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Equivalent Sources

When a switch matrix operates to 
satisfy KVL and KCL, many of the 
waveforms become well defined.

Example:  Matrix 2x2 ac voltage 
to dc current converter. 
The output must be 
+vin, -vin, or zero.
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Equivalent Sources
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Equivalent Sources

• If switch action is specified, the output 
waveform becomes fully determined.

• We can treat the waveform as an ideal 
source (with an unusual shape).
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Sample Cases
• Full-wave rectifier (Fig. 2.33)
• Phase-delayed rectifier (Fig. 2.17)
• Inverter into an ac current source (Fig. 3.5)
• 60 Hz 3 to 60 Hz 1 conversion
• Fig. 2.19, 60 Hz to 180 Hz
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Sample Cases
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Sample Cases

vOUT



vIN
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Sample Cases
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Equivalent Sources
Any of those waveforms can be a source.
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Equivalent Sources
• Equivalent sources can be a powerful tool:

– Many converters act like an equivalent 
source in a linear circuit

– We can represent a source as a 
combination of Fourier components
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Equivalent Sources
• With a source in a linear circuit, 

analysis, filter design, etc. can 
proceed along familiar lines.

• This is a common way to design 
interfaces for rectifiers and inverters.
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Equivalent Sources
Example:

vIN

Output
terminals

I





VLOAD





VOUT
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L

Ignore capacitor
for a moment:

We know VOUTR

L
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Equivalent Sources

We can represent the periodic 
waveform with a Fourier series.

Periodic
waveform
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Equivalent Sources

i is the sum of the contributions from each 
of the sources. We can break up the circuit.

i

Linear circuit
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Equivalent Sources
i0

DC

i1

1st harmonic

i2

2nd harmonic







0n

nii



Engineering at IllinoisEngineering at Illinois

368

Equivalent Sources
DC term:

R
VI dc

dc 

I

DC

VDC
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Equivalent Sources
AC terms, based on phasor analysis.

low~
wante.g.,

Want low ripple 
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Usually, Fourier terms decrease in amplitude 
as 1/n. The fundamental is the largest.
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DAY 4 START Power Filtering
• Filters (or interfaces) for converters 

have needs distinct from those 
in signal applications.

• Filters must be lossless, and impedances 
of sources and loads are unknown.
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Power Filtering

• Two common methods of analysis
– Equivalent sources
– “Ideal action” assumption
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Filter Examples
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Filter Examples
vOUT = Vin sq(t)
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Filter Examples
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Filter Examples

Look at examples based on the 
equivalent source method 
(such as Example 3.6.1).
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Ideal Action Assumption
• In a power converter, we know what a 

filter is trying to achieve.
• Examples:  low-ripple dc, ideal ac sine 

wave, etc.
• In general:  give a large wanted

component and small unwanted
components.
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Ideal Action Assumption

• If the filter is well-designed, it ought to 
work.

• If it works, we know its output.
• Now, use the “known” output with the 

known input to compute values.
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Filter Examples

VIN

large L I

R

If L is large, then I is just dc.

Substitute

vIN
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Filter Examples

i

Ideal action
assumption
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Filter Examples

5 V

10 

0.5 A

Harmonics

Choose L to make        <  Limit.
Too much work!

1
~I
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Filter Examples
If L is large and  the circuit works, the inductor 
current is almost constant and so is the voltage 
across the load resistor. 
This voltage can be represented by a constant 
voltage source. v

5 V

L





L

10 V

0Switch on: VL = 5 V
Switch off: VL = -5 V



Engineering at IllinoisEngineering at Illinois

382

Filter Examples

L
+5

-5

VL = L di/dt

If  VL =  5V = L di/dt

L
V5 = di/dt

= t
i




If  VL =  -5V = L di/dt

L
V-5

= di/dt

= t
i
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Filter Examples

i

100s50s 150s0

<iL> = 0.5 A

Choose L to make = 0.005 Ai
L
V5

= t
i

= s
i

i
L
V5= sx
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Filter Examples

L
V5 x0.005 A = x 

L = 5 x 10-3
250 x 10-6

L =  0.005 H

iL > 5 mH makes      < 0.005 A
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Results and Comments

• Since we know the objective of our 
filters, it is reasonable to design 
them based on the assumption 
that the objective is met!

