Capacitor Value

Capacitor

- The time when \#2 is off is the same as the time with $\# 1$ on, $\Delta t=D_{1}$ T.
- The allowed variation of voltage is $\pm 0.5 \%$ of 12 V , so the total changes should not exceed 1% of 12 V peak-to-peak.

Capacitor

- Therefore, $\mathrm{I}_{\text {out }} \Delta \mathrm{t} / \mathrm{C}=\Delta \mathrm{v}<0.12 \mathrm{~V}$.
- This requires $C>I_{\text {out }} D_{1} T /(0.12 \mathrm{~V})$
- The capacitor must work for any allowed values, so we need the highest value of the right side.
- This occurs at the highest load current and highest D_{1} value.

Final Result

- Then C > (1.67 A)(12/17)(10 us)/ (0.12 V), $\mathrm{C}>98.0 \mu \mathrm{~F}$.
- In conclusion, we could use a 0.5 mH inductor, a $100 \mu \mathrm{~F}$ capacitor, and would have a duty ratio range of $0.444<D_{1}<0.706$ for this 100 kHz frequency selection.

More Indirect Converters

- We could use a boost as the input to a buck.
- This again ought to allow any level of output.
-Will there be a polarity change?

Engineering at Illinois

Boost-Buck Development

a) Boost and Buck.

b) Buck upside down.

c) Voltages in series.

d) Remove redundancy.

Final Simplification

- The switch in series with the voltage source is not necessary for KCL.
- Try removing it.
- The voltage source is a transfer source.

Engineering at Illinois

Boost-Buck Converter

- Left switch is FCFB.
- Right switch is FCRB.

Relationships

- To meet KVL and KCL, $\mathrm{q}_{1}+\mathrm{q}_{2}=1$.
- There are really two matrices now. Let us consider the transfer source.
- Transfer current is subject to control.
- Transfer current $i_{t}=q_{2} l_{\text {in }}-q_{1} l_{\text {out }}$.
- Transfer source power is $\mathrm{i}_{\mathrm{t}} \mathrm{V}_{\mathrm{s}}=\mathrm{q}_{2} \mathrm{l}_{\text {in }} \mathrm{V}_{\mathrm{s}}-\mathrm{q}_{1} \mathrm{l}_{\text {out }} \mathrm{V}_{\mathrm{s}} \leftarrow$ Want 0 average!

Relationships

- This can be done if $D_{2} l_{\text {in }}=D_{1} l_{\text {out }}$.
- Since $D_{1}+D_{2}=1$, we have

$$
D_{1} l_{\text {out }}=\left(1-D_{1}\right) l_{\text {in }} .
$$

- This becomes $V_{\text {out }}=D_{1} V_{\text {in }}\left(1-D_{1}\right)$, based on conservation of energy.
- The polarity reversal comes from the cascade process.

Engineering at Illinois

Relationships

$D_{1} I_{\text {out }}=\left(1-D_{1}\right) I_{\text {in }}$
$D_{1} V_{\text {in }}=\left(1-D_{1}\right) V_{\text {out }}$
(Same as for the buck -boost)

Engineering at Illinois

Relationships

The switches must carry both $I_{\text {in }}$ and $I_{\text {out }}$.

Engineering at Illinois

Boost-Buck

The circuit is often called the "Cuk" converter, after the original patent holder (now expired).

Cuk

Relationships

- The boost-buck (Cuk) also has a polarity reversal, and generally produces the same relationships as the buck-boost .
- Each switch must carry $\mathrm{I}_{\text {in }}+\mathrm{I}_{\text {out }}$ and must block $\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\text {in }}+\mathrm{V}_{\text {out }}$.
- Transfer source: a capacitor.

Engineering at Illinois

What About Voltages?

- The input voltage: $\mathrm{v}_{\text {in }}=\mathrm{q}_{2} \mathrm{~V}_{\mathrm{s}}$,
- The output voltage in a negative direction : $\mathrm{v}_{\text {out }}=\mathrm{q}_{1} \mathrm{~V}_{\mathrm{s}}$,
- Average input:
$V_{\text {in }}=D_{2} V_{s}$,
- Average output:
$V_{\text {out }}=D_{1} V_{s}$.
- Add to get

$$
\begin{aligned}
V_{\text {in }}+V_{\text {out }} & =\left(D_{1}+D_{2}\right) V_{s} \\
& =V_{s} .
\end{aligned}
$$

Engineering at Illinois

Example

- Input: +15 V
- Output: $-15 \mathrm{~V} \pm 1 \%$
- Power: 15 W
- Switching: 150 kHz
- We need to find L, C, and duty ratios to meet these needs.

Duty Ratios

- The converter gives $\mathrm{V}_{\text {out }}=-\mathrm{D}_{1} \mathrm{~V}_{\text {in }} /\left(1-\mathrm{D}_{1}\right)$.
- With +15 V in and -15 V out,
$(15 \mathrm{~V})=\mathrm{D}_{1}(15 \mathrm{~V}) /\left(1-\mathrm{D}_{1}\right)$.
- The solutions: $D_{1}=1 / 2, D_{2}=1 / 2$
- At 15 W , the average output current is 1 A . So is the average input current.
- The output inductor is allowed $\pm 1 \%$ current ripple to enforce the target output voltage variation.

