

Power Electronics Day 4 – Equivalent Sources, "Power Filtering" Analysis, Dc Conversion

P. T. Krein

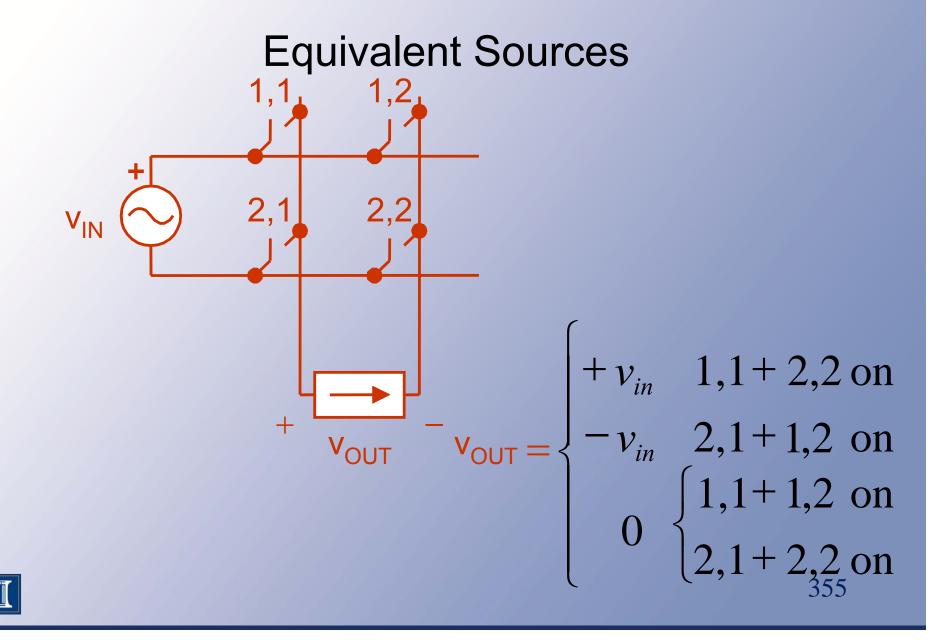
Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

© 2011 Philip T. Krein.

Equivalent Sources

When a switch matrix operates to satisfy KVL and KCL, many of the waveforms become well defined.

Example: Matrix 2x2 ac voltage to dc current converter. The output must be $+V_{in}$, $-V_{in}$, or zero.

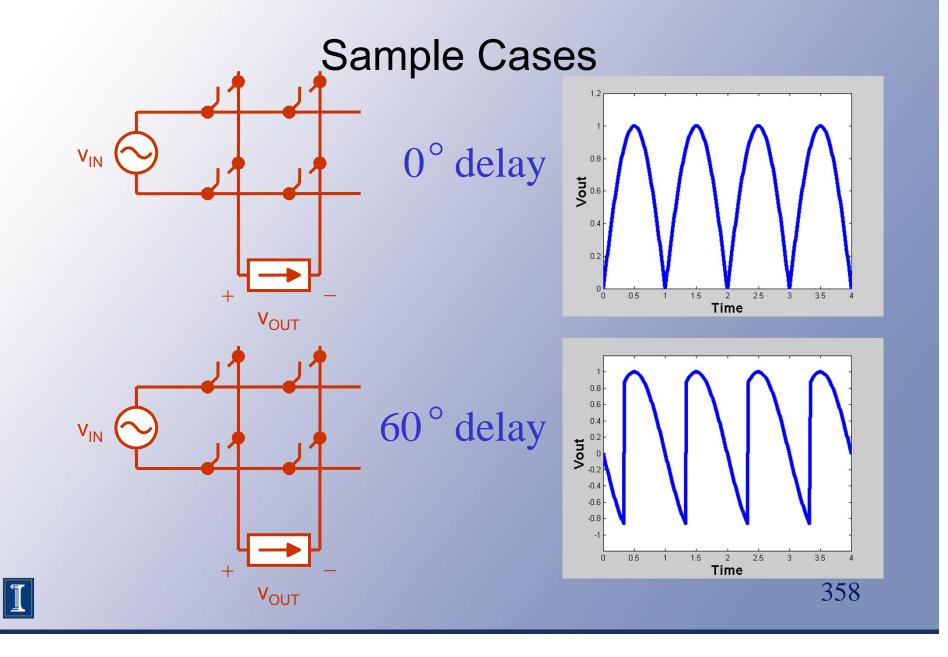


Equivalent Sources

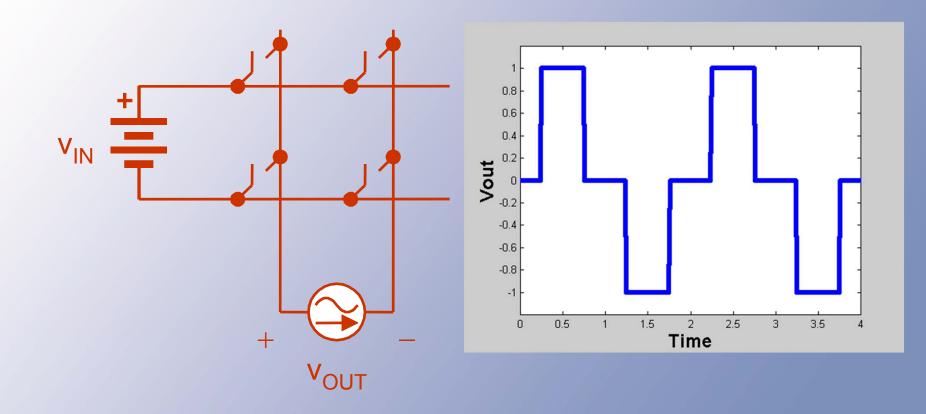
- If switch action is specified, the output waveform becomes fully determined.
- We can treat the waveform as an ideal source (with an unusual shape).

Sample Cases

- Full-wave rectifier (Fig. 2.33)
- Phase-delayed rectifier (Fig. 2.17)
- Inverter into an ac current source (Fig. 3.5)
- Fig. 2.19, 60 Hz to 180 Hz



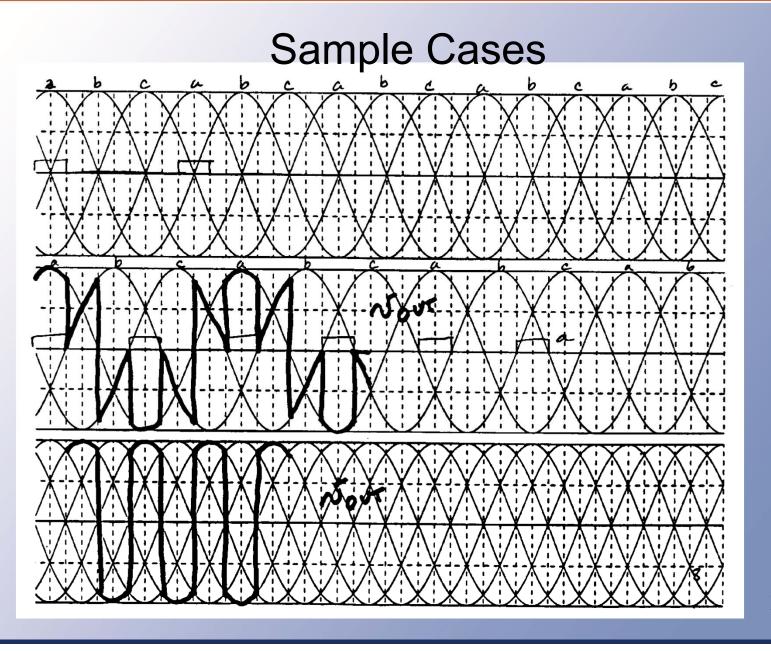
Sample Cases



I

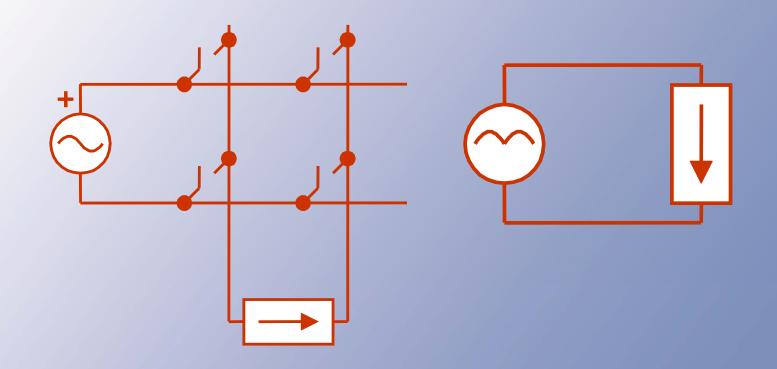
I

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



360

Equivalent Sources Any of those waveforms can be a source.

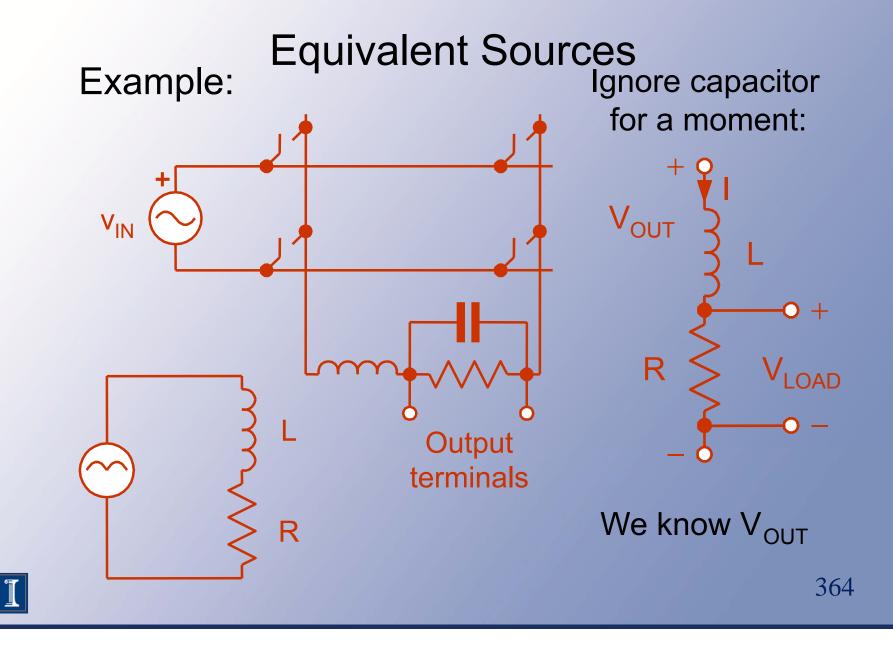


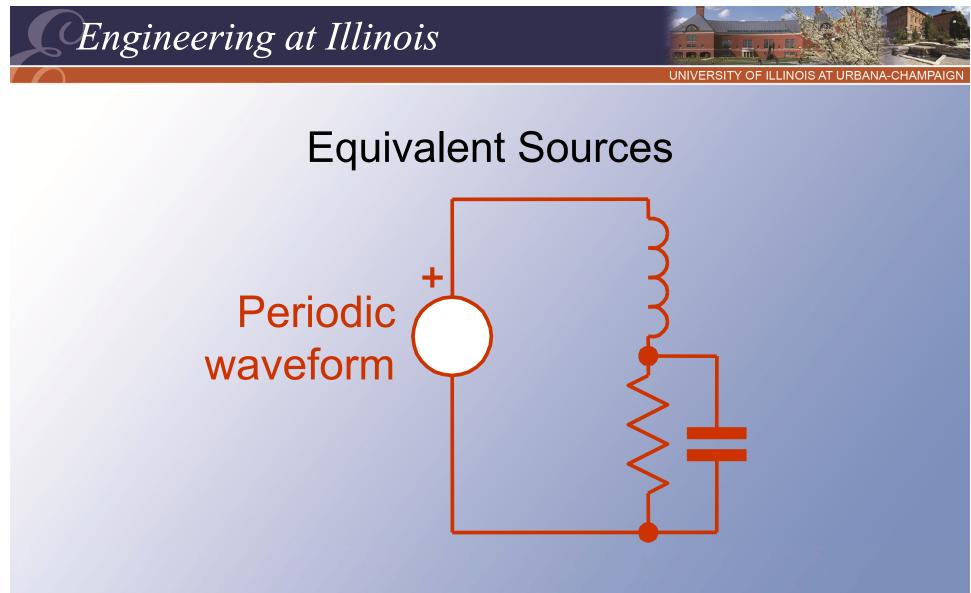
Equivalent Sources

- Equivalent sources can be a powerful tool:
 - Many converters act like an equivalent source in a linear circuit
 - We can represent a source as a combination of Fourier components

Equivalent Sources

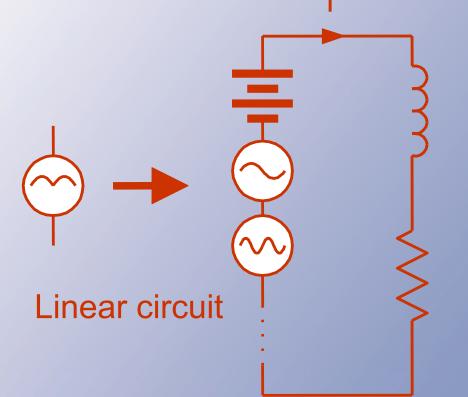
- With a source in a linear circuit, analysis, filter design, etc. can proceed along familiar lines.
- This is a common way to design interfaces for rectifiers and inverters.