• This simple expedient is a very 
effective simplifying step.
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Results and Comments

• The ideal action assumption works 
better than one might expect.

• We will analyze this as we build up 
converter designs.
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Summary So Far
• We can analyze the quality of a 

converter output.
• Equivalent sources give us a way to 

deal with the interface problem.
• The ideal action assumption helps 

considerably with design.
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Filter Example
• Consider a converter, shown, with 

switch #1 duty ratio at 3/4.

VIN

IIN L iOUT

#2 



VOUT

C R
#1
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Filter Example
• Let the switching frequency be 200 kHz, 

L = 1 mH, C = 10 µF, R = 10 , Vin = 5 V.
• By KVL and KCL, the switches 

need to alternate.
• We can determine the device types.
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Filter Example
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Filter Example

VIN

L #2

#1
Diode

FCFB
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Load Current
#2iL L

#1

0

5

-15

-5

-10

vL

0Lv
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Energy Balance

• With switch #1 on, the input energy to 
the inductor is (Vin)(iL)(3T/4).  With switch 
#2 on, the input is (Vin - Vout)(iL)(T/4).

• The total must be zero.  This requires
Vout = 4 Vin = 20 V.
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Load Current
• The load current is 2 A, and the load 

power is 40 W.
• The average input current must be 

(40 W)/(5 V) = 8 A.  This is iL.



ngineering at Illinoisngineering at Illinois

Current Ripple
• If the inductor and capacitor are large 

(we will check this), then iL and Vout
are nearly constant.

• The inductor sees 5 V when #1 is on, 
so its current increases for 3.75 us.
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Current Ripple
• The inductor sees 5 V - 20 V = -15 V 

when switch #1 is off, and the current 
falls for 1.25 us.

• During the rise, vL = 5 V = L di/dt, 
but the rise is linear over 3.75 us, so   
(5 V)/L = i/t ,  t = 3.75 us.
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Current ripple

With a 1 mH inductor, this means 
i = (5 V)(3.75 us)/(1 mH), 
i = 0.0188 A.
This is less than 0.25% of iL.
Check the current fall.  Does it match?  
Why?
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Current ripple

8

iL (A)

8.01

7.99

0 3.75 5 t (s)
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Voltage Ripple

• We can do the same thing to find 
ripple on the output capacitor.

• The capacitor current is known:  
With switch #2 off, the resistor 
draws out 2 A.  With switch #2 on, 
the current is 8 A - 2 A = 6 A.
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Voltage Ripple

• iC is fully determined.
• #2 off : iC = -2 A  vC decreases
• #2 on  : iC = iL - 2 = 8 - 2 = 6 A  vC increases

iOUT
#2





VOUT#1

ILOAD

iC
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Voltage Ripple
• Thus iC = 6 A for 1.25 us, and 

-2A for 3.75 us.
• Since iC = C dv/dt gives linear voltage 

ramps, the voltage rises when iC = 6 A:  
(6 A)/C = v/t.

• The time involved is 1.25 us.
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Voltage Ripple
• (6 A)(1.25 us)/(10 uF) = v = 0.75 V.
• This is 3.75% of the 20 V dc level.
• Not perfect, but still very nearly constant.
• Thus with switching frequency of 200 

kHz, L = 1 mH, C = 10 µF, R = 10 , Vin
= 5 V, we get 20 V out and 3.75% peak-
to-peak output ripple.
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Power Factor
• A conventional measure in utility 

systems is power factor -- the fraction 
of energy flow that does useful work.

• Recall that cross-frequency terms
do not contribute <P>.  

• But, the cross terms do require current 
and voltage.

• The extra current means extra I2R loss, 
and should be avoided is possible.
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Power Factor
Capture fraction of energy flow that 
erforms useful work.

R

12 V

i2 R

10 Apeak
60 Hz

<POUT >=0   pf=0

LOSS =49RP
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Power Factor
• Power factor is defined by

• Ideally, this is 1. When harmonics or phase 
shifts are present, it is less than 1.

• pf can be less than 1 even in a linear circuit, 
but it is never greater than 1.

1
RMSRMS IV

P
pf
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Power Factor Example

Two contributions to the pf : “Distortion power” 
and “Displacement power.” The “displacement 
factor:”

00  pfP

 1
11

cos 
RMSRMS IV

P
df
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Power Factor Issues
• pf is often divided into a phase effect at 

the wanted frequency (displacement
power, with a displacement factor), and a 
distortion effect at unwanted frequencies.

