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Example
• Input:  +5 V to +15 V
• Output:  -12 V + 0.5%
• Power:  10 W to 20 W
• Switching:  100 kHz
• Find a circuit, and then L, C, and duty ratios 

to meet these needs.

VIN





VOUT
C R

L
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Duty Ratios
• The converter gives Vout = -D1Vin/(1-D1), when 

Vout is defined as on this drawing.
• With +5 V in and -12 V out, 

12 V= D1(5 V)/(1-D1).
• The solutions: D1=12/17, D2=5/17.
• With +15 V in and -12 V out,      

(12 V) = D1 (15 V)/(1-D1).
• The solutions:  D1 = 12/27 = 4/9, 

D2 = 15/27 = 5/9. They add to 1.
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Currents
• To meet the need, D1 must be adjustable

from 4/9 to 12/17, or 0.444 to 0.706.

• At 10 W, the average output current 
is (10 W)/(12 V)= 0.833 A.

• The input current depends on duty. 
• Let us allow + 5% inductor current ripple 

(somewhat arbitrary).
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Inductor Current
• Since Iout = D2 IL, the inductor current 

is Iout/D2.  For 10 W to 20 W, 
the output is 0.833 A to 1.67 A

• D2 ranges from 5/17 to 5/9, so Is could 
be as high as 1.67/(5/17) = 5.67 A.  It 
could be as low as 0.833/(5/9) = 1.5 A.
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Inductor Value
• The + 5% current variation limit is most 

restrictive with the lighter load (10 W).
• When switch #2 is on, the inductor 

sees -12 V, and its current falls.
• 12 V = vL = L di/dt = L i/t.  

The time is D2 T, with T = 10 us.
• We want  (12 V)(D2 T)/L = i, 

and i < (0.1)(0.833)/D2.
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The Current Change

• This reduces to L > 144 D2
2 T.

• We need it to work for all allowed 
duty values.  Highest is 5/9.

• A 0.444 mH inductor should meet the 
requirements over the entire range.
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Capacitor Value

• Output capacitor must carry the load 
current when switch #2 is off.

• Consider this interval:  
iC = Iout when #2 is off, and                      
iC = C dv/dt 

= C v/t   since iC is constant 
during the interval when #2 is off
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Capacitor Value

C R
L

iOUT ILOAD

iC
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Capacitor

• The time when #2 is off is the same 
as the time with #1 on, t = D1 T.

• The allowed variation of voltage is 
+ 0.5% of 12 V, so the total changes 
should not exceed 1% of 12 V peak-
to-peak.
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Capacitor
• Therefore, Iout t/C = v < 0.12 V.
• This requires C > Iout D1T/(0.12 V)
• The capacitor must work for any 

allowed values, so we need the 
highest value of the right side.

• This occurs at the highest load 
current and highest D1 value.
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Final Result
• Then C > (1.67 A)(12/17)(10 us)/ 

(0.12 V), C > 98.0 F.
• In conclusion, we could use a 

0.5 mH inductor, a 100 F capacitor, 
and would have a duty ratio 
range of 0.444 < D1 < 0.706 for 
this 100 kHz frequency selection.
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More Indirect Converters
• We could use a boost as the input to a 

buck.
• This again ought to allow any level of 

output.
• Will there be a polarity change?
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Boost-Buck Development
Boost Buck Put them

in series

a) Boost and Buck. b) Buck upside down.

c) Voltages in series. d) Remove redundancy.
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Final Simplification

• The switch in series with the voltage 
source is not necessary for KCL.

• Try removing it.
• The voltage source is a transfer source.
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Boost-Buck Converter

• Left switch is FCFB.
• Right switch is FCRB.

Vin





Lin  vt Lout

Vout

C
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Relationships

• To meet KVL and KCL, q1+q2 = 1.
• There are really two matrices now.  

Let us consider the transfer source.
• Transfer current is subject to control.
• Transfer current it = q2Iin- q1Iout.
• Transfer source power is 

it Vs =  q2 Iin Vs - q1 Iout Vs     Want 0 
average!
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Relationships

• This can be done if D2Iin= D1Iout.
• Since D1 + D2 = 1, we have 

D1Iout = (1 - D1)Iin.
• This becomes Vout = D1Vin/(1-D1), 

based on conservation of energy.
• The polarity reversal comes from the 

cascade process.
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Relationships

VIN

IIN

#1

L iT

IOUT
#2





 
  boost)-buck for the as (Same   1
1

11

11

outin

inout

VDVD
IDID



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Relationships

The switches must carry both Iin and Iout.
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Boost-Buck

The circuit is often called the “Cuk” converter, 
after the original patent holder (now expired).