Inductor Current

- When the diode is on, the output inductor sees $15 \mathrm{~V}=\mathrm{L}$ di/dt.
- The duration of the diode-on interval is $\mathrm{D}_{2} \mathrm{~T}=3.33$ us.
- Simplify to $15 \mathrm{~V}=\mathrm{L} \Delta \mathrm{i} / \Delta \mathrm{t}$, with $\Delta \mathrm{t}=\mathrm{D}_{2} \mathrm{~T}$, and $\Delta \mathrm{i}<(0.02) \times(1 \mathrm{~A})$.
- Therefore, $L>(15 \mathrm{~V})(3.33 \mathrm{us}) /(0.02 \mathrm{~A})$.
$\mathrm{L}>2.5 \mathrm{mH}$ (output inductor).

Engineering at Illinois

Transfer Capacitor

- Rather arbitrarily, allow $\pm 10 \%$ variation in transfer voltage.
- The average voltage is $\mathrm{V}_{\text {in }}+\mathrm{V}_{\text {out }}=30 \mathrm{~V}$. Allowed variation: 6 V (a total of 20\%).
- With switch \#2 on, $\mathrm{i}_{\mathrm{C}}=\mathrm{I}_{\text {in }}$

$$
\begin{aligned}
& =1 \mathrm{~A} . \\
\mathrm{i}_{\mathrm{C}} & =\mathrm{Cdv} / \mathrm{dt} \\
& =\mathrm{C} \Delta \mathrm{v} / \Delta \mathrm{t}, \\
\Delta \mathrm{t} & =3.33 \mathrm{us} .
\end{aligned}
$$

Capacitor Result

With $\Delta \mathrm{v}<6 \mathrm{~V}$,

$$
\begin{aligned}
& C>(1 \mathrm{~A})(3.33 \mathrm{us}) /(6 \mathrm{~V}), \\
& C>0.56 \mathrm{uF} .
\end{aligned}
$$

The transfer capacitor in this converter typically carries substantial ripple current.

Engineering at Illinois

Polarity Issue

- We have any allowed output value -except that the values are negative.
- This is not always convenient.
- Options: Cascade some more, e.g., boost-buck-boost.
- Other option: check inductor.

Coupled Inductors

- The buck-boost converter uses a transfer inductor.
- The energy is stored in a magnetic field, with $W_{L}=1 / 2 \mathrm{Li}^{2}$.
- The inductor is built as a coil on a magnetic core.

Coupled Inductors

- What if we use two (or more) core windings? Then the stored energy is a sum for individual windings:
- $\mathrm{W}_{\mathrm{L}}=\Sigma 1 / 2 \mathrm{Li}^{2}$.
- We could have $\mathrm{i}=0$ in one winding -- if another carries current.

Engineering at Illinois

Buck-Boost, Coupled L

- When switch \#1 turns off, the other coil provides a current path.
- We meet KCL, based on magnetics.

Engineering at Illinois

What About This?

- This converter (which is still a buck-boost, really) adds isolation.
- We can connect the output in either polarity!
- The result allows either polarity, and also any output.
- This is called a flyback converter.

Engineering at Illinois

Flyback Converter

The basis for most switching power supplies up to about 100 W .

Flyback Converter

- We also have the option of providing a turns ratio.
- This is very helpful when high conversion ratios are desired.
- The flyback converter is a "true" dc transformer.

Analysis

- What if there is a turns ratio?
-We know how to analyze it at $1: 1$, since that is a buck-boost circuit.
- Do a conversion to get 1:1, then analyze.
- Example: 200 V to 5 V . If we use a 200:5 turns ratio, $D=1 / 2$.

Analysis

- Why? The 200 V input to a 200 -turn winding is equivalent to a 5 V input on a 5-turn winding.
- In general, V / N is a constant, so a simple ratio can give an equivalent.
- The inductance depends on N^{2}.

Engineering at Illinois

Boost Alternative

If $\mathrm{V}_{\text {in }}$ is very different from $\mathrm{V}_{\text {out }}$, one of the switches needs to be on for a very short time. Time errors will be more important.

$$
D_{1}=39 / 40
$$

Engineering at Illinois

Flyback Converter

 More practical: Take advantage of the turns ratio of the transformer.

$$
\begin{array}{cl}
D_{1}=1 / 2 & \text { Much easier to achieve, } \\
\text { and not so sensitive. }
\end{array}
$$

Engineering at Illinois

Flyback Converter: Equivalent Buck-Boost Converter

A Pointer

- It is usually helpful to have a duty ratio D_{1} in the 0.3 to 0.5 range.
- We often select a turns ratio for a target duty ratio of about 40%.

Example

- 200 V to 5 V converter, $50 \mathrm{~W}, 100 \mathrm{kHz}$ switching. Want $\pm 1 \%$.
- Let us select a turns ratio of 200:5. Then a +5 V to $-5 \mathrm{~V}, 50 \mathrm{~W}$, buck-boost converter can be the basis for design.

Engineering at Illinois

Example

$$
D_{1}=D_{2}=1 / 2
$$

Example

- The duty ratio is 50%. The average output current is 10 A . The inductor current must be $(10 \mathrm{~A}) / \mathrm{D}_{2}=20 \mathrm{~A}$.
- The capacitor carries 10 A when the diode is off, and $\mathrm{i}_{\mathrm{C}}=\mathrm{C} \mathrm{dv} / \mathrm{dt}$.
- For $\Delta t=5 u s, C>500 u F$.

Inductor Value

- Consider a $\pm 5 \%$ current ripple (but what does this mean in a flyback?).
- The inductor sees 5 V when the diode is on, $5 \mathrm{~V}=\mathrm{L} \Delta \mathrm{i} /(5 \mathrm{us})$.
- With $\Delta \mathrm{i}<2 \mathrm{~A}, \mathrm{~L}>12.5 \mathrm{uH}$.