• pf < 1 causes extra loss, and limits 
flow capabilities.
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Power Factor Issues
Why do we want pf = 1 ?

1) Minimizes system loss. Maximizes 
“device utilization.”
2)   Gives more available power.

120 V, 12 A
pf = 1       1440 W
pf = 0.5    720 W

3)   Examples
Rectifiers can have pf ~ 0.3
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Dc-Dc Converters

• We would like to have a dc transformer 
-- a device with Pin=Pout and Vout/Vin = a.

• Magnetic transformers cannot handle 
dc, but the dc transformer is still a 
valid concept.

• Our objective in dc-dc converter 
design is to approach a dc 
transformer as best we can.
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Dc Transformers
• We would like to have a box like this, for DC.

IIN IOUTVIN VOUT
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Dividers?
• We might try a voltage divider.
• Two problems:

– No regulation
– Losses within the “converter”
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Dividers?
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Dividers?

Load regulation issue.
R2

R1 VOUT







VIN

RLOAD

We want Vout to be almost constant.
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Dividers?
• The load regulation problem can be 

addressed through excess loading:
• Make the divider input draw so much 

power that the load power causes 
no change.
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Divider Efficiency
• Instead, if somehow all output power 

is delivered to the load (best possible 
case), the efficiency is Vout/Vin.

• This occurs only at a single load value, 
if designed in advance.  The design has 
no load regulation.

• Reality is always worse.
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Dividers -- Conclusion
• Voltage dividers are useful for sensing 

applications when the load power is 
intended to be zero.

• A voltage divider is not useful for 
dc-dc conversion.

• It is not a power electronic circuit, since 
the efficiency cannot be 100%.
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Sensing application

Can keep load change 
small, if  is low

1K

1A





12 V 7 

5  5 V
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Sensing application

5/12
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Dc Regulators
• Since a divider has no regulation, it 

motivates new types of circuits.
• In these types of “converters,” the 

output is independent (within limits) 
of the input and of the load.

• They perform a regulation function
rather than energy conversion.

• We call them “dc regulators.”
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Amplifiers

• It is also possible to use amplifier 
methods for dc-dc conversion.

• These are common, because they 
have excellent regulation properties.

• In general, efficiency is poor.
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Shunt Regulator

Voltage divider, 12 V to 5 V, 1 W.
– With exact values, best efficiency is 5/12.
– To provide regulation, the divider current path

must carry much more than the load current.
– Problems:  line regulation, load regulation, 

loss even if Pout = 0, low η.

Shunt regulator.
– Zener diode in place of low-side resistor.
– Requires IZ > 0.
– For 12 V to 5 V, 1 W, R1 < 35 Ω.
– Solves the line and load regulation challenges,

but not the others.

VOUT





IOUT

IZ

RS

VZ

VIN
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Example

12 V to 5 V regulation at up to 0.2 A.
At 0.2 A load, the input current must 
be at least 0.2 A to ensure IZ > 0.
This current flows through a drop of 
7 V, so Rs < 35 .
Try it  . . .
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Example
• Test a load of 0.1 A. The input current, 

if the regulator works, is 
(12 V - 5 V)/(35 ) = 0.2 A. The load 
current is 0.1 A, so the zener current 
must be 0.1 A.

• This is wasteful, but it works.
• Useful for generating low-power 

reference voltages.
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Example
POUT = (0.1 A)(5 V) 

= 0.5 W

PIN = (12 V)(0.2 A) 
= 2.4 W

20.8%


in

out

P
P
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Series Regulator

• Instead find a series device that can 
provide an output that is approximately 
independent of the input.

• A bipolar transistor can do the job – in its 
linear operating region.

• With proper bias, the output 
depends on the base voltage.

• Not a switching method.
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Series Pass Arrangement

The emitter voltage follows the (low-power) 
base voltage.

IOUTIIN

VIN

VCONTROL

RLOAD

VOUT
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Series Pass Arrangement
Suppose a 6 V output is needed.

IOUTIIN

precise
potential

rom shunt
regulator)

6 V




(6.7 V)

 VC

IB
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Example

Here, a shunt regulator provides the 
reference voltage for a series regulator.

6 V

IB
IZ

1 K

6.7 V

12 V
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Series Pass Arrangement

• In the bipolar case, if there is high 
gain, the base current is very low.