48 V 12 V





Cuk
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Relationships
• The boost-buck (Cuk) also has a 

polarity reversal, and generally 
produces the same relationships 
as the buck-boost .

• Each switch must carry Iin + Iout
and must block Vs = Vin + Vout.

• Transfer source: a capacitor.
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What About Voltages?

• The input voltage:        vin = q2 Vs,
• The output voltage in

a negative direction :  vout = q1 Vs, 
• Average input:             Vin = D2 Vs,
• Average output:          Vout = D1 Vs.
• Add to get              Vin+Vout= (D1+D2)Vs                  

= Vs.
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Example

• Input:  +15 V
• Output:  -15 V + 1%
• Power:  15 W
• Switching:  150 kHz
• We need to find L, C, and duty 

ratios to meet these needs.
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Duty Ratios
• The converter gives Vout = -D1Vin/(1-D1).
• With +15 V in and -15 V out,        

(15 V) = D1 (15 V)/(1-D1).
• The solutions: D1=1/2, D2=1/2
• At 15 W, the average output current 

is 1 A. So is the average input current.
• The output inductor is allowed +1% 

current ripple to enforce the target
output voltage variation.
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Inductor Current

• When the diode is on, the output 
inductor sees 15 V = L di/dt. 

• The duration of the diode-on 
interval is D2T = 3.33 us.

• Simplify to 15 V = L i/t, with t = D2T, 
and i < (0.02)x(1 A).

• Therefore, L > (15 V)(3.33 us)/(0.02 A).
L >  2.5 mH (output inductor).
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Transfer Capacitor
• Rather arbitrarily, allow + 10% variation in 

transfer voltage.
• The average voltage is Vin + Vout = 30 V.  

Allowed variation: 6 V (a total of 20%).
• With switch #2 on, iC = Iin

= 1 A.
iC= C dv/dt 

= C v/t, 
t = 3.33 us.
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Capacitor Result

With v < 6 V, 
C > (1 A)(3.33 us)/(6 V),
C > 0.56 uF.

The transfer capacitor in this converter
typically carries substantial ripple current.
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Polarity Issue

• We have any allowed output value --
except that the values are negative.

• This is not always convenient.
• Options:  Cascade some more, 

e.g., boost-buck-boost.
• Other option: check inductor.
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Coupled Inductors

• The buck-boost converter uses a transfer 
inductor.

• The energy is stored in a magnetic field, 
with WL = 1/2 Li2.

• The inductor is built as a coil on a 
magnetic core.
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Coupled Inductors

• What if we use two (or more) core 
windings?  Then the stored energy 
is a sum for individual windings:

• WL =  ½ Li2.
• We could have i = 0 in one winding -- if 

another carries current.
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Buck-Boost, Coupled L

• When switch #1 turns off, the other 
coil provides a current path.

• We meet KCL, based on magnetics.





VOUTVIN

iin iout

C R
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What About This?
• This converter (which is still a 

buck-boost, really) adds isolation.
• We can connect the output in either 

polarity!
• The result allows either polarity, 

and also any output.
• This is called a flyback converter.



Engineering at IllinoisEngineering at Illinois

526

Flyback Converter

The basis for most switching power 
supplies up to about 100 W.





VOUTVIN
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Flyback Converter

• We also have the option of providing a 
turns ratio.

• This is very helpful when high conversion 
ratios are desired.

• The flyback converter is a “true” dc 
transformer.
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Analysis

• What if there is a turns ratio?
– We know how to analyze it at 1:1, 

since that is a buck-boost circuit.
– Do a conversion to get 1:1, then analyze.

• Example:  200 V to 5 V.  If we use a 200:5 
turns ratio, D = 1/2.
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Analysis

• Why?  The 200 V input to a 200-turn 
winding is equivalent to a 5 V input 
on a 5-turn winding.

• In general, V/N is a constant, so a 
simple ratio can give an equivalent.

• The inductance depends on N2.
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Boost Alternative
If Vin is very different from Vout, one of the
switches needs to be on for a very short time.
Time errors will be more important.