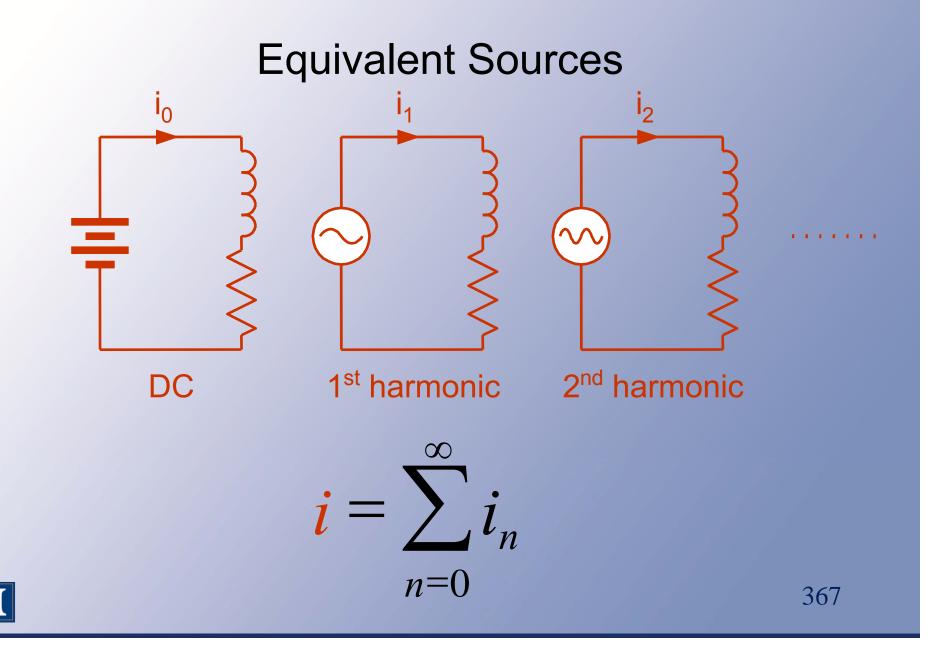


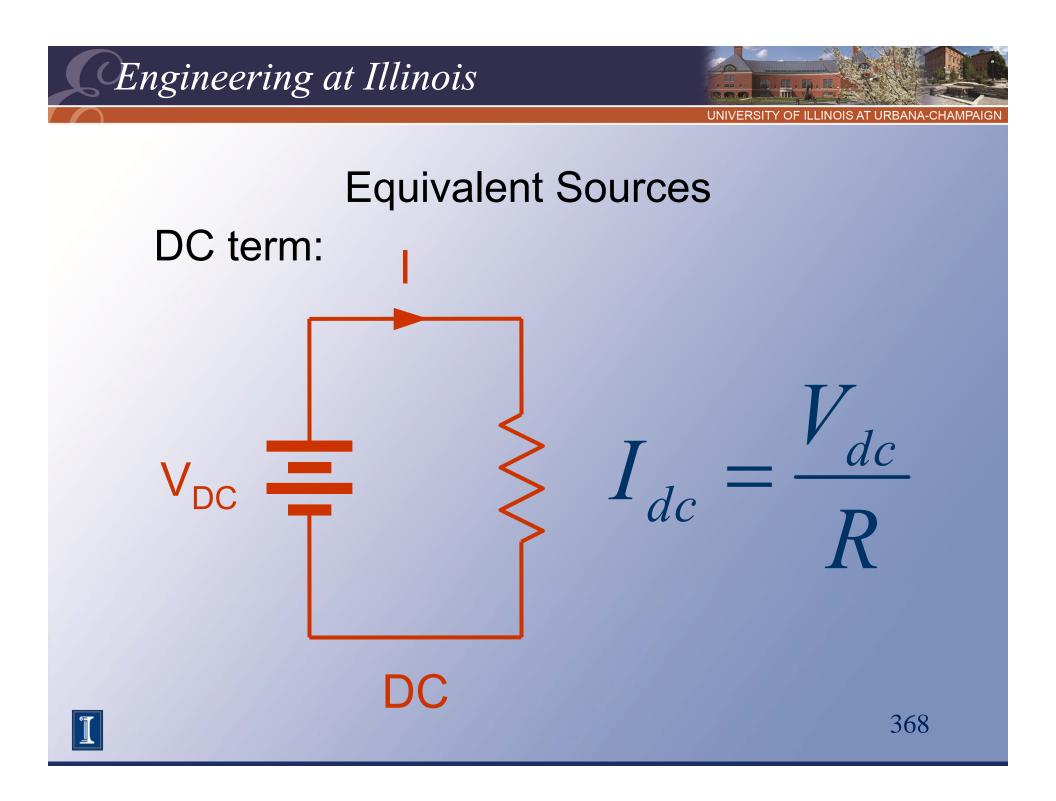
We can represent the periodic waveform with a Fourier series.

Equivalent Sources



i is the sum of the contributions from each of the sources. We can break up the circuit.





Equivalent Sources AC terms, based on phasor analysis. $\widetilde{I}_1 = \frac{\widetilde{V}_1}{R + jw_1L}$

Usually, Fourier terms decrease in amplitude as 1/n. The fundamental is the largest. 369

Want low ripple

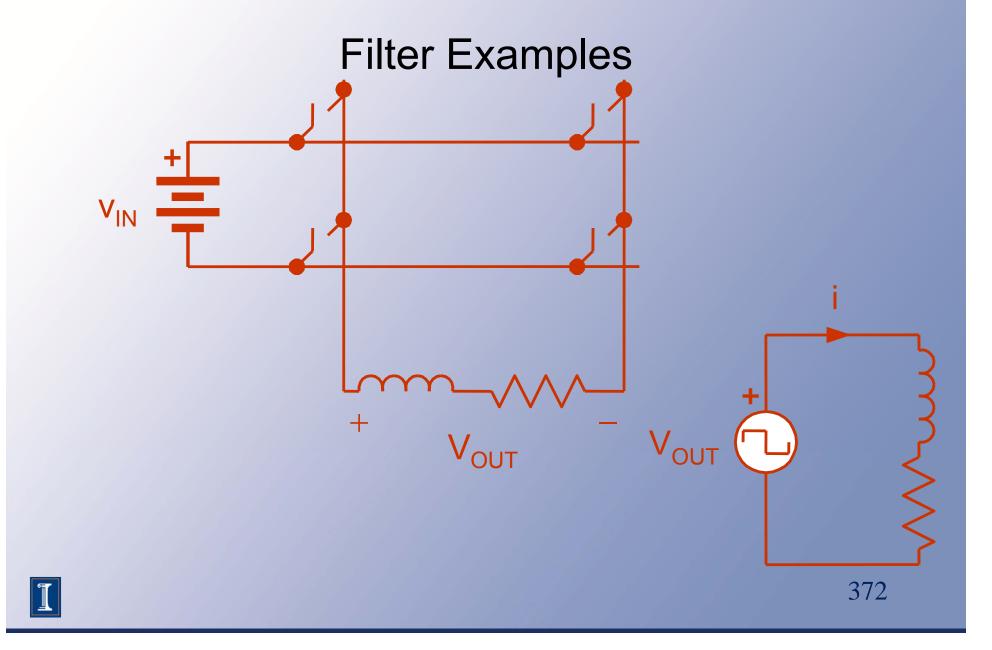
 \rightarrow e.g., want $\left| \widetilde{I}_1 \right|$ low

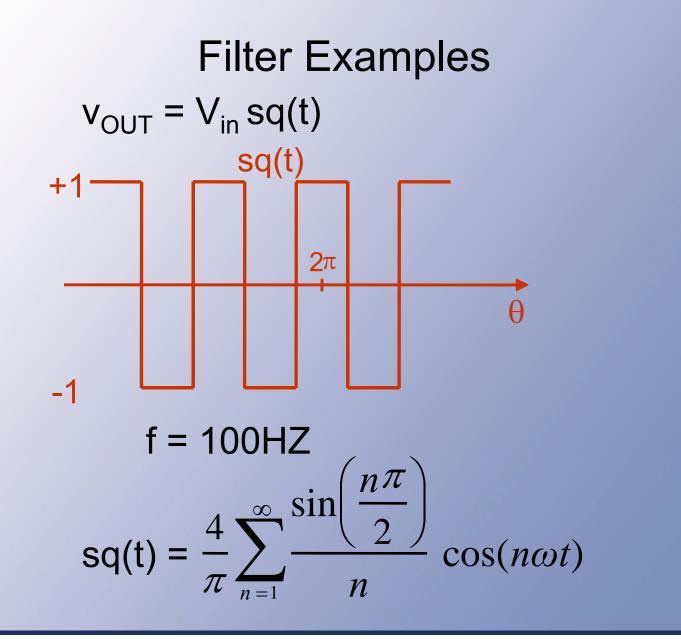
DAY 4 START Power Filtering

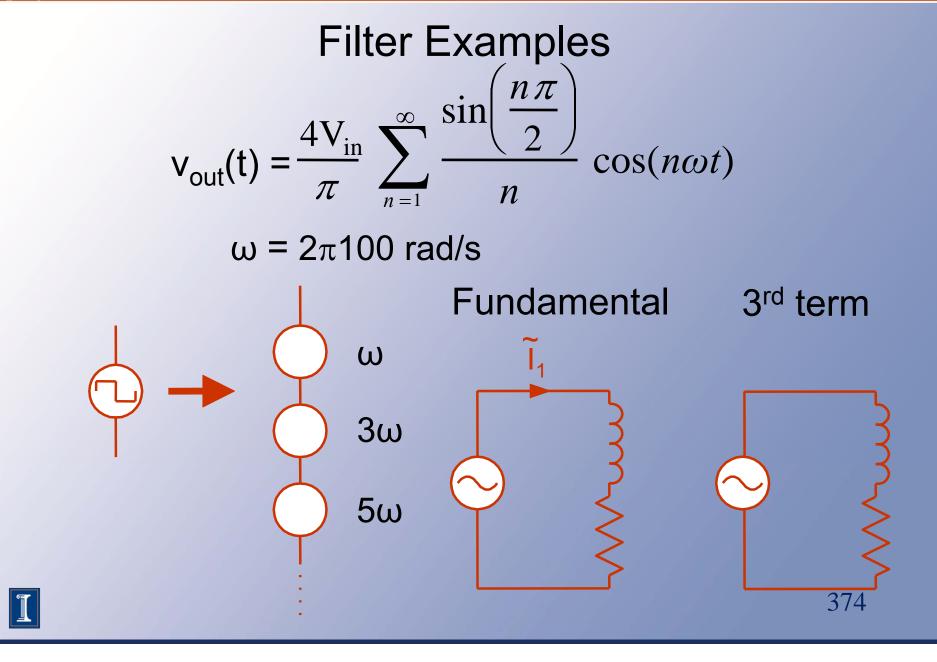
- Filters (or interfaces) for converters have needs distinct from those in signal applications.
- Filters must be lossless, and impedances of sources and loads are unknown.