• The emitter voltage will be roughly 
0.7 V below the base voltage.

• This works provided the collector 
input is high enough.
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Series Pass Arrangement
If IB is small (high gain), then
•

in

out

inin

outout

in

out

V
V

IV
IV

P
P



IIN=IC

IOUT=IE
=IB+IC

IC = IE
IIN= IOUT.



ngineering at Illinoisngineering at Illinois

Series Pass Comments

• Common for local dc power, e.g., 12 V in, 
5 V out, but extremely inefficient unless 
voltages are nearly the same.

• Notice that Iin  Iout.
• Best-case efficiency is Vout/Vin since 

current is conserved.
• Requires Vin > Vout + ~2 V
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More Comments
• Although this is common, it is only 

acceptable when voltages are close.
• Useful example:  14 V to 12 V regulator 

for automotive application. Efficiency 
could be 86%.

• Poor example:  48 V to 5 V regulator for 
telephone application.  Efficiency is only 
10%.
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Key Advantage

• Vout = Vcontrol - Vbe --- entirely 
independent of input, load, etc.

• This is a “linear regulator,” since Vout
is a linear function of a control potential.
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Parting Comments

Series linear regulators make good 
filters -- if we can keep the input and 
output close together.
Shunt regulators provide fine fixed 
reference voltages but are not so 
useful for power.
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Now, Switching

• The circuits so far cannot provide 100% 
efficiency.  We need switching.

• Two possibilities of general dc-dc 
conversion:
– 2 x 2 matrix, voltage in, current out
– 2 x 2 matrix, current in, voltage out.

• These are the direct dc-dc converters.
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Direct DC-DC Converters

2,2

1,21,1

2,1Source

Source



ngineering at Illinoisngineering at Illinois

Direct DC-DC Converters
Two direct converters for DC-DC:

2,2

1,21,1

2,1 2,2

1,21,1

2,1
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Voltage to Current

Output voltage is +V 0 or V

2,2

1,21,1

2,1

IIN

VIN

VOUT

IOUT
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Switch Relations
• Output is +Vin if 1,1 and 2,2 are 

on together, etc.
• A switching function representation 

is  vout(t) = q11 q22 Vin - q12 q21 Vin

• But KVL, KCL require q11+q21=1,
q12+q22=1.
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Switch Relations
In switching function form:

 
 outoutin IqqIqqti 12212211 

inout Vqqtv 2211 inVqq 1221

KVL+KCL:

1
1

2212

2111




qq
qq

     ininout VqqVqqtv 22112211 11 
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Switch Relations

In this dc application, we are interested in 
<vout(t)>.  The switching function averages 
are the duty ratios, and

    inout Vqqtv 12211 

    inout VDDtv 12211 
We can choose duty ratios D11 and D22 to 
provide a desired <vOUT>.
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Switch Relations

“Buck Converter” or
“Step-Down Converter”

inoutinoutin VvVvV 
ii DDD  2010 2211

  outin IDDi 12211 
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Current to Voltage

Output current is +Ii 0 or -Ii

2,2

1,21,1

2,1IIN

VOUT





VIN

IOUT
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Switch Relations

 12211 


DD
v

V in
out

 12211  VDDv outin

 12211  IDDi inout

Boost Converter

2

inout

ii

Vv

DDD


 010 2211
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Summary
• The dc transformer is an important practical 

function.
• Non-switching methods, such as voltage 

dividers and dc regulators, are not really 
suitable for power conversion.

• We considered two switching circuits that 
accomplish buck and boost dc-dc conversion 
functions – types of dc transformers.
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Simplifications
• In many applications, it is desirable to 

share a common input-output node 
(ground reference).

• This requires one switch always on 
and one always off.
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Common-Ground Dc-Dc
Example: 2x2 switch matrix, with common          

input-output ground
#1

#2
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Common-Ground Dc-Dc
#2 ON

 
#1 ON
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Common-Ground Dc-Dc

With two switches left, label them 
#1 and #2.
One becomes          and one

This can be checked by testing current 
(on) polarity and voltage (off) polarity.
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Switching Functions

With ideal, or near-ideal, current and 
voltage sources, KVL and KCL 
require   q1 + q2 = 1.
The buck converter:
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Buck Converter

• The voltage vout is the “switch matrix 
output.”