5 V 200 V





40
39

1 D
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Flyback Converter
More practical: Take advantage of the 
turns ratio of the transformer.

5 V

5 : 200

achieve,easier toMuch 2
1

1 D
sensitive.sonot and
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Flyback Converter:  Equivalent Buck-Boost 
Converter

5 V

5 : 200

200 V

200 V

200 : 200

200 V

200 V 200 V




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A Pointer

• It is usually helpful to have a duty ratio D1
in the 0.3 to 0.5 range.

• We often select a turns ratio for a target 
duty ratio of about 40%.
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Example

• 200 V to 5 V converter, 50 W, 100 kHz 
switching.  Want +1%.

• Let us select a turns ratio of 200:5.  
Then a +5 V to -5 V, 50 W, buck-boost 
converter can be the basis for design.
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Example

5 V 5 V





10 A#2#1 5:5

50 W
L C

2
1

21  DD
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Example

• The duty ratio is 50%.  The average output 
current is 10 A.  The inductor current must 
be (10A)/D2 = 20 A.

• The capacitor carries 10 A when 
the diode is off, and iC = C dv/dt.

• For t = 5us, C > 500 uF.
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Inductor Value

• Consider a +5% current ripple (but what 
does this mean in a flyback?).

• The inductor sees 5 V when the diode 
is on, 5 V = L i/(5 us).

• With i < 2 A, L > 12.5 uH.
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The Flyback

• For the flyback, the coupled inductor 
should measure 12.5 uH from the 5 V 
side, and that coil will carry 20 A when on.

• On the other side, at 200:5 ratio, there are 
40 times as many turns.
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The Flyback

200:5

L200 L5

1600
5

200 2

5

200 







L
L
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The Flyback
• The inductance measured at the input is 1600 

times higher, or 20 mH.
• The input coil carries (20 A)/40 = 1/2 A.
• The input switch must carry 1/2 A and block 

400 V (why?)
• The output switch must carry 20A and block 

10 V.
• It is not the inductor current that stays nearly 

constant, but rather the magnetic flux.
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Major Indirect Converters
• Buck-boost
• Boost-buck (Ćuk)
• SEPIC (single-ended primary inductor 

converter) = boost-buck-boost
• Zeta = buck-boost-buck
• These are all “two switch” converters
• There are a few others.
• Some “four switch” versions exist, but are less 

common.
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Ratios
• SEPIC and Zeta same ratio as buck-boost 

and boost-buck, Vout/Vin = D1/D2, except:
• No polarity reversal.
• Others:  boost-buck-boost-buck…  buck-

boost-buck-boost…
• Two switch versions just add more filter 

elements.
• Notice:  current-voltage-current... 
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Isolation needs
• The flyback circuit (derived from buck-boost) 

uses a “coupled inductor” for isolation.
• This part is not the same as a magnetic 

transformer.  It stores energy.
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Isolation needs

• A true transformer has
pin = pout
iout/iin = 1/a
vout/vin = a
isolation

• We want a dc transformer.  A flyback does this, 
up to ~100 W.
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Magnetic Transformers

• Can we insert a magnetic transformer into a 
converter?

• To answer this, we need to consider 
ac issues in a magnetic transformer.

• In a true transformer, voltages and currents are 
related by a ratio.

• We cannot turn one winding “off” and then 
draw current from another.
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Magnetic Transformers

• Example: insert a magnetic transformer into a 
buck converter.

• No.  This is a KCL problem.
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Magnetic Transformers

• We need to analyze this to understand:
– Distinctions between coupled inductors and magnetic 

transformers
– How and when a magnetic transformer can be used 

in a dc-dc converter.
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Real Transformers

N2N1

v1 v2



 magnetic flux linkage
1= N1 magnetic flux linkage
2= N2 

Faraday’s Law:
v1 = d1/dt
v2 = d2/dt
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Faraday’s Law: Implications

dt
dNv 

11


dt
dNv 

22 


1 = N1 

This is IDEAL CASE.