Power Filtering

- Two common methods of analysis
 - Equivalent sources
 - "Ideal action" assumption







Filter Examples

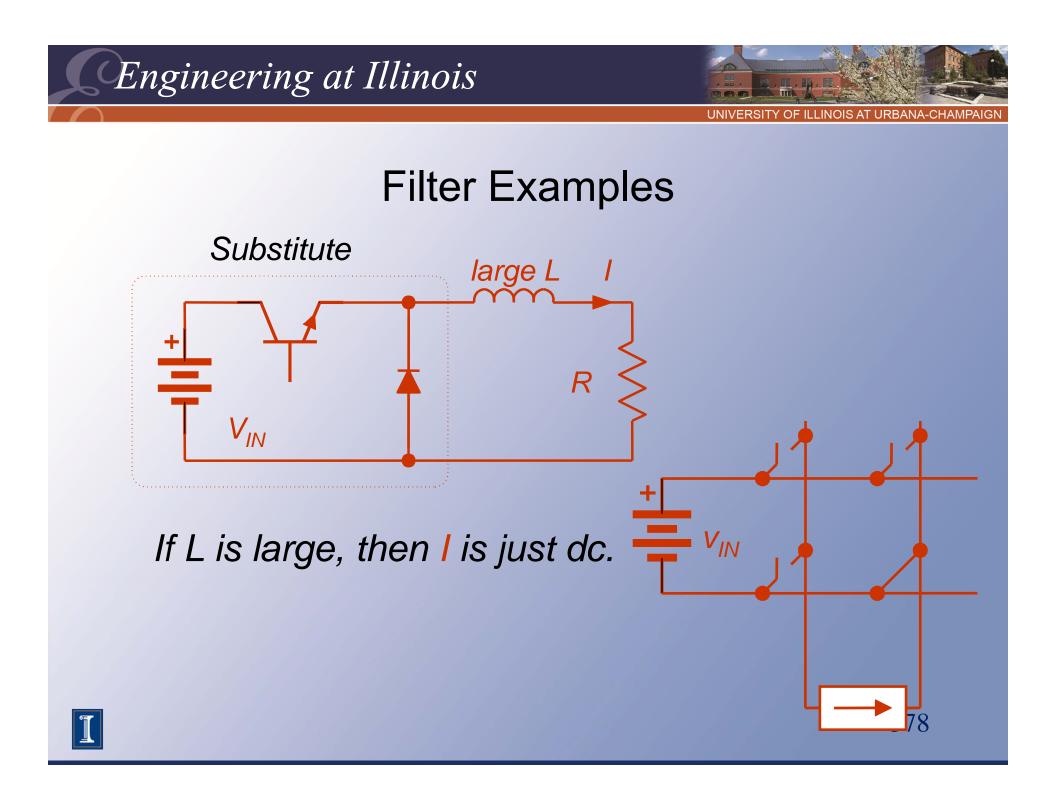
Look at examples based on the equivalent source method (such as Example 3.6.1).

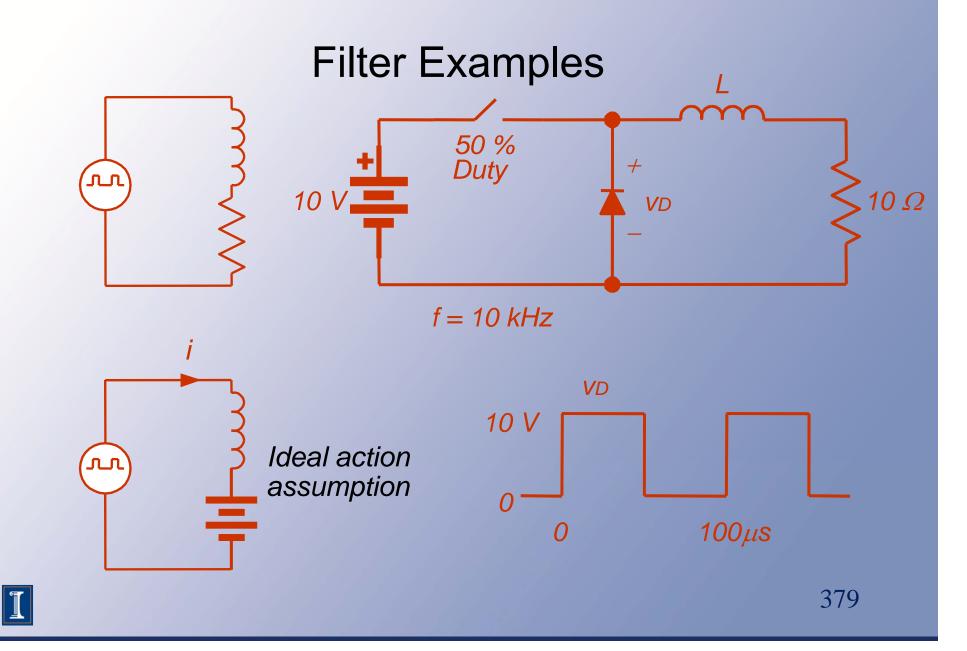
Ideal Action Assumption

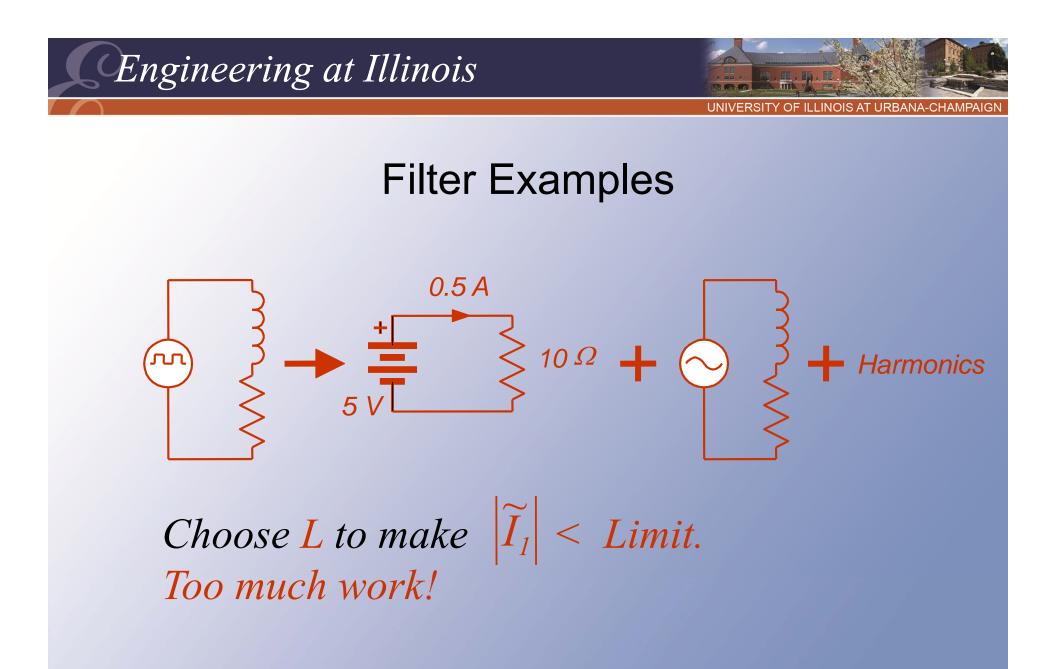
- In a power converter, we know what a filter is trying to achieve.
- Examples: low-ripple dc, ideal ac sine wave, etc.
- In general: give a large *wanted* component and small *unwanted* components.

Ideal Action Assumption

- If the filter is well-designed, it ought to work.
- If it works, we know its output.
- Now, use the "known" output with the known input to compute values.





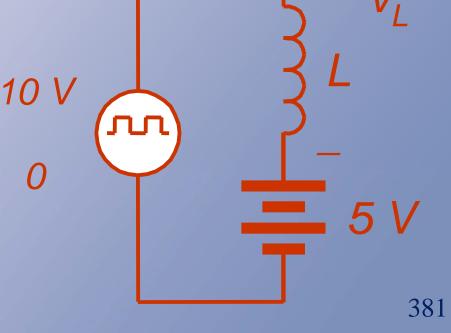


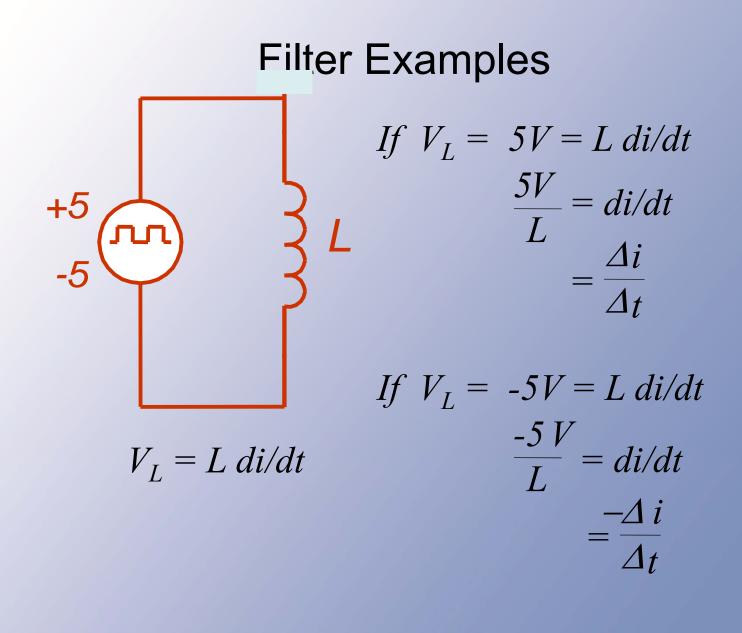
Filter Examples

If L is large and the circuit works, the inductor current is almost constant and so is the voltage across the load resistor.

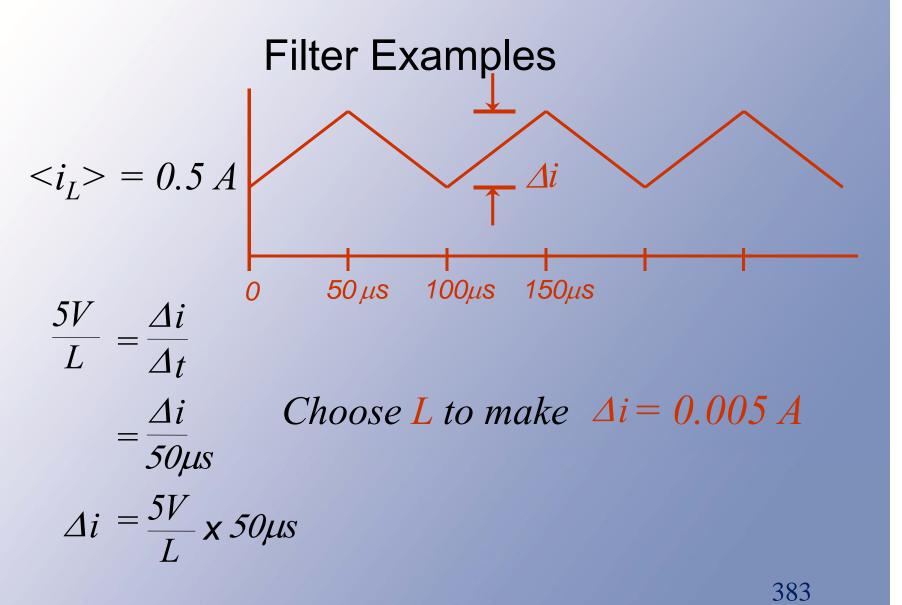
This voltage can be represented by a constant voltage source. $\checkmark V_1$

Switch on: $V_L = 5 V$ Switch off: $V_L = -5 V$





382



I

Filter Examples

$$0.005 A = \frac{5V}{L} \times 50 \times 10^{-6}$$

 $L = \frac{250 \times 10^{-6}}{5 \times 10^{-3}}$

L = 0.005 H

 $L \ge 5 \, mH \, makes \Delta i \le 0.005 \, A$

Results and Comments

- Since we know the objective of our filters, it is reasonable to design them based on the assumption that the objective is met!
- This simple expedient is a very effective simplifying step.

Results and Comments

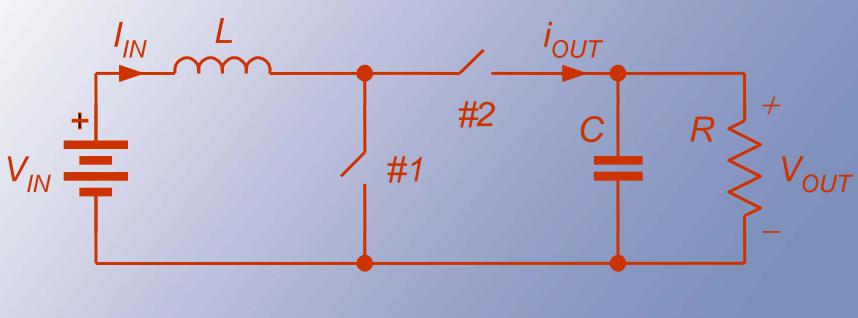
- The *ideal action assumption* works better than one might expect.
- We will analyze this as we build up converter designs.

Summary So Far

- We can analyze the quality of a converter output.
- Equivalent sources give us a way to deal with the interface problem.
- The ideal action assumption helps considerably with design.

Filter Example

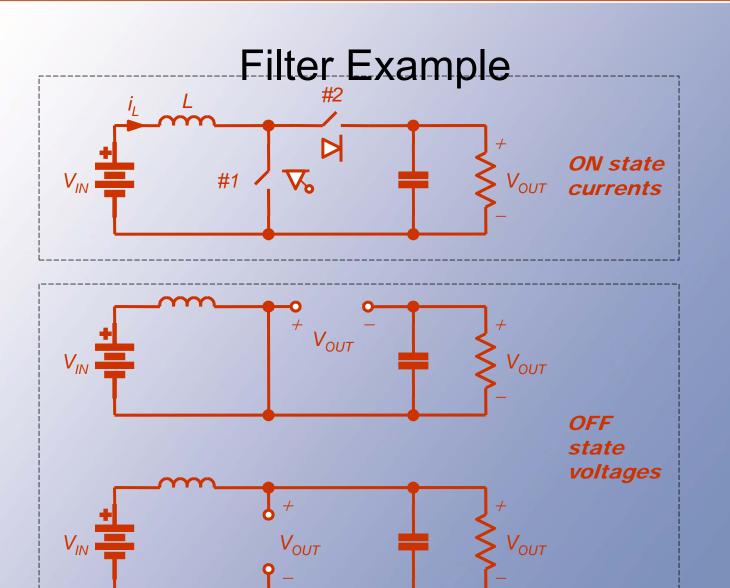
• Consider a converter, shown, with switch #1 duty ratio at 3/4.