The Flyback

- For the flyback, the coupled inductor should measure 12.5 uH from the 5 V side, and that coil will carry 20 A when on.
- On the other side, at 200:5 ratio, there are 40 times as many turns.

Engineering at Illinois

The Flyback

$$
{\underset{L}{L_{200}}}_{2 \| \mathrm{L}_{5}}^{200: 5} \quad \frac{L_{200}}{L_{5}}=\left(\frac{200}{5}\right)^{2}=1600
$$

The Flyback

- The inductance measured at the input is 1600 times higher, or 20 mH .
- The input coil carries (20 A)/40 = $1 / 2 \mathrm{~A}$.
- The input switch must carry $1 / 2 \mathrm{~A}$ and block 400 V (why?)
- The output switch must carry 20A and block 10 V .
- It is not the inductor current that stays nearly constant, but rather the magnetic flux.

Major Indirect Converters

- Buck-boost
- Boost-buck (Ćuk)
- SEPIC (single-ended primary inductor converter) = boost-buck-boost
- Zeta = buck-boost-buck
- These are all "two switch" converters
- There are a few others.
- Some "four switch" versions exist, but are less common.

Ratios

- SEPIC and Zeta same ratio as buck-boost and boost-buck, $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=\mathrm{D}_{1} / \mathrm{D}_{2}$, except:
- No polarity reversal.
- Others: boost-buck-boost-buck... buck-boost-buck-boost...
- Two switch versions just add more filter elements.
- Notice: current-voltage-current...

Engineering at Illinois

Isolation needs

- The flyback circuit (derived from buck-boost) uses a "coupled inductor" for isolation.
- This part is not the same as a magnetic transformer. It stores energy.

Engineering at Illinois

Isolation needs

- A true transformer has

$$
\begin{aligned}
& \mathrm{p}_{\text {in }}=p_{\text {out }} \\
& i_{\text {out }} / i_{\text {in }}=1 / \mathrm{a} \\
& \mathrm{v}_{\text {out }} / \mathrm{v}_{\text {in }}=\mathrm{a}
\end{aligned}
$$ isolation

- We want a dc transformer. A flyback does this, up to $\sim 100 \mathrm{~W}$.

Magnetic Transformers

- Can we insert a magnetic transformer into a converter?
- To answer this, we need to consider ac issues in a magnetic transformer.
- In a true transformer, voltages and currents are related by a ratio.
- We cannot turn one winding "off" and then draw current from another.

Engineering at Illinois

Magnetic Transformers

- Example: insert a magnetic transformer into a buck converter.
- No. This is a KCL problem.

Magnetic Transformers

- We need to analyze this to understand:
- Distinctions between coupled inductors and magnetic transformers
- How and when a magnetic transformer can be used in a dc-dc converter.

Engineering at Illinois

Real Transformers $\lambda \rightarrow$ magnetic flux linkage $\lambda_{1}=N_{1} \rightarrow$ magnetic flux linkage $\lambda_{2}=N_{2} \phi$
Faraday's Law:

$$
\begin{aligned}
& v_{1}=d \lambda_{1} / d t \\
& v_{2}=d \lambda_{2} / d t
\end{aligned}
$$

Faraday's Law: Implications

$$
\begin{aligned}
& V_{1}=N_{1} \frac{u \varphi}{} d t \quad \lambda_{1}=N_{1} \phi \\
& \div \\
& V_{2}=N_{2} \frac{d \phi}{d t} \\
& \frac{v_{1}}{v_{2}}=\frac{N_{1}}{N_{2}} \quad \text { if } \quad \frac{d \phi}{d t} \neq 0
\end{aligned}
$$

This is IDEAL CASE.

Engineering at Illinois

Real Transformer
 IF $v=d \lambda / d t$,
 $\phi=N i / \mathcal{R}$
 $v=N^{2} / \mathscr{R} d i / d t$
 = L di/dt
 Circuit Model:

Engineering at Illinois

Real Transformer

Engineering at Illinois

Real Transformer

Does not work! Average voltage across L_{m} is not zero.

Engineering at Illinois

How to insert a transformer

Need an "ac" node

ac link converter

Engineering at Illinois

How to insert a transformer

Engineering at Illinois

How to insert a transformer

Engineering at Illinois

How to insert a transformer

Engineering at Illinois

Full-Bridge Forward Converters Buck "Matrix" Converter

500 W or more

Forward Converters

- When a magnetic transformer is inserted into a dc-dc converter, the resulting structure is called a forward converter.
- There are two general types:
- Ac link converters
- Flux reset converters.

Engineering at Illinois

Full-Bridge Forward Converters

Engineering at Illinois

Full-Bridge \& Single-Ended

Engineering at Illinois

Push-Pull Forward Converter

Forward Converters

- The converters so far are all ac link converters.
- They are based on the buck converter, and are called "buck-derived forward converters."
- Boost-derived converters are just as feasible, and use an input current source.

Engineering at Illinois

Forward Converters

- Bridge-type forward converters are used at high power levels.
- Common at 1 kW and up.
- Flux reset converters tend to be simpler, and sometimes appear in place of flyback converters.
- The idea is to provide a current path with some other winding.

Engineering at Illinois

Catch-Winding Forward Converter

- In this circuit, a third winding acts like a flyback converter.
- The average voltage across L_{m} can be zero now, if duty ratio is limited.