1 1

2 2

0
v N dif
v N dt


 
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Real Transformer



R1 Ll1

Lm N1 N2

Ll2 R2

Leakage 
flux

IF v = d/dt , 
 = Ni/R

v = N2/R di/dt

= L di/dt

Circuit
Model:
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Real Transformer

1 2

L
N

1
N

2
21
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Real Transformer

Lm

small values

Does not work!  Average voltage 
across Lm is not zero.
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How to insert a transformer
Need an “ac” node

ac link converter

DC
to
AC

AC
to

DC
Load
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How to insert a transformer

V
OUT

DT

0

+VIN

-VIN

 V
OUT

VIN

VOUT 0

+VIN

-VIN

=
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How to insert a transformer

0

+VIN
DT

 VOUT

VOUT




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How to insert a transformer

0

V
OUT

DT

VX

0

+VIN

-VIN

DT

 VX

VIN




V
O

U
T
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Full-Bridge Forward Converters
Buck “Matrix” Converter

DC
to
AC

500 W or more



Engineering at IllinoisEngineering at Illinois

558

Forward Converters

• When a magnetic transformer is inserted into a 
dc-dc converter, the resulting structure is called 
a forward converter.

• There are two general types:
– Ac link converters
– Flux reset converters.
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Full-Bridge Forward Converters

DC
to

AC
Forward

Matrix inverter
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Full-Bridge & Single-Ended

Full-bridge 
forward

“Single-ended” 
forward converter
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Push-Pull Forward Converter

High

Low
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Forward Converters
• The converters so far are all ac link converters.
• They are based on the buck converter, and are 

called “buck-derived forward converters.”
• Boost-derived converters are just as feasible, 

and use an input current source. 
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Forward Converters
• Bridge-type forward converters are used at 

high power levels.
• Common at 1 kW and up.
• Flux reset converters tend to be simpler, and 

sometimes appear in place of flyback 
converters.

• The idea is to provide a current path with some 
other winding.
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Catch-Winding Forward Converter

• In this circuit, a third winding acts like a flyback 
converter.

• The average voltage across Lm can be zero 
now, if duty ratio is limited.

# 1

D

D

D

L

L

+

_

+
_

+
_

3

3

1

1

2 2

1

2 V
V

i

i

i

i

v v

in

m

m

out

loadN 3

N N1 2:

+
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Buck converter -- Filter

• A buck converter with 6 ohm load, 
500 V input, 10 kHz switching, 
1.5 mH output inductor.

• Duty is 10%.
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Converter Analysis

500 V #2

1.5 mH





6 

#1

VOUT





VLOAD

fswitch = 10 kHz, D1=10%
vout = q1 Vin + q2 (0)

<vout> = D1 Vin

= <vload>
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Converter Analysis

• Average output:  D1 Vin = 50 V
• Inductor current (average):  

(50V)/(6 ohms) = 8.33 A
• Variation:  with the diode on, the inductor ideally 

sees -50 V.  This lasts 90% of a period, or 90 us.
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Filter Analysis

VL 

IL = 50V/6

<vLOAD> = 50 V

= 8 1/3 A

= L di/dt

= L –i /t

vL = -50 V

#2 ON
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Filter Analysis
50 V = L di/dt

t = 90% of a period

T = 100s

t = 90s

(50 V) 90s /1.50 mH = i 

= 3 A
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Filter Analysis

• 50 V = L di/dt. Since 50 V/L is intended to be 
constant, this is nearly a slope, 50V = L i/t.

• (50 V)(90 us)/(1.5 mH) = 3 A.
• This translates to an output change of + 18 V, 

hardly fixed.
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Check Ideal Action

• Can the ideal action assumption still be used?
• For the actual exponential action, the average 

output is still 50 V.
• The actual i value is 2.996 A.
• Ideal action overestimates by 0.12%.
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Filter Analysis

<vLOAD> = 50 V

i L= 2.996 A

= 3.00 A
0

iL  i
i
max

vLOAD = 18 V L





R

iL

VOUT


-t /

 = L/R

l
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Filter Analysis

• Actual i is 0.12% lower than the 3A from “Ideal 
Action,” even though i is ~ 35% of < I >.

• This is a conservative estimate. (Ideal action 
overestimates the ripple.)
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Capacitive Filter

Add C to make vout < 1% peak-to-peak.

1.5 mH

R

 i=3 A

8.33 A

C
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Capacitive Filter

iC


T/21.5 A

-1.5 A

t
vC





dt
dvCic



vdtc 1 ic

8.33 A
iC
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Capacitive Filter

• If we choose the right times, this gives v.
• The integral is the area under a triangle.

)tv()tv(dt
t

t
i

C c 01

1

0

1

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Capacitance Value

• The area integral:  a triangle, ½ x base x 
height, or (1/2) x (T/2) x (i/2).