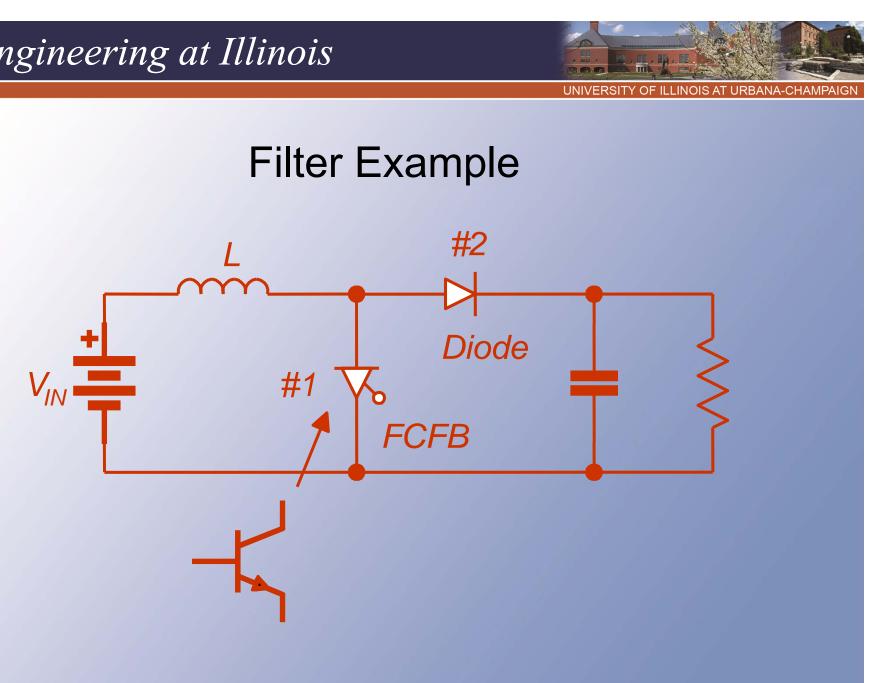


Filter Example

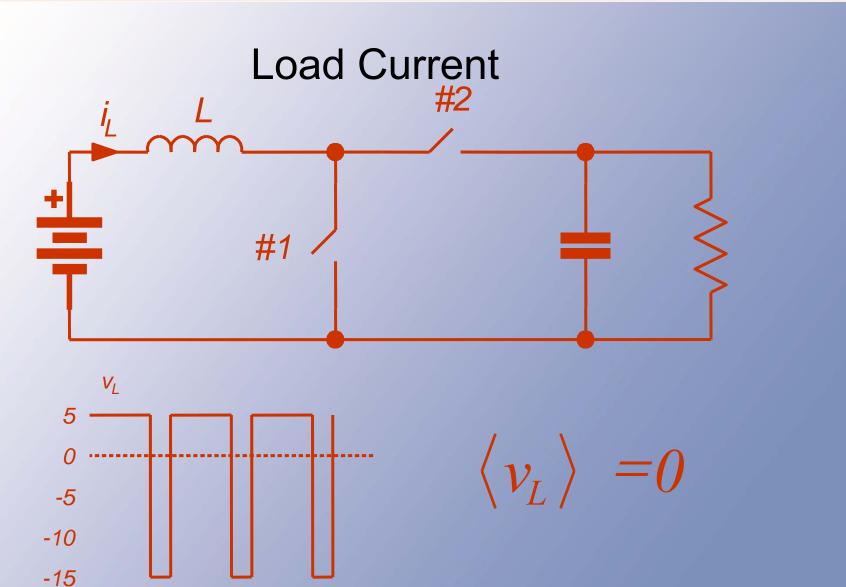
- Let the switching frequency be 200 kHz, L = 1 mH, C = 10 μ F, R = 10 Ω , V_{in} = 5 V.
- By KVL and KCL, the switches need to alternate.
- We can determine the device types.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN





UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Energy Balance

- With switch #1 on, the input energy to the inductor is (V_{in})(i_L)(3T/4). With switch #2 on, the input is (V_{in} - V_{out})(i_L)(T/4).
- The total must be zero. This requires $V_{out} = 4 V_{in} = 20 V.$

Load Current The load current is 2 A, and the load power is 40 W.

The average input current must be (40 W)/(5 V) = 8 A. This is i_L.

Current Ripple

- If the inductor and capacitor are large (we will check this), then i_L and V_{out} are nearly constant.
- The inductor sees 5 V when #1 is on, so its current increases for 3.75 us.

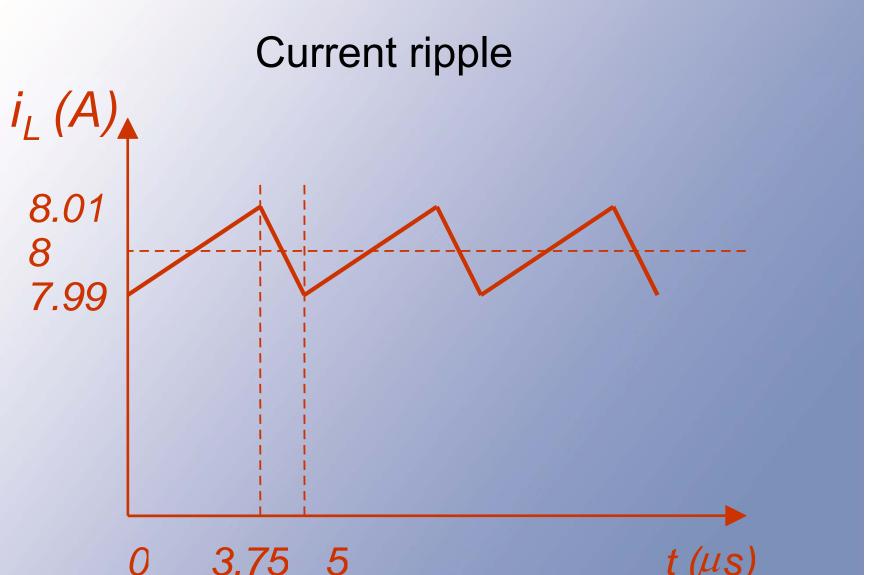
Current Ripple

- The inductor sees 5 V 20 V = -15 V when switch #1 is off, and the current falls for 1.25 us.
- During the rise, $v_L = 5 V = L di/dt$, but the rise is linear over 3.75 us, so $(5 V)/L = \Delta i/\Delta t$, $\Delta t = 3.75$ us.

Current ripple

- With a 1 mH inductor, this means $\Delta i = (5 V)(3.75 us)/(1 mH),$ $\Delta i = 0.0188 A.$
- This is less than 0.25% of i_L .
- Check the current fall. Does it match? Why?

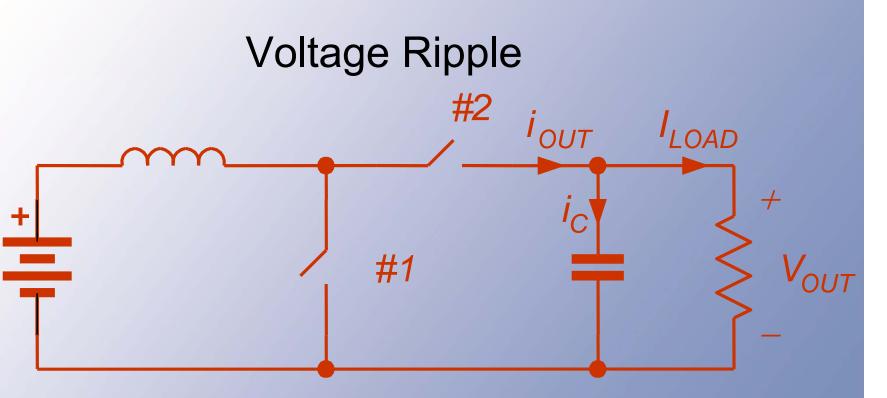
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Voltage Ripple

- We can do the same thing to find ripple on the output capacitor.
- The capacitor current is known: With switch #2 off, the resistor draws out 2 A. With switch #2 on, the current is 8 A - 2 A = 6 A.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



- i_C is fully determined.
- #2 off : i_c = -2 A v_c decreases
- #2 on : i_c = i_L 2 = 8 2 = 6 A v_c increases

Voltage Ripple

- Thus i_C = 6 A for 1.25 us, and -2A for 3.75 us.
- Since i_C = C dv/dt gives linear voltage ramps, the voltage rises when i_C = 6 A:
 (6 A)/C = Δv/Δt.
- The time involved is 1.25 us.

Voltage Ripple

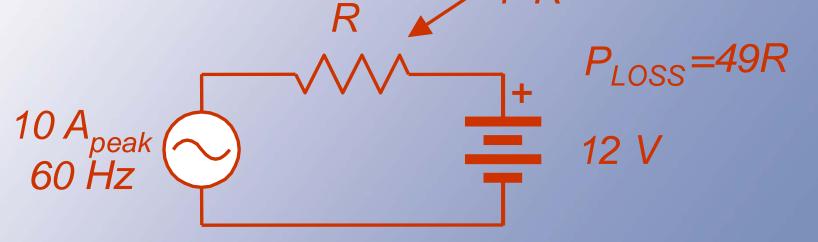
- $(6 \text{ A})(1.25 \text{ us})/(10 \text{ uF}) = \Delta v = 0.75 \text{ V}.$
- This is 3.75% of the 20 V dc level.
- Not perfect, but still very nearly constant.
- Thus with switching frequency of 200 kHz, L = 1 mH, C = 10 μF, R = 10 Ω, V_{in} = 5 V, we get 20 V out and 3.75% peakto-peak output ripple.

Power Factor

- A conventional measure in utility systems is *power factor* -- the fraction of energy flow that does useful work.
- Recall that cross-frequency terms do not contribute <P>.
- But, the cross terms *do* require current and voltage.
- The extra current means extra I²R loss, and should be avoided is possible.

Power Factor

Capture fraction of energy flow that erforms useful work. $rac{l}{R}$



 $< P_{OUT} >= 0 \implies pf=0$

Power Factor

Power factor is defined by

$$pf = \frac{\langle P \rangle}{V_{RMS} I_{RMS}} \le 1$$

- Ideally, this is 1. When harmonics or phase shifts are present, it is less than 1.
- *pf* can be less than 1 even in a linear circuit, but it is never greater than 1.

Power Factor Example $\langle P \rangle = 0 \Rightarrow pf = 0$

Two contributions to the pf : "Distortion power" and "Displacement power." The "*displacement factor*."

$$df = \frac{\langle P \rangle}{V_{RMS1} I_{RMS1}} = \cos(\theta_1)$$

Power Factor Issues

- *pf* is often divided into a phase effect at the wanted frequency (*displacement power*, with a *displacement factor*), and a distortion effect at unwanted frequencies.
- *pf* < 1 causes extra loss, and limits flow capabilities.

Power Factor Issues Why do we want pf = 1 ?

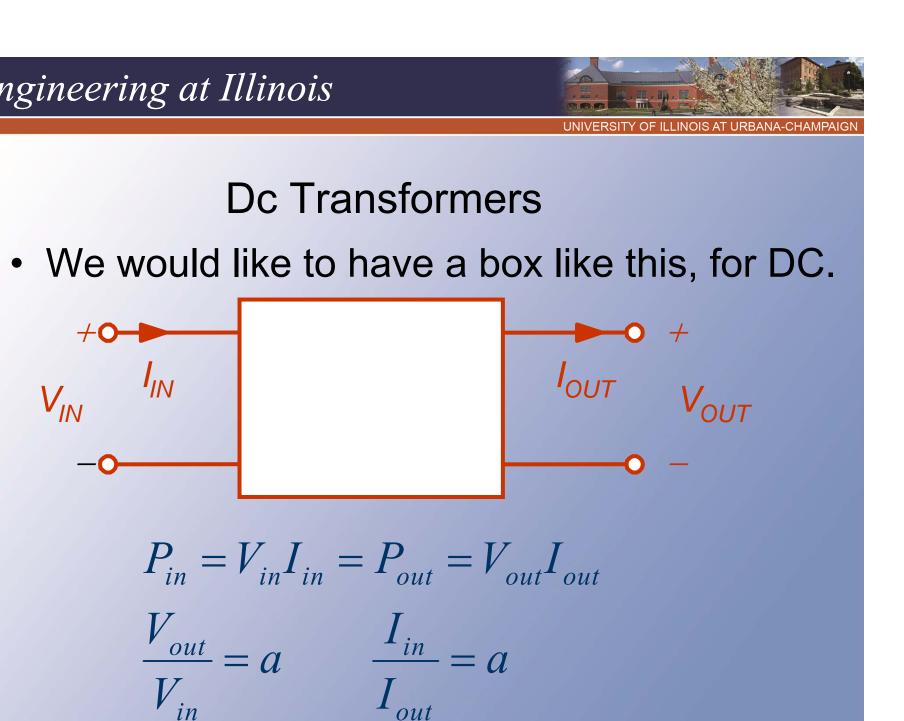
1) Minimizes system loss. Maximizes "device utilization."