Engineering at Illinois

Buck converter -- Filter

- A buck converter with 6 ohm load, 500 V input, 10 kHz switching, 1.5 mH output inductor.
- Duty is 10%.

Engineering at Illinois

Converter Analysis

Engineering at Illinois

Converter Analysis

- Average output: D_{1} Vin $=50 \mathrm{~V}$
- Inductor current (average): $(50 \mathrm{~V}) /(6 \mathrm{ohms})=8.33 \mathrm{~A}$
- Variation: with the diode on, the inductor ideally sees -50 V . This lasts 90% of a period, or 90 us.

Engineering at Illinois

Filter Analysis

$$
\begin{aligned}
\left\langle v_{L O A D}>=\right. & 50 \mathrm{~V} \\
I_{L} & =50 \mathrm{~V} / 6 \Omega \\
& =81 / 3 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \#2 ON } \\
& V_{L}=-50 \mathrm{~V} \\
&= L d i / d t \\
&=L-\Delta i / \Delta t
\end{aligned}
$$

Engineering at Illinois

Filter Analysis

$$
\begin{aligned}
50 V & =L d i / d t \\
\Delta t & =90 \% \text { of a period } \\
T & =100 \mu \mathrm{~s} \\
\Delta t & =90 \mu \mathrm{~s}
\end{aligned}
$$

$(50 \mathrm{~V}) 90 \mu \mathrm{~s} / 1.50 \mathrm{mH}=\Delta i$

$$
=3 A
$$

Engineering at Illinois

Filter Analysis

- $50 \mathrm{~V}=\mathrm{L}$ di/dt. Since $50 \mathrm{~V} / \mathrm{L}$ is intended to be constant, this is nearly a slope, $50 \mathrm{~V}=\mathrm{L} \Delta \mathrm{i} / \Delta \mathrm{t}$.
- $(50 \mathrm{~V})(90 \mathrm{us}) /(1.5 \mathrm{mH})=3 \mathrm{~A}$.
- This translates to an output change of $\pm 18 \mathrm{~V}$, hardly fixed.

Check Ideal Action

- Can the ideal action assumption still be used?
- For the actual exponential action, the average output is still 50 V .
- The actual Δi value is 2.996 A .
- Ideal action overestimates by 0.12%.

Engineering at Illinois

$$
\begin{aligned}
& \Delta v_{\text {LOAD }}=18 \mathrm{~V} \\
& \left\langle V_{\text {LOAD }}>=50 \mathrm{~V}\right.
\end{aligned}
$$

Filter Analysis

Filter Analysis

- Actual Δi is 0.12% lower than the 3A from "Ideal Action," even though Δi is $\sim 35 \%$ of $\langle l\rangle$.
- This is a conservative estimate. (Ideal action overestimates the ripple.)

Engineering at Illinois

Capacitive Filter

Add C to make $\Delta \mathrm{v}_{\text {out }}<1 \%$ peak-to-peak.

Engineering at Illinois

Capacitive Filter

Engineering at Illinois

Capacitive Filter

$$
\frac{1}{C} \int_{t_{0}}^{t_{1}} i_{C} d t=v\left(t_{1}\right)-v\left(t_{0}\right)
$$

- If we choose the right times, this gives Δv.
- The integral is the area under a triangle.

Engineering at Illinois

Capacitance Value

$$
\frac{1}{C} \int_{0}^{T / 2} i_{C}(t) d t=\Delta v_{\text {peak-to-peak }}
$$

- The area integral: a triangle, $1 / 2 x$ base x height, or $(1 / 2) \times(T / 2) \times(\Delta i / 2)$.
- Therefore:

$$
\Delta v_{\text {peak-to-peak }}=\frac{1}{C} \frac{1}{2} \frac{T}{2} \frac{\Delta i}{2}=\frac{T}{8 C} \Delta i
$$

Engineering at Illinois

Capacitance Value

- We want $\Delta \mathrm{v}<0.5 \mathrm{~V}$.
- $\mathrm{Di} / 2=1.5 \mathrm{~A}$.
- $(1 / \mathrm{C}) \times(25 \mu \mathrm{~s})(1.5 \mathrm{~A})=\Delta \mathrm{v}<0.5 \mathrm{~V}$.
- This requires $C>75 u F$.
- Might use 100 uF.

Engineering at Illinois

Converter Example

- Input: +6 V to +15 V .
- Output: $+12 \mathrm{~V} \pm 1 \%, 24 \mathrm{~W}$.
- Common ground, input and output.
- This cannot be met with buck, boost, buckboost, or boost-buck.
- Need flyback, SEPIC, or Zeta.
- Example: Flyback design.

Engineering at Illinois

Design:

Input: +6 V to +15 V
Output: +12 V $\pm 1 \%, 24 \mathrm{~W}$
Common ground
Flyback

Engineering at Illinois

Equivalent Buck-Boost

Devices: MOSFET \& Diode
$\mathrm{f}_{\text {switch }} \sim 50 \mathrm{kHz}$ to 200 kHz
$24 \mathrm{~W}, 12 \mathrm{~V}$ output. Equivalent buck-boost:

Engineering at Illinois

Analysis

- Let $\mathrm{f}_{\text {switch }}=200 \mathrm{kHz}$. Then $\mathrm{T}=5$ us.
- Transfer source: $\mathrm{v}_{\mathrm{t}}=\mathrm{q}_{1} \mathrm{~V}_{\text {in }}+\mathrm{q}_{2} \mathrm{~V}_{\text {out }}$.
- Since $\left\langle v_{t}\right\rangle=0$, we have $D_{1} V_{\text {in }}=D_{2}\left|V_{\text {out }}\right|$
- Duty ratios: $\left(D_{1} / D_{2}\right) \times V_{\text {in }}=\left|V_{\text {out }}\right|$.