• Therefore:

 
2

0
)(1 T

peaktopeakC vdtti
C

i
C
TiT

C
v peaktopeak 


  8222

11
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Capacitance Value

• We want v < 0.5 V.
• Di/2 = 1.5 A.
• (1/C) x (25 s)(1.5 A) = v < 0.5 V.
• This requires C > 75 uF.
• Might use 100 uF.
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Converter Example
• Input:  +6 V to +15 V.
• Output:  +12 V + 1%, 24 W.
• Common ground, input and output.
• This cannot be met with buck, boost, buck-

boost, or boost-buck.
• Need flyback, SEPIC, or Zeta.
• Example:  Flyback design.
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Design:
Input:  +6 V to +15 V
Output:  +12 V + 1%, 24 W
Common ground

Flyback
1 : 1
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Equivalent Buck-Boost
Devices:  MOSFET &  Diode

+15

fswitch ~ 50 kHz to 200 kHz

+6
to VOUT

C R

iOUT

L Vt









Vout = -12 V

24 W, 12 V output.  Equivalent buck-boost:
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Analysis

• Let fswitch = 200 kHz.  Then T = 5 us.
• Transfer source:  vt = q1 Vin + q2 Vout.
• Since <vt> = 0, we have D1 Vin = D2 |Vout|
• Duty ratios: (D1/D2) x Vin = |Vout|.
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Duty Ratios

• For +6 V in, D1/D2 = 2, D1 = 2/3, D2 = 1/3.
• For +15 V in, D1/D2 = 12/15, D1 = 4/9, D2 = 5/9.
• Range:  4/9 < D1 < 2/3,   1/3 < D2 < 5/9.
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Currents
• Iout = (24 W)/(12 V) = 2 A.
• q2 IL = iout

• D2 IL = <iout> = Iout = 2 A.
• IL = (2 A)/D2

• IL range is 3.6 A to 6 A.
• For design, might let iL = ±10%, or 20% peak 

to peak.
• Requires iL < (0.2)x(2 A)/D2.
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Inductor Voltage
• vL = L di/dt.
• When the diode is on, vL = -12 V, a constant.  

During that time, then, we have vL = L i/t, 
with t = D2T.

• (12 V) (t)/L = i < (0.2)(2 A)/D2.
• Simplifies to L > 30 D2

2 T.
• Need an L that works in all cases.
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Equivalent Buck-Boost

Diode off: ic = 2A t = D, T 

+6
to

+15

C R
L

2 AL=50 H

= C dv/dt

= C v/t

v < (0.02)12

< 0.24 V

Now, output voltage ripple.
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Output Voltage Ripple

• We know the capacitor current when the 
diode is off.

• Can find C.
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Final Result

R  6 
C = 30 F

1 : 1

Coupled L:
Either side: = 50 H
Same number of turns
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Input filter?

Vout  +1%
Iin  +5%

C

L

VIN
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Ideal Action to Find Input
L

VIN
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500 V #2

1.5 mH





6 

#1

VOUT





VLOAD

VL 

L





R

i
L

V
OUT



0

iL  i
imax

1.5 mH

R

 i=3 A

8.33 A

C

iC 8.33 A

iC


T/21.5 A

-1.5 A

1 : 1

+6
to

+15
VOUT

C R

iOUT

L Vt









+6
to

+15

C R
L

2 AL=50 H
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1 : 1

C

L

VIN
L

VIN
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Introduction to Rectifiers

• Rectifier is a general term for ac-dc conversion.
• Usually the term implies converters with ac 

voltage source input.
• In principle, an ac current could also be used.
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The Basics
• Consider direct ac voltage to dc current 

conversion -- a 2 x 2 matrix.
• The switches should be FCBB (forward 

conducting, bidirectional blocking).
• SCRs and GTOs are appropriate.
• But we know that diodes can be used, too 

(but no control is possible!)
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DAY 6 Start Frequency Matching
• The input frequency is the same 

as the ac source.
– Low frequency mains (50 Hz, 60 Hz)
– Higher frequencies if an ac link is involved

• The output frequency is 0 Hz.
• If vout = q vin, with vin = V0 cos(t), the product 

trig identities for q vin give cos[(nswitch + )t].
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Frequency Matching
• We want 0 Hz output.
• If switching is performed at the input frequency, 

the n=1 term gives rise to 
dc and to 2in at the output.