• The load voltage is <vout> since <vL> = 0.




VIN

iIN

vOUT

L IOUT





<vOUT>
#2

#1

RLOAD
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Relationships

Average power: <pout>=<pin>

vout = q1 Vin

iin = q1 Iout

<vout> = D1 Vin

<iin> = D1 Iout

There is no loss.

Instantaneous power: pin(t) = q1 Vin Iout

= pout(t)

=D1VinIout  
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Relationships
vout is the switching matrix output.

outID1

inVqoutv 1

in qV 1

inout Vqv 1

outin Iqi 1inVDoutV 1
load voltage

outv  outV  load voltage
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Relationships




vOUT

L





VLOAD

C R

0Lv

vv 
loadoutoutV

constantVbigL load 



ngineering at Illinoisngineering at Illinois

Relationships

outin IVD1
outin pp 

   outin tptp 

outin IVq1
  outoutout Ivtp 

outin IqV 1
  ininin tiVtp 
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The RMS “output”
The voltage vout has an RMS value of  

Is this relevant?

  1
0

22
1

1 DVdtVtq
T in

T

in 

Notice that

DqRMS 

   tqtq 2
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A Design
• A 24 V to 5 V converter, switching at 

100 kHz. The nominal load is 25 W, 
and the ripple is to be less than 1% 
peak-to-peak.

• This could be met with a buck 
converter, since Vout < Vin.
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A Design
• The duty ratio will need to be 

Vout/Vin = (5 V)/(24 V) = 0.208
• The output current is (25 W)/(5 V) = 5 A.
• When switch #1 is on, the inductor sees 

24 V - 5 V = 19 V.
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A Design
• With #1 off, the inductor sees -5V
• So, since vL = L di/dt, with #1 on,                

19 V = L di/dt 
= L i/t

• The time involved is 0.208 T, or 2.08 us.  
We want i < 0.01(5 A).

• Thus (19 V)(2.08 us)/L < 0.05 A, 
and L > 0.792 mH
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A Design
• We expect that D1 = 0.208, 

fswitch = 100 kHz, L = 0.8 mH,
and R = 1  will meet the need.

• Practice:  What is the peak-to-peak 
ripple if L = 8 uH?   it will be 100x as 
big
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Boost Converter

A boost converter is a buck converter 
flipped horizontally.

#2

#1
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Boost Converter

With common ground, the matrix 
reduces to two switches.
Iin is formed as a voltage in series with L.




VIN

IIN

vIN

L iOUT

#1

#2





VOUT

C R
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Relationships
• The input voltage to the switch matrix 

is vin, the voltage across the transistor.
• Since <vL> = 0, the average transistor 

voltage matches Vin.
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Relationships
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Relationships
• By KVL and KCL, sources require

q1 + q2 = 1.
• Then vin = q2 Vout

= (1 - q1) Vout, 
iout = q2 Iin

= (1 - q1) Iin.
• The averages require <vin> = Vin, and 

Vout = Vin/(1 - D1) 
= V /D
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Relationships

outI
loadI
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  inIq 11
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Relationships
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Example

2 V to 5 V boost (input might be 
one Li-ion cell, for instance, with 2 V as its 
lowest value).
Switching:  80 kHz. Load: 5 W. Input 
ripple: + 10 mA. Output ripple: + 1%.
This gives a period of 12.5 us.
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Boost Example

With 2 V input and 5 V output, the load 
current at 5 W is 1 A, but the input current 
must be (5 W)/(2 V) = 2.5 A.
With + 10 mA input ripple, the 
peak-to-peak value is 20 mA.
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Boost Example

• When switch #1 is on, the inductor 
voltage is 2 V, and current increases.

• The duty ratios:  D2 = Vin/Vout = 0.40, 
and D1 = 1 - D2 = 0.60

• Switch #1 is on 0.60 T = 7.5 us.
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Boost Example

vL = L di/dt = 2 V with #1 on.
Thus (2 V)/L = i/t, 

t = 7.5 us.
To get i < 0.02 A, we need

L > (2 V)(7.5 us)/(0.02 A), or 

L > 0.75 mH.
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Boost Example

• What about Vout?
• The capacitor current is 

Iin - Iload = 2.5 A - 1 A
when switch #2 is on, and 
-1 A when switch #1 is on.