Engineering at Illinois

Duty Ratios

- For +6 V in, $D_{1} / D_{2}=2, D_{1}=2 / 3, D_{2}=1 / 3$.
- For +15 V in, $\mathrm{D}_{1} / \mathrm{D}_{2}=12 / 15, \mathrm{D}_{1}=4 / 9, \mathrm{D}_{2}=5 / 9$.
- Range: $4 / 9<D_{1}<2 / 3,1 / 3<D_{2}<5 / 9$.

Currents

- $\mathrm{I}_{\text {out }}=(24 \mathrm{~W}) /(12 \mathrm{~V})=2 \mathrm{~A}$.
- $q_{2} I_{L}=i_{\text {out }}$
- $D_{2} I_{L}=\left\langle i_{\text {out }}>=I_{\text {out }}=2 A\right.$.
- $I_{L}=(2 A) / D_{2}$
- I_{L} range is 3.6 A to 6 A .
- For design, might let $\Delta \mathrm{i}_{\mathrm{L}}= \pm 10 \%$, or 20% peak to peak.
- Requires $\Delta \mathrm{i}_{\mathrm{L}}<(0.2) \times(2 \mathrm{~A}) / \mathrm{D}_{2}$.

Inductor Voltage

- $\mathrm{v}_{\mathrm{L}}=\mathrm{L}$ di/dt.
- When the diode is on, $\mathrm{v}_{\mathrm{L}}=-12 \mathrm{~V}$, a constant. During that time, then, we have $\mathrm{v}_{\mathrm{L}}=\mathrm{L} \Delta \mathrm{i} / \Delta \mathrm{t}$, with $\Delta \mathrm{t}=\mathrm{D}_{2} \mathrm{~T}$.
- $(12 \mathrm{~V})(\Delta t) / L=\Delta i<(0.2)(2 A) / D_{2}$.
- Simplifies to $L>30 D_{2}{ }^{2} T$.
- Need an L that works in all cases.

Engineering at Illinois

Equivalent Buck-Boost

Now, output voltage ripple.
Diode off: $i_{c}=2 A \quad \Delta t=D, T$
$=\mathrm{C}^{d v} / d t \quad \Delta \mathrm{v}<(0.02) 12$
$=C \Delta v / \Delta t \quad<0.24 V$

Engineering at Illinois

Output Voltage Ripple

- We know the capacitor current when the diode is off.
- Can find C.

Engineering at Illinois

Final Result

$$
1: 1
$$

$$
\begin{array}{ll}
\mathrm{R} \rightarrow 6 \Omega & \text { Coupled } \mathrm{L}: \\
\mathrm{C}=30 \mu \mathrm{~F} & \text { Either side: }=50 \mu \mathrm{H} \\
& \text { Same number of turns }
\end{array}
$$

Engineering at Illinois

Input filter?

Engineering at Illinois

Ideal Action to Find Input

CEngineering at Illinois

CEngineering at Illinois

Introduction to Rectifiers

- Rectifier is a general term for ac-dc conversion.
- Usually the term implies converters with ac voltage source input.
- In principle, an ac current could also be used.

The Basics

- Consider direct ac voltage to dc current conversion -- a 2×2 matrix.
- The switches should be FCBB (forward conducting, bidirectional blocking).
- SCRs and GTOs are appropriate.
- But we know that diodes can be used, too (but no control is possible!)

DAY 6 Start Frequency Matching

- The input frequency is the same as the ac source.
- Low frequency mains ($50 \mathrm{~Hz}, 60 \mathrm{~Hz}$)
- Higher frequencies if an ac link is involved
- The output frequency is 0 Hz .
- If $v_{\text {out }}=q v_{\text {in }}$, with $v_{\text {in }}=V_{0} \cos (\omega t)$, the product trig identities for $q v_{\text {in }}$ give $\cos \left[\left(n \omega_{\text {switch }} \pm \omega\right) t\right]$.

Frequency Matching

- We want 0 Hz output.
- If switching is performed at the input frequency, the $\mathrm{n}=1$ term gives rise to dc and to $2 \omega_{\text {in }}$ at the output.
- Thus 50 Hz in $\rightarrow 50 \mathrm{~Hz}$ switching
- This gives both 0 Hz output and 100 Hz ripple, plus harmonics.

Reality Issues

- To provide a current source, we need to keep current nearly constant under a large $2 \omega_{\text {in }}$ ripple voltage.
- Consider $120 \mathrm{~V}_{\text {RMS }}$ input (170 V peak) at 60 Hz , with a 12 W load.
- The average current is $\sim 0.1 \mathrm{~A}$.

Engineering at Illinois

Filter Realities

- With 170 V peak input, if the inductor is large, the output could be $\langle | \mathrm{v}_{\text {in }} \mid>$, which is $2 \mathrm{~V}_{0} / \pi$.
- The output is 108 V dc.
- What if the current ripple does not exceed $\pm 5 \%$, or 0.01 A peak-to-peak?

Filter Realities

- To estimate the inductor size, we could formally integrate the voltage waveform.
- Instead, let us get a quick estimate. What L is needed for a 60 V signal lasting $1 / 240$ s to give a change of less than 0.01 A?