• Thus 50 Hz in  50 Hz switching
• This gives both 0 Hz output and 100 Hz ripple, 

plus harmonics.
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Reality Issues
• To provide a current source, we need to keep 

current nearly constant under a large 2in
ripple voltage.

• Consider 120 VRMS input (170 V peak) at 60 
Hz, with a 12 W load.

• The average current is ~ 0.1 A.
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Filter Realities
• With 170 V peak input, if the inductor is large, 

the output could be <|vin|>, which is 2V0/.
• The output is 108 V dc.
• What if the current ripple does not exceed 

+5%, or 0.01 A peak-to-peak?
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Filter Realities

• To estimate the inductor size, we could formally 
integrate the voltage waveform.

• Instead, let us get a quick estimate.  
What L is needed for a 60 V signal lasting 1/240 
s to give a change of less than 0.01 A?
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Filter Realities

• 60V= L di/dt ~ L i/t, t=1/240 s.
• i < 0.01 A requires L > 25 H.
• These excessive inductor values 

are typical for low-power rectifiers.
• Can we dispense with 

the inductor entirely?
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The Classical Rectifier

• The classical rectifier is a diode full-wave or half-
wave circuit operating into a capacitive filter.

• This might be expected to have KVL problems, 
and it does!

• At low power levels, simplicity sometimes 
outweighs problems.

• Even so, circuit are disappearing in favor of 
switching converters.
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Classical Rectifier

Notice the “voltage to voltage” arrangement.

R

+ _
out

C1,1 1,2

2,1 2,2

+

in

v

v
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Trial Method

• Three configurations are allowed :
– 1,1 and 2,2 on is consistent when the input current is 

positive.
– 1,2 and 2,1 on is consistent when the input current is 

negative.
– All off is consistent when C keeps the output about 

|vin|.
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Trial Method

In fact, “all off” is active almost all the time!
c)  All off

a)  1,1 and 2,2 on, v = v inout b)  1,2 and 2,1 on, v = -vout in
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The Transitions

• Start at the input peak, time t=0.
• Let us set 1,1 and 2,2 on (trial method).
• The input current is V0/R + C dv/dt, but dv/dt = 0 

at t = 0.
• Input current > 0 -- consistent.  

Off devices have v < 0 -- consistent.
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The Transitions

• Slightly later,  iin = vin/R + C dv/dt, and dv/dt is 
negative.

• After a time, the negative capacitor current plus 
the positive resistor 
current add to zero.

• At that moment, all diodes turn off.
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The Transitions

• This happens when -CV0 sin(t) + 
V0 cos(t)/R = 0, or

• tan(t) = 1/(RC).
• The resistor represents the load.
• Once the diodes are off, the output voltage 

decays exponentially.
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The Exponential

• During the decay,  vout = Vmax e-t/.
• We can keep the decay small (and the ripple 

small) with a long time-constant.
• How long?  For any x, ex is         

ex = 1 + x + x2/2! + x3/3! + …
• For small x, ex  1 + x.  Linear.
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Analysis
• The decay will continue until the exponential fall 

hits the rising voltage waveform, Vmaxe-t/ = 
|V0 cos(t)|.

• We get a short sinusoidal piece attached to a 
nearly linear fall.
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Worst-Case Ripple

• Worst-case ripple is easy to estimate.
• What if the fall is truly linear?  

It cannot last longer than the time 
between voltage peaks.

• The time is T/2 in the full-wave case.

0 T/2 T 3T/2 2T
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Worst-Case Ripple

• The fall is overestimated by the triangle,    
V0e-(T/2)/  V0 (1 - T/(2)).

• With the RC time constant, the actual fall is 
approximately T/(2RC), with T = 1/fin.

• Thus v/V0  1/(2finRC).
• Half-wave case has no 2.
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Design
• The load current Iload  V0/R.
• Therefore, v = Iload/(2fC).
• Example:  12 V, 1 W supply with 1% ripple.
• v = 0.12 V, Iload = 0.083 A.
• We need C = 5800 uF.
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Design Example
• Example:  230 V rms input, 50 Hz.
• Want 5 V output at 10 W.
• Ripple should not exceed ±0.5%.
• First, a peak value of 5 V is needed at the 

output.  The input peak is 325 V, so a 65:1 
transformer is needed.