• We want + 1% of 5 V, or a peak-
to-peak change below 0.1 V.
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Boost Example
#1 ON: iC= -1 A

1 A

iC

1 A

iC

2.5 A
#2 ON: iC= 1.5 A
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Boost Example
• With switch #2 on (duty ratio was 

found to be 0.4, so time is 5 us),  
iC = 1.5 A 

= C dv/dt 
= C v/t.

• (1.5 A)(5 us)/C = v < 0.1 V.
• This requires C > 75 uF.
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Boost Example

Practice: What if fs is changed to 40 kHz? 
average values are the same ripple 2x

2 V

0.8 mH

60%
Duty 5 

10 F

2 to 5 V, 80 kHz boost converter:
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Comments
• With a few practice examples, you should 

be able to design a common-ground buck 
or boost converter.

• Challenge:  Think about effects of nonideal 
switching.

• It is not so difficult to include some basic 
nonideal effects, such as switching device 
voltage drops and resistances. 

• Consider an example with switch and diode 
voltage drop.
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Nonideal boost
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Nonideal boost
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0.5 V
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Nonideal boost
• Switching function expressions still apply.
• Boost: vin = q1(0.5 V)+ q2(Vout+ 1 V).
• On average, 

<vin> = Vin
= D1(0.5V) + (1-D1)(Vout + 1 V), and   

Vout = (Vin + 0.5D1 -1)/(1 - D1)
• For current, iout = q2 IL, <iout> = D2 IL.
• Since <iout> is the load current Iload, we 

have IL = Iload/D2 = Iload/(1 – D1).
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Nonideal boost
• The efficiency:  Pin = Vin IL, Pout = VoutIload.
• So Pin = Vin Iload/(1 – D1) and 

Pout = (Vin + 0.5D1 -1)Iload/(1 - D1)
• The efficiency ratio  = (Vin + D1/2 -1)/Vin,

and  = 1 – (1 – D1/2)/Vin.
• This is less than 100%, reflecting the losses in 

the switch forward drops.
• Switching functions support analysis of 

converters even with these extra parts.
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Indirect Dc-Dc Converters
• The buck is a dc transformer with Vout < Vin.
• The boost gives Vout > Vin.
• How can we give full range?  Use a buck as 

the input for a boost.
• That is, use the current source output of a 

buck to provide the input source for a boost.
• Remove redundant or unnecessary switches.  

Result is the polarity reverser:  buck-boost.
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Buck-Boost Development

Can be the
same one

Buck Boost
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Final Simplification

The switch across the current source is not 
necessary for KCL.
Try removing it.
The current source is a transfer source.
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Buck-Boost Converter

Left switch is FCFB. Right switch is FCRB.

Buck-Boost

#2#1

iIN iOUT

VIN VOUTIS




vt

Transfer source
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Relationships
• To meet KVL and KCL, q1+q2 = 1.
• There are really two matrices now.  Let us 

consider the transfer source, which is 
manipulated by both matrices.

• Transfer voltage is subject to control.
• Transfer voltage vt = q1Vin- q2Vout.
• Transfer source power is vt Is = q1 Vin Is- q2 Vout Is.
• We want the average power in the transfer 

source to be zero -- no loss.
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Relationships

<vtIs> must be zero, not to have losses in the transfer 
source.

 outinstsst

outint

soutsinst
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Relationships

This can be done if D1Vin= D2Vout.
Since D1 + D2 = 1, we have   D1Vin = (1 - D1)Vout.
This becomes Vout = D1Vin/(1-D1).
The polarity reversal comes from the cascade 
process.
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Buck-Boost
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Relationships

The buck-boost allows outputs both higher and 
lower than the input, but a polarity shift is 
present.
The transfer source can be an inductor alone to 
avoid loss.
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Relationships

Consumes no average power.
Maintains fixed I.

Can be approximated by an inductor.

This will be our transfer
current source.
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What About Currents?

The input current:  iin = q1 Is,
The output current:  iout = q2 Is,
Average input:  Iin = D1 Is,
Average output:  Iout = D2 Is.
We do not really know Is.  Add the above:  
Iin + Iout = (D1 + D2)Is = Is.
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Currents and Stresses
• The transfer source sees a current equal to 

the sum of input and output average 
currents.

• Each switch must carry Is, and each must 
block Vin + Vout.

• All device ratings are higher than either the 
input or output needs.