Filter Realities

- $60 \mathrm{~V}=\mathrm{L} \mathrm{di} / \mathrm{dt} \sim \mathrm{L} \Delta \mathrm{i} / \Delta \mathrm{t}, \Delta \mathrm{t}=1 / 240 \mathrm{~s}$.
- $\Delta \mathrm{i}<0.01 \mathrm{~A}$ requires $\mathrm{L}>25 \mathrm{H}$.
- These excessive inductor values are typical for low-power rectifiers.
- Can we dispense with the inductor entirely?

The Classical Rectifier

- The classical rectifier is a diode full-wave or halfwave circuit operating into a capacitive filter.
- This might be expected to have KVL problems, and it does!
- At low power levels, simplicity sometimes outweighs problems.
- Even so, circuit are disappearing in favor of switching converters.

Engineering at Illinois

Classical Rectifier

Notice the "voltage to voltage" arrangement.

Engineering at Illinois

Trial Method

- Three configurations are allowed:
- 1,1 and 2,2 on is consistent when the input current is positive.
- 1,2 and 2,1 on is consistent when the input current is negative.
- All off is consistent when C keeps the output about $\left|\mathrm{v}_{\text {in }}\right|$.

Engineering at Illinois

Trial Method

In fact, "all off" is active almost all the time!

The Transitions

- Start at the input peak, time $\mathrm{t}=0$.
- Let us set 1,1 and 2,2 on (trial method).
- The input current is $V_{0} / R+C d v / d t$, but $d v / d t=0$ at $\mathrm{t}=0$.
- Input current > 0 -- consistent.

Off devices have v < 0 -- consistent.

The Transitions

- Slightly later, $\mathrm{i}_{\text {in }}=\mathrm{v}_{\mathrm{in}} / \mathrm{R}+\mathrm{C} d \mathrm{dv} / \mathrm{dt}$, and $\mathrm{dv} / \mathrm{dt}$ is negative.
- After a time, the negative capacitor current plus the positive resistor current add to zero.
- At that moment, all diodes turn off.

The Transitions

- This happens when $-\omega \mathrm{CV}_{0} \sin (\omega \mathrm{t})+$ $V_{0} \cos (\omega t) / R=0$, or
- $\tan (\omega \mathrm{t})=1 /(\omega R C)$.
- The resistor represents the load.
- Once the diodes are off, the output voltage decays exponentially.

Engineering at Illinois

The Exponential

- During the decay, $\mathrm{v}_{\text {out }}=\mathrm{V}_{\max } \mathrm{e}^{-\mathrm{t} / \tau}$.
- We can keep the decay small (and the ripple small) with a long time-constant.
- How long? For any $\mathrm{x}, \mathrm{e}^{\mathrm{x}}$ is $e^{x}=1+x+x^{2} / 2!+x^{3} / 3!+\ldots$
- For small $x, \mathrm{e}^{\mathrm{x}} \approx 1+\mathrm{x}$. Linear.

Engineering at Illinois

Analysis

- The decay will continue until the exponential fall hits the rising voltage waveform, $\mathrm{V}_{\max } \mathrm{e}^{-t / \tau}=$ $\left|V_{0} \cos (\omega t)\right|$.
- We get a short sinusoidal piece attached to a nearly linear fall.

$$
\begin{aligned}
& \frac{\pi}{0} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 00 \\
& \frac{\pi}{0} \\
& 0
\end{aligned}
$$

Worst-Case Ripple

- Worst-case ripple is easy to estimate.
- What if the fall is truly linear?

It cannot last longer than the time between voltage peaks.

- The time is $T / 2$ in the full-wave case.

Worst-Case Ripple

- The fall is overestimated by the triangle, $\mathrm{V}_{0} \mathrm{e}^{-(\mathrm{T} / 2) / \tau} \approx \mathrm{V}_{0}(1-\mathrm{T} /(2 \tau))$.
- With the RC time constant, the actual fall is approximately $T /(2 R C)$, with $T=1 / f_{\text {in }}$.
- Thus $\Delta v / V_{0} \approx 1 /\left(2 f_{i n} R C\right)$.
- Half-wave case has no 2.

Design

- The load current $I_{\text {load }} \approx V_{0} / R$.
- Therefore, $\Delta \mathrm{v}=\mathrm{I}_{\text {load }} /(2 \mathrm{fC})$.
- Example: $12 \mathrm{~V}, 1 \mathrm{~W}$ supply with 1% ripple.
- $\Delta \mathrm{v}=0.12 \mathrm{~V}, \mathrm{I}_{\text {load }}=0.083 \mathrm{~A}$.
- We need $C=5800$ uF.

Design Example

- Example: 230 V rms input, 50 Hz .
- Want 5 V output at 10 W .
- Ripple should not exceed $\pm 0.5 \%$.
- First, a peak value of 5 V is needed at the output. The input peak is 325 V , so a $65: 1$ transformer is needed.
- Second, $\Delta v=1 /(2 f C)$, and $\Delta v<0.05 \mathrm{~V}$.
- This gives $C>400000$ uF.

Diode Timing

- If ripple is 1% peak to peak, the voltage falls just 1% before it hits the input ac waveform again.
- The inverse cosine of 0.99 suggests that the diodes are on for about 8° on the angular time scale.
- This is a duty ratio of $8 / 180=4.4 \%$.
- Each diode is on less than 5% of a cycle!