• Second, v = I/(2fC), and v < 0.05 V.
– This gives C > 400000 uF.
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Diode Timing
• If ripple is 1% peak to peak, the voltage falls 

just 1% before it hits the input ac waveform 
again.

• The inverse cosine of 0.99 suggests that the 
diodes are on for about 8° on the angular time 
scale.

• This is a duty ratio of 8/180 = 4.4%.
• Each diode is on less than 5% of a cycle!
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Current
• If the diodes are on just 5% of the time, the 

input current waveform has a 5% duty ratio, 
too.

• To deliver energy, the input current must flow 
in brief, high spikes.

• Notice that as C  , the current must 
increase without bound.

• This is because we have a KVL problem!
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Finding the Current
• The current includes a capacitance part 

C dv/dt and a resistance part v/R.
• When a diode is on, v = vin = V0 cos(wt).
• Then C dv/dt = -wC V0 sin(wt).
• This is highest at the moment of diode 

turn-on, perhaps 8° before the peak.
• Thus 1% ripple gives a peak current of 

more than 50 C V0 at 60 Hz.



Engineering at IllinoisEngineering at Illinois

617

Current Points
• The extreme current is almost all 

delivered to the capacitor.
• Current flows in short, high spikes.
• Ideally, the spikes are inversely proportional 

to the square root of the ripple spec.
• This means that the spike with 1% ripple is 

about 40% higher than that for 2% ripple.
• In reality, the current is limited mainly by line 

and stray transformer leakage inductance.
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Current
• The power factor is especially poor.
• For 1% ripple we get ~ 0.26 power factor.
• Classical rectifiers are a major source of 

“power quality” problems.
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Peak Input Current
• Low frequency  large C, transformer
• “KVL violation”

Current flows in brief spikes
v
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Regulation

• A classical rectifier has no line 
regulation:  the output is proportional 
to the input voltage.

• The load regulation is half the ripple 
level (think about why this is).
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Inductive Filtering
• We would rather use a series inductor to 

avoid the KVL problem.
• The inductor can be placed at either 

the input or the output, since the diodes will 
not turn off until the current  0.

• We can use an equivalent source method to 
estimate ripple when an inductor is present.
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Design Example

• Example:  15 V, 0.2 A (3 W) for a computer 
network node.

• Set ripple of 1% peak-to-peak maximum.
• Compare approximate C with a precise result.
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Design Example

120 V
60 Hz

If diodes are on, there is a 2V drop.
Want 15 V out  17 V peak

C

R
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Design Example

• There are four diodes in the bridge, with two on 
at a time.

• We should account for the 1 V diode drops, 
since they are a large fraction of the output.

• To get 15 V out, we need 17 V peak. 
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Design Example

• 17 V peak corresponds to (17 V)/2 = 
12 V RMS.

• For 120 V, 60 Hz input, we should buy 
a 120 V/12 V transformer.
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Design Example

• The capacitor value:  We want the voltage 
change to be no more than 0.15 V with a 0.2 A 
load.

• vout = Iout/(2fC), f = 60 Hz
• With the change less than 0.15 V, this gives C > 

11111 uF.
• Here R = 75 , so RC = 0.83 s.
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Design Example

I
f CV OUT

OUT 2


V

C uF11111
f C

C IOUT

2


VOUT 15.0




Engineering at IllinoisEngineering at Illinois

628

Design Example
RC = 0.833 s

/T , T = 1/60 s

/T = 50
/(T/2) = 100

Assumed Vmax = Vpeak

Assumed turn-off  peak
Assumed linear decay, lasting 1/20 s
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Design Example
“Exact” 10.5 mF

vs. “Approximate” 11.1 mF  +10% 
12000 F
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Peak Current

• For the current peak, we need the turn-on point.
• This is where a 15 V sine wave rises to 14.85 V.
• This occurs 8.11° before the peak.
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Peak Current
Given:

ic = -w C (15) sin (wt)

v = 15 cos (wt)

0°
ton = -8.11°

Vo

wton

icmax = w C Vo sin (8.11°)

ic = C dv/dt
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Peak Current
• The peak current is 
CV0 sin(8.11°) = 8.9 A by estimate.