- 2) Gives more available power.
 - 120 V, 12 A
 - pf = 1 → 1440 W
 - pf = 0.5 → 720 W
- 3) Examples

Rectifiers can have pf ~ 0.3

Dc-Dc Converters

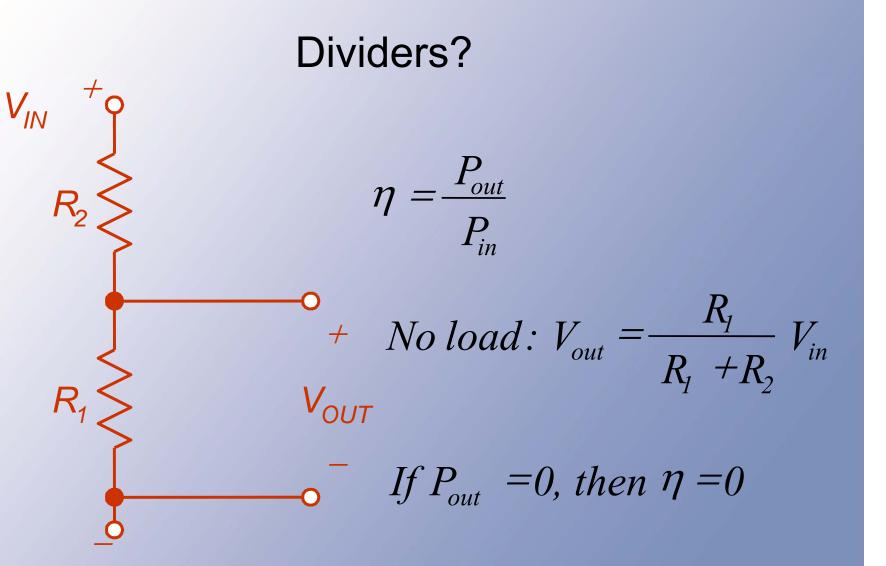
- We would like to have a dc transformer -- a device with $P_{in}=P_{out}$ and $V_{out}/V_{in} = a$.
- Magnetic transformers cannot handle dc, but the dc transformer is still a valid concept.
- Our objective in dc-dc converter design is to approach a dc transformer as best we can.



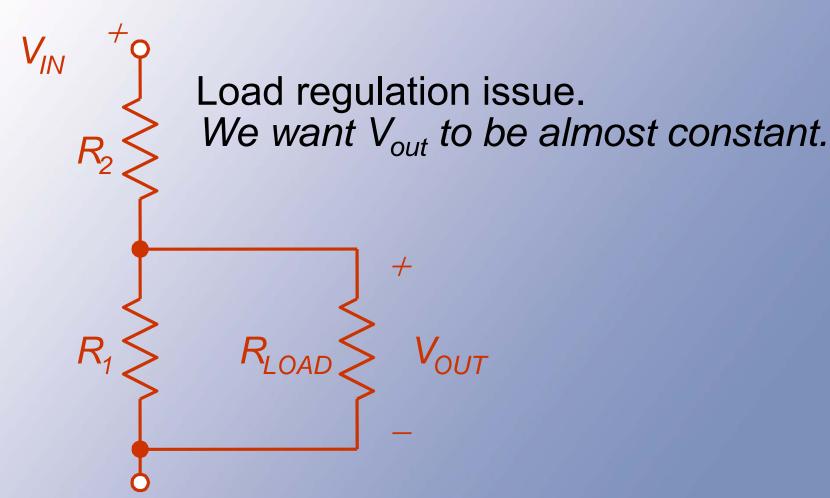
Dividers?

- We might try a voltage divider.
- Two problems:
 - -No regulation
 - Losses within the "converter"

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Dividers?



Dividers?

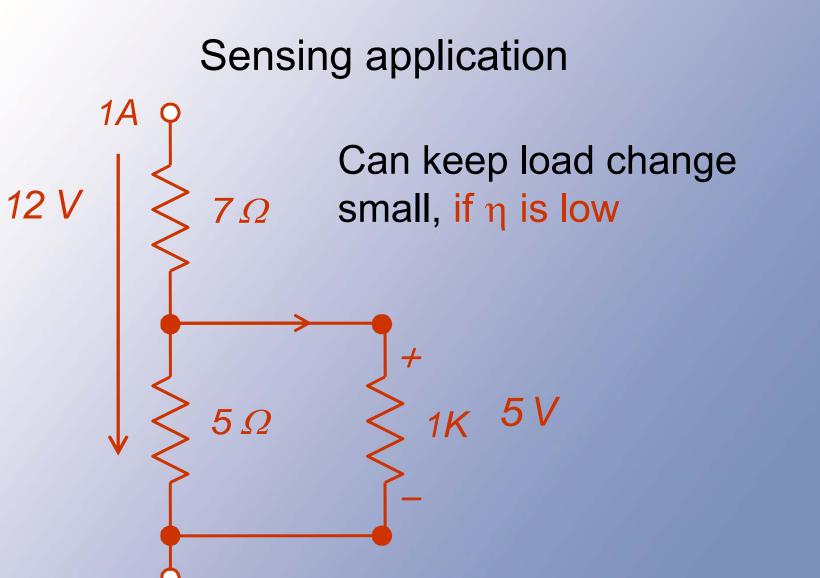
- The load regulation problem can be addressed through excess loading:
- Make the divider input draw so much power that the load power causes no change.

Divider Efficiency

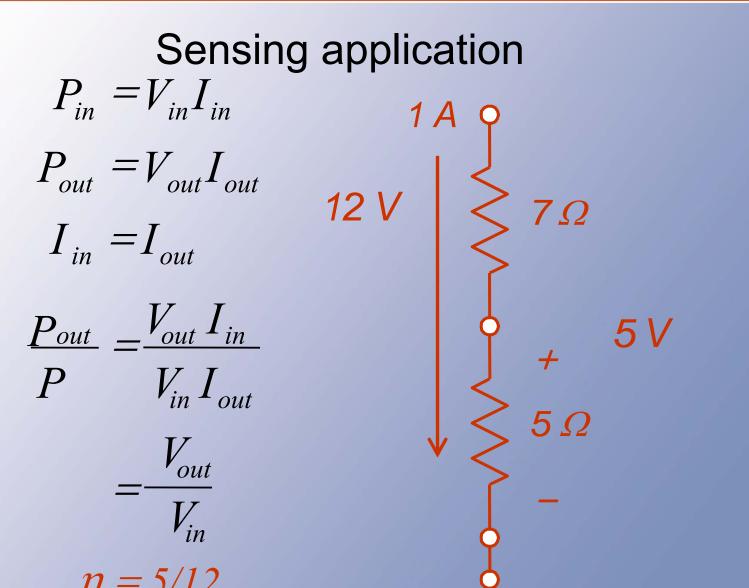
- Instead, if somehow all output power is delivered to the load (best possible case), the efficiency is V_{out}/V_{in} .
- This occurs only at a single load value, if designed in advance. The design has no load regulation.
- Reality is always worse.

Dividers -- Conclusion

- Voltage dividers are useful for sensing applications when the load power is intended to be zero.
- A voltage divider is *not* useful for dc-dc conversion.
- It is not a power electronic circuit, since the efficiency cannot be 100%.



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Dc Regulators

- Since a divider has no regulation, it motivates new types of circuits.
- In these types of "converters," the output is independent (within limits) of the input and of the load.
- They perform a regulation function rather than energy conversion.
- We call them "dc regulators."

Amplifiers

- It is also possible to use amplifier methods for dc-dc conversion.
- These are common, because they have excellent regulation properties.
- In general, efficiency is poor.

Shunt Regulator

Voltage divider, 12 V to 5 V, 1 W.

- With exact values, best efficiency is 5/12.
- To provide regulation, the divider current path must carry much more than the load current.
- Problems: line regulation, load regulation, loss even if $P_{out} = 0$, low η.

Shunt regulator.

- Zener diode in place of low-side resistor.
- Requires $I_Z > 0$.
- For 12 V to 5 V, 1 W, R_1 < 35 Ω.
- Solves the line and load regulation challenges, but not the others.

Rs I_Z /7

Example

- 12 V to 5 V regulation at up to 0.2 A.
- At 0.2 A load, the input current must be at least 0.2 A to ensure $I_7 > 0$.
- This current flows through a drop of 7 V, so $R_s < 35 \Omega$.
- Try it . . .

Example

- Test a load of 0.1 A. The input current, if the regulator works, is (12 V 5 V)/(35 Ω) = 0.2 A. The load current is 0.1 A, so the zener current must be 0.1 A.
- This is wasteful, but it works.
- Useful for generating low-power reference voltages.

$$= 2.4 \text{ W}$$

$$\eta = \frac{P_{out}}{P_{in}}$$

$$= 20.89$$

$$P_{OUT} = (0.1 \text{ A})(5 \text{ V})$$

= 0.5 W
 $P_{IN} = (12 \text{ V})(0.2 \text{ A})$
= 2.4 W

0

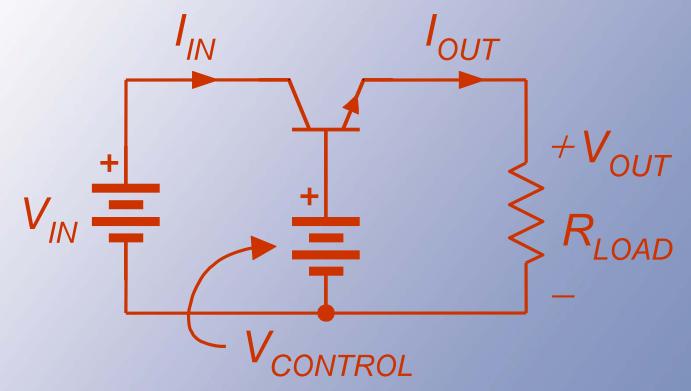
Example

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Series Regulator

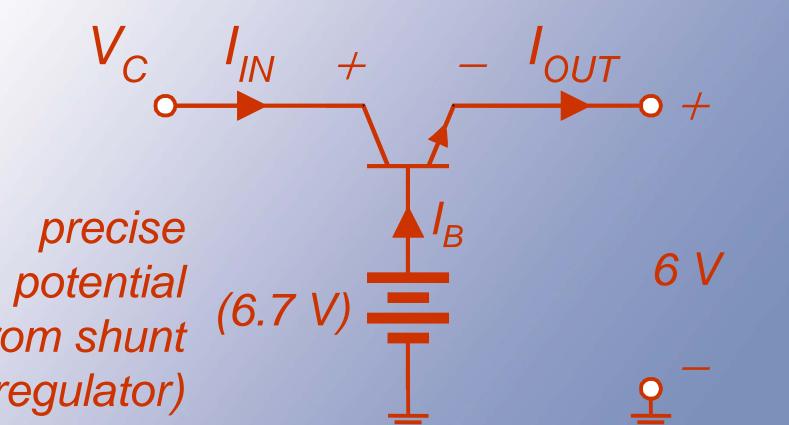
- Instead find a series device that can provide an output that is approximately independent of the input.
- A bipolar transistor can do the job in its linear operating region.
- With proper bias, the output depends on the base voltage.
- Not a switching method.

Series Pass Arrangement

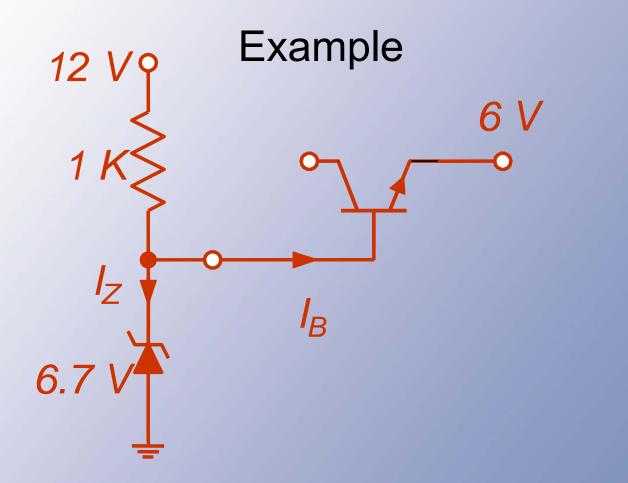


The emitter voltage follows the (low-power) base voltage.