Engineering at Illinois

Current

- If the diodes are on just 5% of the time, the input current waveform has a 5% duty ratio, too.
- To deliver energy, the input current must flow in brief, high spikes.
- Notice that as $C \rightarrow \infty$, the current must increase without bound.
- This is because we have a KVL problem!

Finding the Current

- The current includes a capacitance part C dv/dt and a resistance part v/R.
- When a diode is on, $v=v_{\text {in }}=V_{0} \cos (w t)$.
- Then $C d v / d t=-w C V_{0} \sin (w t)$.
- This is highest at the moment of diode turn-on, perhaps 8° before the peak.
- Thus 1% ripple gives a peak current of more than $50 \mathrm{C} \mathrm{V}_{0}$ at 60 Hz .

Current Points

- The extreme current is almost all delivered to the capacitor.
- Current flows in short, high spikes.
- Ideally, the spikes are inversely proportional to the square root of the ripple spec.
- This means that the spike with 1% ripple is about 40% higher than that for 2% ripple.
- In reality, the current is limited mainly by line and stray transformer leakage inductance.

Current

- The power factor is especially poor.
- For 1% ripple we get ~ 0.26 power factor.
- Classical rectifiers are a major source of "power quality" problems.

Engineering at Illinois

Peak Input Current

- Low frequency \rightarrow large C, transformer
- "KVL violation"

Current flows in brief spikes

Regulation

- A classical rectifier has no line regulation: the output is proportional to the input voltage.
- The load regulation is half the ripple level (think about why this is).

Inductive Filtering

- We would rather use a series inductor to avoid the KVL problem.
- The inductor can be placed at either the input or the output, since the diodes will not turn off until the current $\rightarrow 0$.
- We can use an equivalent source method to estimate ripple when an inductor is present.

Design Example

- Example: $15 \mathrm{~V}, 0.2 \mathrm{~A}(3 \mathrm{~W})$ for a computer network node.
- Set ripple of 1% peak-to-peak maximum.
- Compare approximate C with a precise result.

Engineering at Illinois

Design Example

If diodes are on, there is a 2 V drop. Want 15 V out $\rightarrow 17 \mathrm{~V}$ peak

Design Example

- There are four diodes in the bridge, with two on at a time.
- We should account for the 1 V diode drops, since they are a large fraction of the output.
- To get 15 V out, we need 17 V peak.

Engineering at Illinois

Design Example

- 17 V peak corresponds to $(17 \mathrm{~V}) / \sqrt{ } 2=$ 12 V RMS.
- For $120 \mathrm{~V}, 60 \mathrm{~Hz}$ input, we should buy a $120 \mathrm{~V} / 12 \mathrm{~V}$ transformer.

Engineering at Illinois

Design Example

- The capacitor value: We want the voltage change to be no more than 0.15 V with a 0.2 A load.
- $\Delta v_{\text {out }}=I_{\text {out }} /(2 \mathrm{fC}), f=60 \mathrm{~Hz}$
- With the change less than 0.15 V , this gives $\mathrm{C}>$ 11111 uF.
- Here R = 75Ω, so $\mathrm{RC}=0.83 \mathrm{~s}$.

Engineering at Illinois

Design Example

$$
\begin{aligned}
\Delta V_{\text {out }} & =\frac{I_{\text {OUT }}}{2 f C} \\
\Delta V_{\text {out }} & <0.15 \mathrm{~V} \\
C & >\frac{I_{\text {OUT }}}{2 f C}
\end{aligned}
$$

$$
C>11111 u F
$$

Engineering at Illinois

$$
\begin{aligned}
& \text { Design Example } \\
& R C=0.833 \mathrm{~s} \\
& \tau / \mathrm{T}, \mathrm{~T}=1 / 60 \mathrm{~s} \\
& \tau / \mathrm{T}=50 \\
& \tau /(\mathrm{T} / 2)=100
\end{aligned}
$$

Assumed $\mathrm{V}_{\text {max }}=\mathrm{V}_{\text {peak }}$
Assumed turn-off \rightarrow peak
Assumed linear decay, lasting $1 / 20$ s

Engineering at Illinois

Design Example

"Exact" 10.5 mF
vs. "Approximate" $11.1 \mathrm{mF} \leftarrow \pm 10 \%$ $12000 \mu \mathrm{~F}$

Peak Current

- For the current peak, we need the turn-on point. - This is where a 15 V sine wave rises to 14.85 V .
- This occurs 8.11° before the peak.

Engineering at Illinois

Peak Current

Given:

$$
\begin{aligned}
v= & 15 \cos (w t) \\
t_{o n}= & -8.11^{\circ} \\
& 0^{\circ} \\
i_{c}= & -w C(15) \sin (w t) \\
i_{c m a x}= & w C V_{o} \sin \left(8.11^{\circ}\right) \\
i_{c}= & C d v / d t
\end{aligned}
$$

Peak Current

- The peak current is $\omega C V_{0} \sin \left(8.11^{\circ}\right)=8.9$ A by estimate.
- Actual value is 8.46 A .
- The RMS input is nearly 1 A .
- The transformer rating is 12 VA - for a 3 W load.

Peak Input Current

- Classical rectifiers \rightarrow Common
- Advantages:

Simple
Easy design
Few parts

- Disadvantages:

No line regulation
Harmonics
Large, heavy

- Being phased out in favor of small switchers

Peak Input Current

- We are asking the utility to supply a distorted (spike) current.
- Useful work for only a portion of each cycle

$$
\begin{aligned}
120 \mathrm{~V}_{\mathrm{RMS}}: & 5 \mathrm{~V}_{\mathrm{RMS}} \text { transformer } \\
5 \mathrm{~V}_{\mathrm{RMS}}: \rightarrow & 200 \mathrm{~W} \\
& 170 \mathrm{~A} \mathrm{RMS}
\end{aligned}
$$

Input from utility : $170 \mathrm{~A} / 24$
Input ~ 7.1A

Peak Input Current (cont.)