• Actual value is 8.46 A.
• The RMS input is nearly 1 A.
• The transformer rating is 12 VA – for a 3 W 

load.
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Peak Input Current
• Classical rectifiers  Common
• Advantages:

Simple
Easy design
Few parts

• Disadvantages:
No line regulation
Harmonics 
Large, heavy

• Being phased out in favor of small switchers
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Peak Input Current
• We are asking the utility to supply a distorted 

(spike) current.
• Useful work for only a portion of each cycle

120VRMS :  5VRMS transformer

5VRMS :   200W
170 A RMS

Input from utility :  170 A /24
Input ~ 7.1 A
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Peak Input Current (cont.)

• This poor power factor gives very poor system 
utilization.

• If pf  1, we could support nine units on a 
circuit instead of two.

120 V, 15 A outlet

400 W   1700 VA

Two of these at most.
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Basic Target

• When a very large inductor is used, the output 
will look like a dc current source.

• If this is true, each diode will carry Iout when on.
• Each diode will have 50% duty.
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Diode currents

Diode currents:  IOUT, D=50%

vIN

IIN =+IOUT
-IOUT

IIN

IOUT
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Output Voltage

• In the classical rectifier, the output is close to 
Vpeak -- IF the capacitor is large.

• The voltage is more nearly the peak if the load 
is lighter.

• Good load regulation, up to a limit on the load.
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Output Voltage

VOUT

VOUT = |VIN|

Classical case: VOUTVINpeak
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Output Voltage

 Good load regulation, 
(not perfect) depends on C.

Up to a load limit, then
<VOUT> Vpeak ; little change.

-<VOUT>
Classical case, large C
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Output Voltage

• With large L, the output voltage from the diode 
bridge is a full-wave sinusoid.

• The load sees the average of this waveform, 
<|V0 cos()|>.

• Compute this.  The result is 2V0/, less any 
diode drops.
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Output Voltage

Waveform does not change, 
provided L is big enough.

Large L

Load regulation – perfect. 
No line regulation.
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Output Voltage

• This output is independent of load as long as L 
is large enough.

• We are still at the mercy of line variation.
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Output Voltage

v

+ _v load

out+ _

I out

IIN (t)

<VOUT > = <|VIN|>
= <|V0 cos(wt)|>
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Output Voltage
ωint



0

2
/ 2

/


2

<|VIN|> = 
1


=




dcos
2

v0


2v0 Lower than classical case
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Output Voltage

• With large L, input current is a square wave 
rather than short spikes.

• Much better power factor and lower current 
distortion.

+I

-I

out

out
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Input Current

• The diodes ensure that the input current is either 
+Iout or -Iout.

• The input current must be a square wave with 
peak value Iout and duty ratio of 50%.

• This is much less distorted than in the classical 
case.
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Power Factor

• We can compute a power factor. The average 
power is VoutIout = (2V0/)(Iout).

• The input RMS current is just Iout.
• The input apparent power S = VRMSIRMS is 

(V0/2)(Iout).
• pf = P/S = (2/)2 = 0.900



Engineering at IllinoisEngineering at Illinois

649

Comments

• It is interesting that for large L the power factor 
does not depend on load, ripple, or anything 
else.

• A power factor of 90% is far better than for a 
classical case, but at low power levels L can be 
excessive.



Engineering at IllinoisEngineering at Illinois

650

Choosing L

• We can choose L by using the fundamental 
Fourier component  for a ripple estimate.

• For a full-wave voltage, c1 = 4V0/3(see p. 175).  
The frequency is twice that of the input.
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Inductor Value

Equivalent source approach with Fourier.

25 mH

2 

v d

+

_

c   cos(   t)

c   cos(     t)

c   cos(     t)

c   cos(     t)







1

2

3

4

25 mH

2 

c0

i(t)
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Inductor Value
• Focus on the first harmonic as a basis for 

estimation.
• We have a divider, R || C in series with L.
• The impedances are those at the main ripple 

frequency.
• Find the resistor current to estimate output 

ripple.
• Please see p. 176 for the details.
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Choosing L
• This is a voltage and current divider.
• The ripple current in the resistor is 

given by

2 2
3

0
2

V
R j L RLC  ( ) 
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Choosing L

• With this relation, a poor choice of L could 
actually increase the ripple.

• Good results require that the resonant frequency 
1/(LC) is much less than the ripple frequency.



Engineering at IllinoisEngineering at Illinois

655

Choosing L

• When both L and C are present, it is possible to 
get good results without excessive values of 
either.

• Even if L is not large, it will improve power factor 
and the input current waveform.