Series Pass Arrangement Suppose a 6 V output is needed.



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Here, a shunt regulator provides the reference voltage for a series regulator.

Series Pass Arrangement

- In the bipolar case, if there is high gain, the base current is very low.
- The emitter voltage will be roughly 0.7 V below the base voltage.
- This works provided the collector input is high enough.

Series Pass Arrangement $I_{IN} = I_C$ If I_B is small (high gain), then $I_{OUT} = I_E \qquad I_C = I_E$ $= I_B + I_C \qquad I_{IN} = I_{OUT}.$ $\eta = \frac{P_{out}}{P_{in}} = \frac{V_{out}I_{out}}{V_{in}I_{in}} = \frac{V_{out}}{V_{in}}$

Series Pass Comments

- Common for local dc power, e.g., 12 V in, 5 V out, but extremely inefficient unless voltages are nearly the same.
- Notice that $I_{in} \approx I_{out}$.
- Best-case efficiency is V_{out}/V_{in} since current is conserved.
- Requires V_{in} > V_{out} + ~2 V

More Comments

- Although this is common, it is only acceptable when voltages are close.
- Useful example: 14 V to 12 V regulator for automotive application. Efficiency could be 86%.
- Poor example: 48 V to 5 V regulator for telephone application. Efficiency is only 10%.

Key Advantage

- V_{out} = V_{control} V_{be} --- entirely independent of input, load, etc.
- This is a "linear regulator," since V_{out} is a linear function of a control potential.

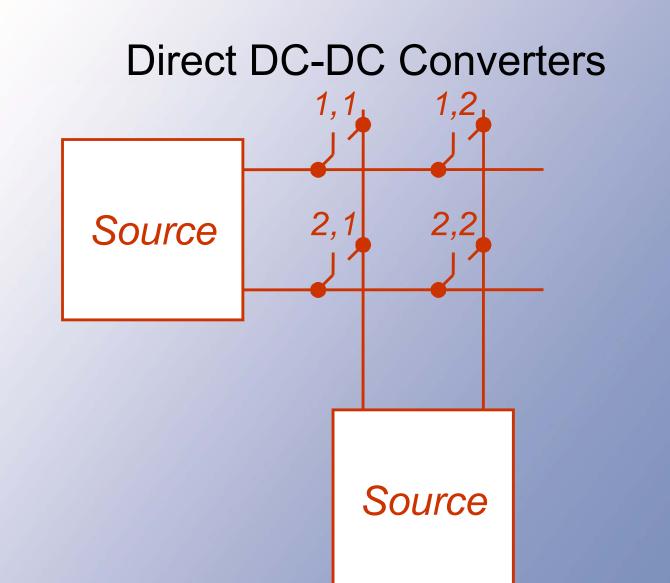
Parting Comments

- Series linear regulators make good filters -- if we can keep the input and output close together.
- Shunt regulators provide fine fixed reference voltages but are not so useful for power.

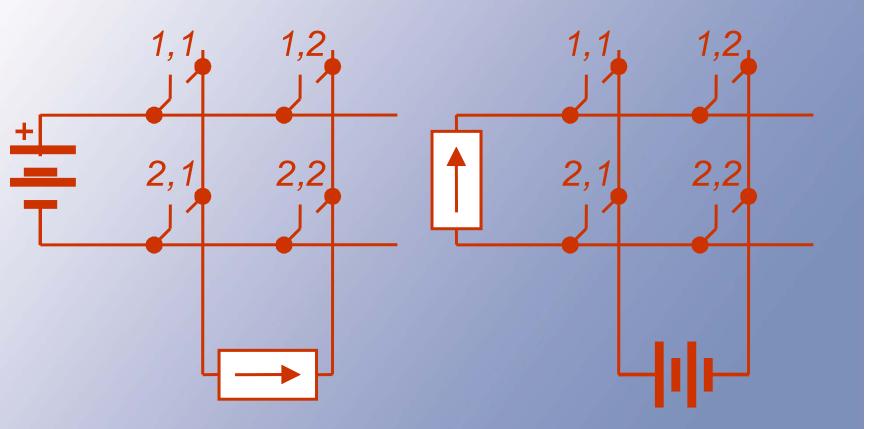
Now, Switching

- The circuits so far cannot provide 100% efficiency. We need switching.
- Two possibilities of general dc-dc conversion:
 - -2 x 2 matrix, voltage in, current out
 - -2 x 2 matrix, current in, voltage out.
- These are the direct dc-dc converters.

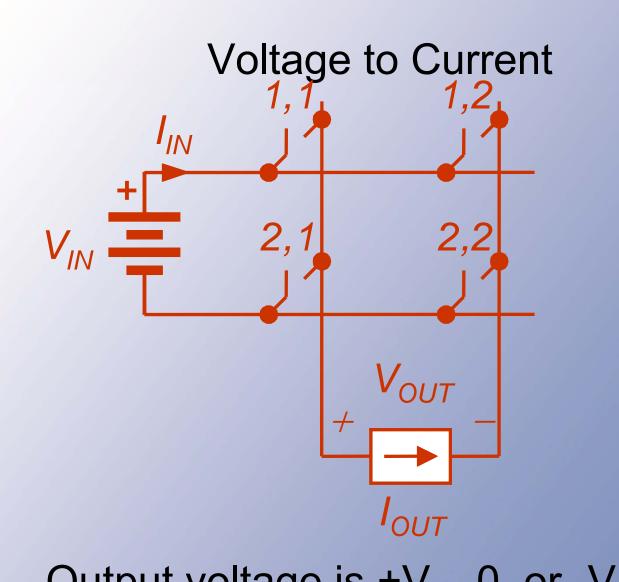
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Direct DC-DC Converters Two direct converters for DC-DC:



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Switch Relations

- Output is +V_{in} if 1,1 and 2,2 are on together, etc.
- A switching function representation is $v_{out}(t) = q_{11} q_{22} V_{in} - q_{12} q_{21} V_{in}$
- But KVL, KCL require q₁₁+q₂₁=1, q₁₂+q₂₂=1.

Switch Relations In switching function form: $v_{out}(t) = q_{11}q_{22}V_{in} - q_{21}q_{12}V_{in}$ $i_{in}(t) = q_{11}q_{22}I_{out} - q_{21}q_{12}I_{out}$ KVL+KCL: $q_{11} + q_{21} = 1$ $q_{12} + q_{22} = 1$ $V_{out}(t) = q_{11}q_{22}V_{in} - (1-q_{11})(1-q_{22})V_{in}$

Switch Relations

$$V_{out}(t) = (q_{11} + q_{22} - 1)V_{in}$$

In this dc application, we are interested in $\langle v_{out}(t) \rangle$. The switching function averages are the duty ratios, and

$$\left\langle v_{out}(t)\right\rangle = \left(D_{11} + D_{22} - 1\right)V_{in}$$

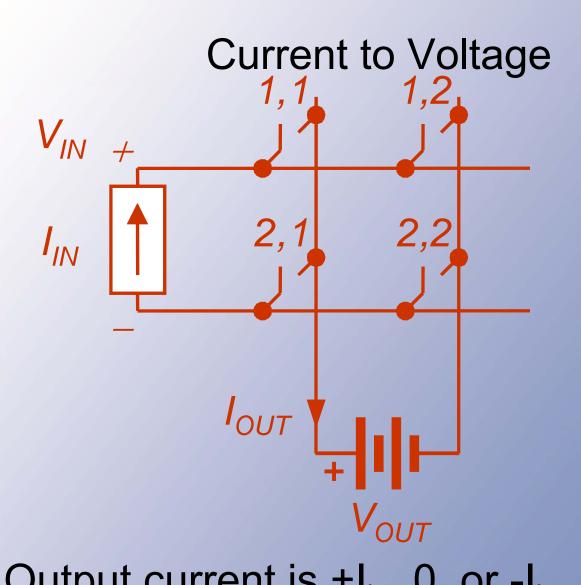
We can choose duty ratios D_{11} and D_{22} to provide a desired $\langle v_{OUT} \rangle$.

Switch Relations $0 \le D_{ii} \le 1 \implies 0 \le D_{11} + D_{22} \le 2$ $\implies -V_{in} \le \langle v_{out} \rangle \le V_{in} \implies |\langle v_{out} \rangle| \le V_{in}$

"Buck Converter" or "Step-Down Converter"

$$\left\langle i_{in}\right\rangle = \left(D_{11} + D_{22} - 1\right)I_{out}$$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



UNIVERSITY OF ILLINOIS AT URBANA-CHAWPAIGN

Switch Relations

$$\langle i_{out} \rangle = (D_{11} + D_{22} - 1)I_{in}$$

$$\langle v_{in} \rangle = (D_{11} + D_{22} - 1)V_{out}$$

$$V_{out} = \frac{\langle v_{in} \rangle}{(D_{11} + D_{22} - 1)}$$

$$0 \le D_{ii} \le 1 \implies 0 \le D_{11} + D_{22} \le 2$$

$$\implies |\langle v_{out} \rangle| \ge V_{in} \qquad \text{Boost Converter}$$

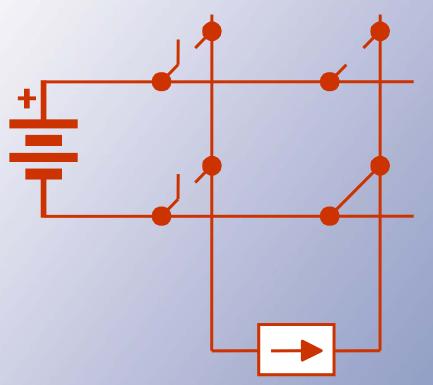
Summary

- The dc transformer is an important practical function.
- Non-switching methods, such as voltage dividers and dc regulators, are not really suitable for power conversion.
- We considered two switching circuits that accomplish buck and boost dc-dc conversion functions – types of dc transformers.

Simplifications

- In many applications, it is desirable to share a common input-output node (ground reference).
- This requires one switch always on and one always off.

Common-Ground Dc-Dc Example: 2x2 switch matrix, with common input-output ground



Common-Ground Dc-Dc #1 ON #2 ON + _

Common-Ground Dc-Dc

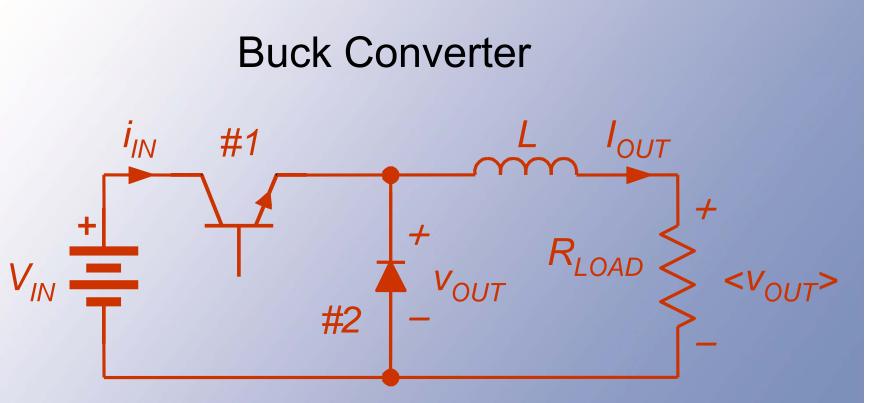
- With two switches left, label them #1 and #2.

One becomes > and one

This can be checked by testing current (on) polarity and voltage (off) polarity.

Switching Functions

- With ideal, or near-ideal, current and voltage sources, KVL and KCL
- require $q_1 + q_2 = 1$.
- The buck converter:



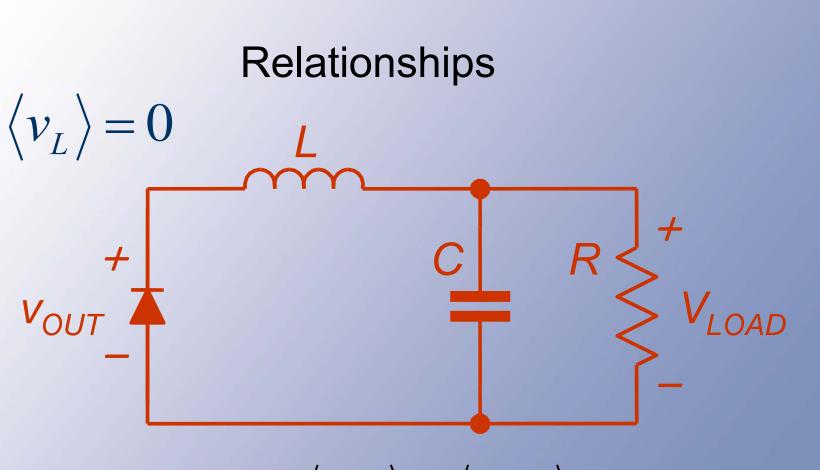
- The voltage v_{out} is the "switch matrix output."
- The load voltage is $\langle v_{out} \rangle$ since $\langle v_{l} \rangle = 0$.