 120 V, 15 A outlet Two of these at most. $400 \mathrm{~W} \rightarrow 1700 \mathrm{VA}$- This poor power factor gives very poor system utilization.
- If pf $\rightarrow 1$, we could support nine units on a circuit instead of two.

Basic Target

- When a very large inductor is used, the output will look like a dc current source.
- If this is true, each diode will carry $I_{\text {out }}$ when on.
- Each diode will have 50% duty.

Engineering at Illinois

Diode currents

Diode currents: $\mathrm{I}_{\text {out }, ~} \mathrm{D}=50 \%$

Output Voltage

- In the classical rectifier, the output is close to $V_{\text {peak }}$-- IF the capacitor is large.
- The voltage is more nearly the peak if the load is lighter.
- Good load regulation, up to a limit on the load.

Engineering at Illinois

Output Voltage

$$
V_{\text {OUT }}=\left|V_{\text {IN }}\right|
$$

Classical case: $\mathrm{V}_{\text {OUT }} \approx \mathrm{V}_{\mathrm{IN}_{\text {peak }}}$

Engineering at Illinois

Output Voltage Classical case, large C

Up to a load limit, then
$<\mathrm{V}_{\text {OUT }}>\approx \mathrm{V}_{\text {peak }}$; little change.
\rightarrow Good load regulation, (not perfect) depends on C.

Output Voltage

- With large L, the output voltage from the diode bridge is a full-wave sinusoid.
- The load sees the average of this waveform, $<\left|\mathrm{V}_{0} \cos (\theta)\right|>$.
- Compute this. The result is $2 \mathrm{~V}_{0} / \pi$, less any diode drops.

Engineering at Illinois

Output Voltage Large L

Waveform does not change, provided L is big enough.
Load regulation - perfect. No line regulation.

Engineering at Illinois

Output Voltage

- This output is independent of load as long as L is large enough.
- We are still at the mercy of line variation.

Engineering at Illinois

Output Voltage
 $I_{\text {IN }}(t)$

$$
\begin{aligned}
<\mathrm{V}_{\text {OUT }}> & =<\left|\mathrm{V}_{\text {IN }}\right|> \\
& =<\left|\mathrm{V}_{0} \cos (\mathrm{wt})\right|>
\end{aligned}
$$

Engineering at Illinois

Output Voltage

$$
\theta=\omega_{i n} t
$$

0

$$
\begin{aligned}
<\left|\mathrm{V}_{\text {IN }}\right|> & =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} V_{0} \cos \theta d \theta \\
& =\frac{2 V_{0}}{\pi} \text { Lower than classical case }
\end{aligned}
$$

Engineering at Illinois

Output Voltage

- With large L, input current is a square wave rather than short spikes.
- Much better power factor and lower current distortion.

Input Current

- The diodes ensure that the input current is either $+I_{\text {out }}$ or $-I_{\text {out }}$.
- The input current must be a square wave with peak value $I_{\text {out }}$ and duty ratio of 50%.
- This is much less distorted than in the classical case.

Engineering at Illinois

Power Factor

- We can compute a power factor. The average power is $\mathrm{V}_{\text {out }} \mathrm{I}_{\text {out }}=\left(2 \mathrm{~V}_{0} / \pi\right)\left(\mathrm{l}_{\text {out }}\right)$.
- The input RMS current is just $\mathrm{I}_{\text {out }}$.
- The input apparent power $S=V_{\text {RMS }} I_{\mathrm{RMS}}$ is $\left(\mathrm{V}_{0} / \sqrt{2}\right)\left(\mathrm{I}_{\mathrm{out}}\right)$.
- $\mathrm{pf}=\mathrm{P} / \mathrm{S}=(2 / \pi) \sqrt{ } 2=0.900$

Comments

- It is interesting that for large L the power factor does not depend on load, ripple, or anything else.
- A power factor of 90% is far better than for a classical case, but at low power levels L can be excessive.

Choosing L

- We can choose L by using the fundamental Fourier component for a ripple estimate.
- For a full-wave voltage, $c_{1}=4 V_{0} / 3 \pi$ (see $p .175$). The frequency is twice that of the input.

Engineering at Illinois

Inductor Value

Equivalent source approach with Fourier

Inductor Value

- Focus on the first harmonic as a basis for estimation.
- We have a divider, $\mathrm{R} \| \mathrm{C}$ in series with L .
- The impedances are those at the main ripple frequency.
- Find the resistor current to estimate output ripple.
- Please see p. 176 for the details.

Engineering at Illinois

Choosing L

- This is a voltage and current divider.
- The ripple current in the resistor is given by

$$
\frac{2 \sqrt{2} V_{0}}{3 \pi\left(R+j \omega L-\omega^{2} R L C\right)}
$$

Choosing L

- With this relation, a poor choice of L could actually increase the ripple.
- Good results require that the resonant frequency $1 / \sqrt{ }(\mathrm{LC})$ is much less than the ripple frequency.

Choosing L

- When both L and C are present, it is possible to get good results without excessive values of either.
- Even if L is not large, it will improve power factor and the input current waveform.