Relationships $v_{out} = q_1 V_{in} \quad \langle v_{out} \rangle = D_1 V_{in}$ $i_{in} = q_1 I_{out} \quad \langle i_{in} \rangle = D_1 I_{out}$ There is no loss.

Instantaneous power: $p_{in}(t) = q_1 V_{in} I_{out}$ = $p_{out}(t)$ Average power: $< p_{out} > = < p_{in} >$ = $D_1 V_{in} I_{out}$

Relationships v_{out} is the switching matrix output. $v_{out} = q_1 V_{in} \qquad \langle v_{out} \rangle = \langle q_1 V_{in} \rangle$ $=V_{in}\langle q_1\rangle \rightarrow$ load voltage $\langle i_{in} \rangle = \langle q_1 I_{out} \rangle$ $\rightarrow V_{out} = D_1 V_{in}$ $= D_1 I_{out}$

 $\langle v_{out} \rangle = V_{out} \rightarrow load voltage$



$$V_{out} = \langle v_{out} \rangle = \langle v_{load} \rangle$$

Relationships
$$p_{in}(t) = V_{in}i_{in}(t) p_{in}(t) = p_{out}(t)$$

 $=V_{in}q_1I_{out}$

$$p_{out}(t) = v_{out} I_{out} \quad \langle p_{in} \rangle = \langle p_{out} \rangle$$
$$= q_1 V_{in} I_{out} \quad = D_1 V_{in} I_{out}$$

The RMS "output" The voltage v_{out} has an RMS value of

$$\sqrt{\frac{1}{T}\int_{0}^{T} q_{1}(t)^{2} V_{in}^{2} dt} = V_{in} \sqrt{D_{1}}$$

Is this relevant?

Notice that
$$q^2(t) = q(t)$$

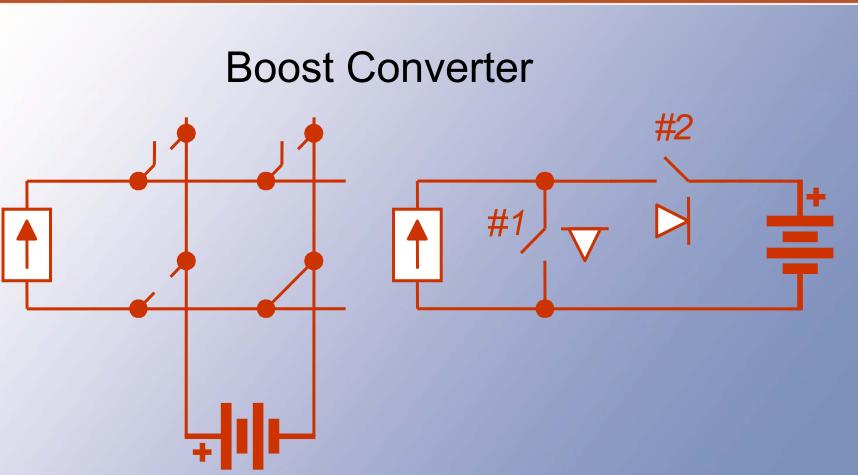
 $q_{RMS} = \sqrt{D}$

- A 24 V to 5 V converter, switching at 100 kHz. The nominal load is 25 W, and the ripple is to be less than 1% peak-to-peak.
- This could be met with a buck converter, since V_{out} < V_{in}.

- The duty ratio will need to be $V_{out}/V_{in} = (5 \text{ V})/(24 \text{ V}) = 0.208$
- The output current is (25 W)/(5 V) = 5 A.
- When switch #1 is on, the inductor sees
 24 V 5 V = 19 V.

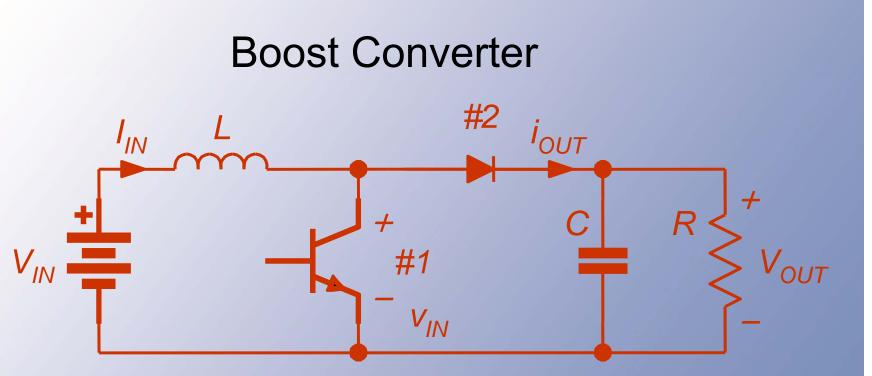
- With #1 off, the inductor sees -5V
- So, since $v_L = L di/dt$, with #1 on, 19 V = L di/dt = L $\Delta i/\Delta t$
- The time involved is 0.208 T, or 2.08 us. We want ∆i < 0.01(5 A).
- Thus (19 V)(2.08 us)/L < 0.05 A, and L > 0.792 mH

- We expect that $D_1 = 0.208$, $f_{switch} = 100 \text{ kHz}$, L = 0.8 mH, and $R = 1 \Omega$ will meet the need.
- Practice: What is the peak-to-peak ripple if L = 8 uH? → it will be 100x as big



A boost converter is a buck converter flipped horizontally.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



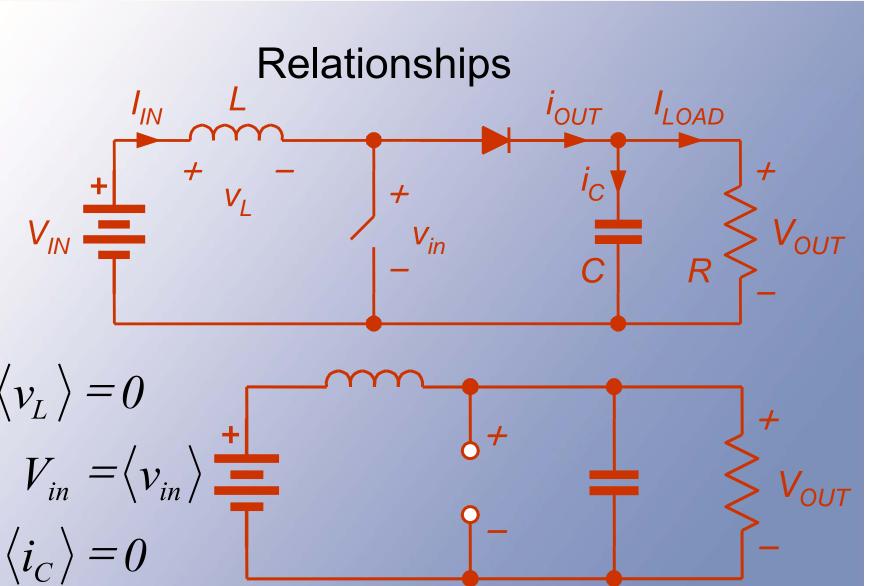
With common ground, the matrix reduces to two switches.

I_{in} is formed as a voltage in series with L.

Relationships

- The input voltage to the switch matrix is v_{in}, the voltage across the transistor.
- Since <v_L> = 0, the average transistor voltage matches V_{in}.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

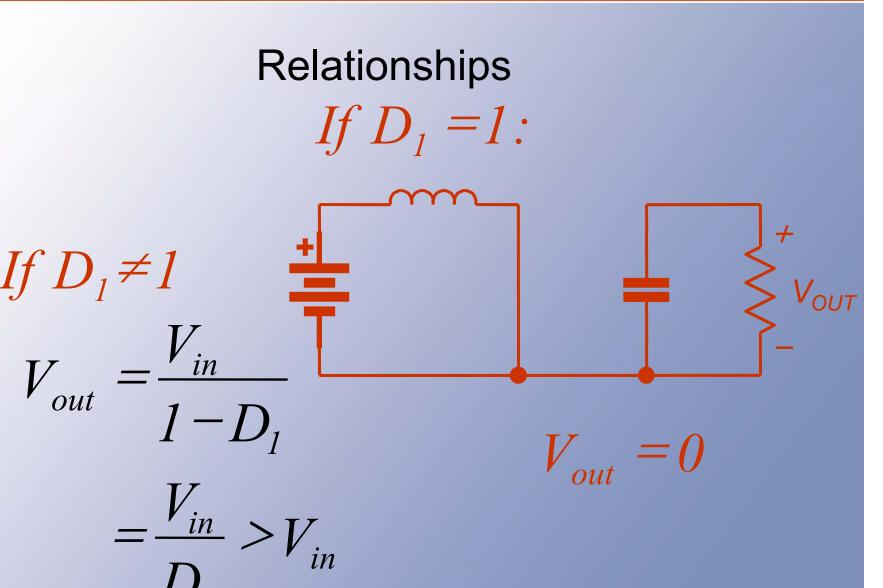


Relationships By KVL and KCL, sources require $q_1 + q_2 = 1$. • Then $v_{in} = q_2 V_{out}$ $= (1 - q_1) V_{out},$ $\mathbf{i}_{out} = \mathbf{q}_2 \mathbf{I}_{in}$ $= (1 - q_1) I_{in}$

$$V_{out} = V_{in}/(1 - D_1)$$

Relationships $i_{out} = q_2 I_{in}$ $v_{in} = (1 - q_1) V_{out} = (1 - q_1) I_{in}$ $\langle v_{in} \rangle = V_{in}$ $\langle i_{out} \rangle = I_{in} (1 - D_1)$ $=\langle (1-q_1)V_{out}\rangle$ $=I_{load}$ $V_{in} = V_{out} (1 - D_1)$ $=I_{out}$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Example

- 2 V to 5 V boost (input might be one Li-ion cell, for instance, with 2 V as its lowest value).
- Switching: 80 kHz. Load: 5 W. Input ripple: <u>+</u> 10 mA. Output ripple: <u>+</u> 1%.
- This gives a period of 12.5 us.

Boost Example

- With 2 V input and 5 V output, the load current at 5 W is 1 A, but the input current must be (5 W)/(2 V) = 2.5 A.
- With <u>+</u> 10 mA input ripple, the peak-to-peak value is 20 mA.

Boost Example

- When switch #1 is on, the inductor voltage is 2 V, and current increases.
- The duty ratios: $D_2 = V_{in}/V_{out} = 0.40$, and $D_1 = 1 - D_2 = 0.60$
- Switch #1 is on 0.60 T = 7.5 us.

Boost Example

 $v_L = L di/dt = 2 V$ with #1 on.

To get $\Delta i < 0.02 A$, we need

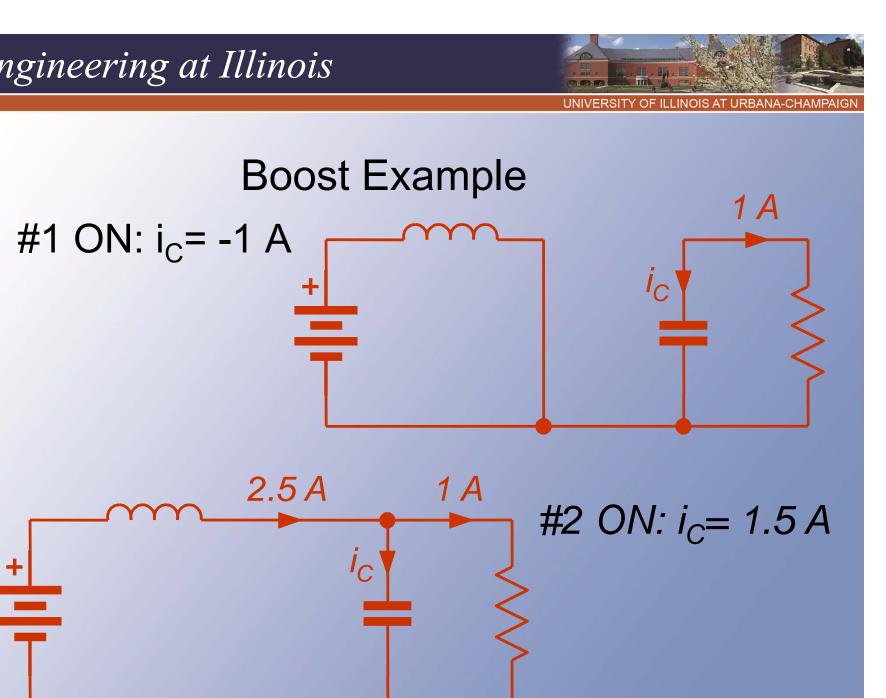
$$L > (2 V)(7.5 us)/(0.02 A)$$
, or

L > 0.75 mH.

Boost Example

- What about V_{out}?
- The capacitor current is

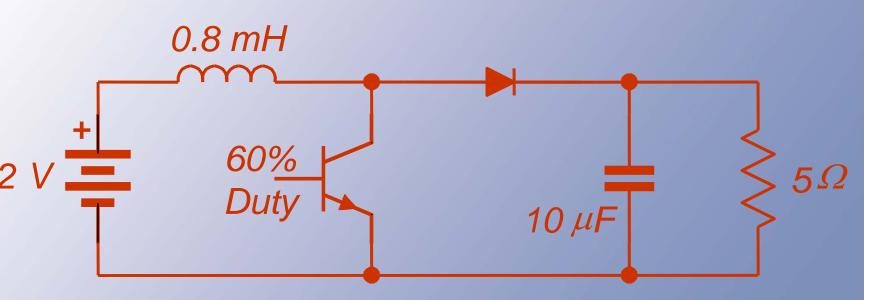
 I_{in} I_{load} = 2.5 A 1 A
 when switch #2 is on, and
 -1 A when switch #1 is on.
- We want <u>+</u> 1% of 5 V, or a peakto-peak change below 0.1 V.



Boost Example

- With switch #2 on (duty ratio was found to be 0.4, so time is 5 us), $i_C = 1.5 A$ = C dv/dt = C $\Delta v/\Delta t$.
- $(1.5 \text{ A})(5 \text{ us})/\text{C} = \Delta v < 0.1 \text{ V}.$
- This requires C > 75 uF.

Boost Example 2 to 5 V, 80 kHz boost converter:

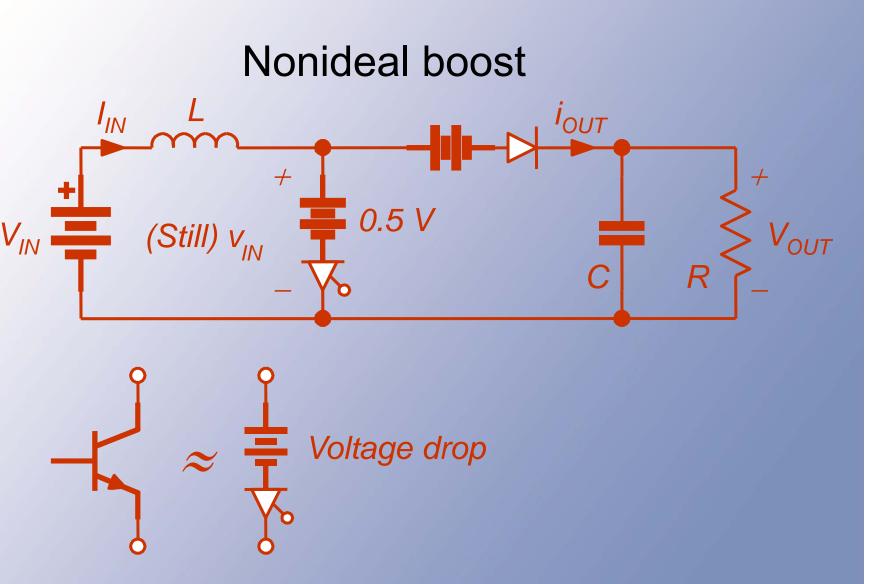


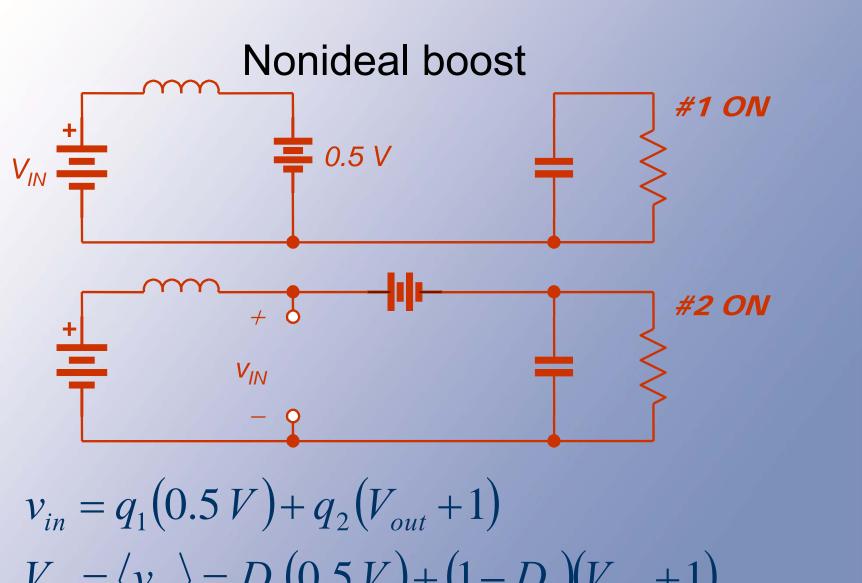
Practice: What if f_s is changed to 40 kHz? \rightarrow

Comments

- With a few practice examples, you should be able to design a common-ground buck or boost converter.
- Challenge: Think about effects of nonideal switching.
- It is not so difficult to include some basic nonideal effects, such as switching device voltage drops and resistances.
- Consider an example with switch and diode voltage drop.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN





Nonideal boost

- Switching function expressions still apply.
- Boost: $v_{in} = q_1(0.5 V) + q_2(V_{out} + 1 V)$.
- On average,

$$= V_{in}$$

= D₁(0.5V) + (1-D₁)(V_{out} + 1 V), and
 $V_{out} = (V_{in} + 0.5D_1 - 1)/(1 - D_1)$

- For current, $i_{out} = q_2 I_L$, $\langle i_{out} \rangle = D_2 I_L$.
- Since $\langle i_{out} \rangle$ is the load current I_{load} , we have $I_1 = I_{load}/D_2 = I_{load}/(1 D_1)$.

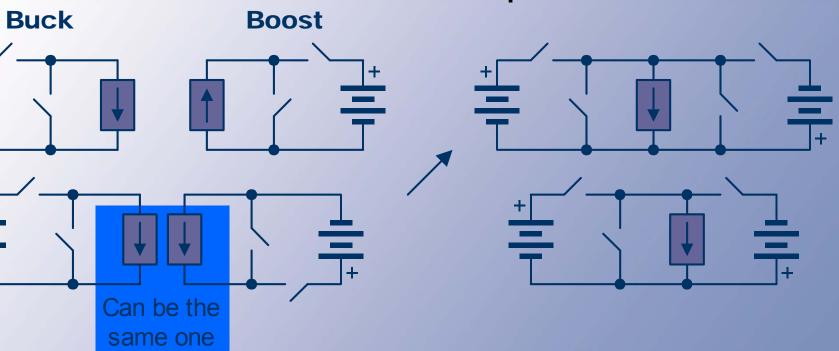
Nonideal boost

- The efficiency: $P_{in} = V_{in} I_L$, $P_{out} = V_{out} I_{load}$.
- So $P_{in} = V_{in} I_{load} / (1 D_1)$ and $P_{out} = (V_{in} + 0.5D_1 - 1)I_{load} / (1 - D_1)$
- The efficiency ratio η = (V_{in} + D₁/2 -1)/V_{in}, and η = 1 (1 D₁/2)/V_{in}.
- This is less than 100%, reflecting the losses in the switch forward drops.
- Switching functions support analysis of converters even with these extra parts.

Indirect Dc-Dc Converters

- The buck is a dc transformer with $V_{out} < V_{in}$.
- The boost gives V_{out} > V_{in}.
- How can we give full range? Use a buck as the input for a boost.
- That is, use the current source output of a buck to provide the input source for a boost.
- Remove redundant or unnecessary switches. Result is the polarity reverser: buck-boost.

Buck-Boost Development

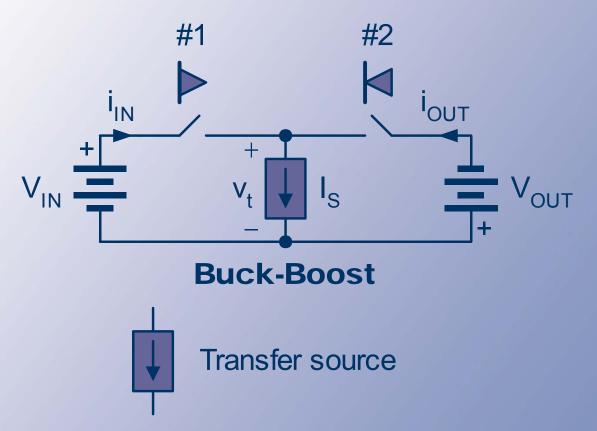


Final Simplification

- The switch across the current source is not necessary for KCL.
- Try removing it.
- The current source is a transfer source.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Buck-Boost Converter



Left switch is FCFB. Right switch is FCRB.

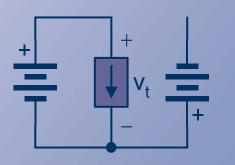
Relationships

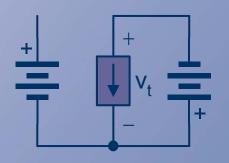
- To meet KVL and KCL, $q_1+q_2 = 1$.
- There are really two matrices now. Let us consider the transfer source, which is manipulated by both matrices.
- Transfer voltage is subject to control.
- Transfer voltage $v_t = q_1 V_{in} q_2 V_{out}$.
- Transfer source power is $v_t I_s = q_1 V_{in} I_s q_2 V_{out} I_s$.
- We want the average power in the transfer source to be zero -- no loss.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Relationships

- KVL + KCL:
- $q_1 + q_2 = 1$
- $v_t = q_1 V_{in} q_2 V_{out}$
- $v_t I_s = q_1 V_{in} I_s q_2 V_{out} I_s$
- $\langle v_t \rangle = D_1 V_{in} D_2 V_{out}$
- $\langle v_t I_s \rangle = I_s \langle v_t \rangle = I_s (D_1 V_{in} D_2 V_{out})$



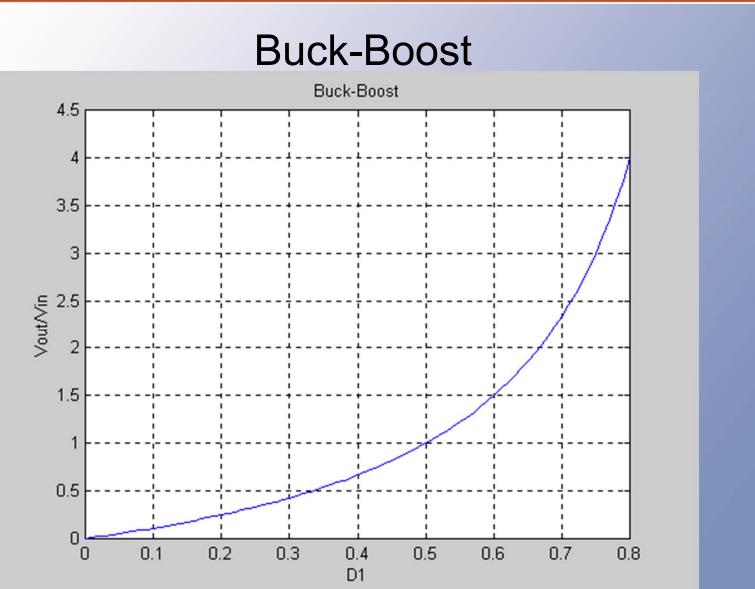


<v_tl_s> must be zero, not to have losses in the transfer source.

Relationships

- This can be done if $D_1V_{in} = D_2V_{out}$.
- Since $D_1 + D_2 = 1$, we have $D_1V_{in} = (1 D_1)V_{out}$.
- This becomes $V_{out} = D_1 V_{in} / (1 D_1)$.
- The polarity reversal comes from the cascade process.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Relationships

- The buck-boost allows outputs both higher and lower than the input, but a polarity shift is present.
- The transfer source can be an inductor alone to avoid loss.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Relationships

Consumes no average power. Maintains fixed I.

Can be approximated by an inductor.

This will be our transfer current source.

What About Currents?

- The input current: $i_{in} = q_1 I_s$,
- The output current: $i_{out} = q_2 I_s$,
- Average input: $I_{in} = D_1 I_s$,
- Average output: $I_{out} = D_2 I_s$.
- We do not really know I_s. Add the above:
- $I_{in} + I_{out} = (D_1 + D_2)I_s = I_s.$

Currents and Stresses

- The transfer source sees a current equal to the sum of input and output average currents.
- Each switch must carry $\rm I_{s},$ and each must block $\rm V_{in}$ + $\rm V_{out}.$
- All device ratings are higher than either the input or output needs.