Power Electronics
 Day 4 - Equivalent Sources, "Power Filtering" Analysis, Dc Conversion

P. T. Krein

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign
(C) 2011 Philip T. Krein.

Equivalent Sources

When a switch matrix operates to satisfy KVL and KCL, many of the waveforms become well defined.

Example: Matrix 2×2 ac voltage to dc current converter. The output must be

$$
+\mathrm{v}_{\mathrm{in}},-\mathrm{v}_{\mathrm{in}}, \text { or zero. }
$$

Engineering at Illinois

Equivalent Sources

Equivalent Sources

- If switch action is specified, the output waveform becomes fully determined.
- We can treat the waveform as an ideal source (with an unusual shape).

Sample Cases

- Full-wave rectifier (Fig. 2.33)
- Phase-delayed rectifier (Fig. 2.17)
- Inverter into an ac current source (Fig. 3.5)
- $60 \mathrm{~Hz} 3 \phi$ to $60 \mathrm{~Hz} 1 \phi$ conversion
- Fig. 2.19, 60 Hz to 180 Hz

Engineering at Illinois

Sample Cases

Sample Cases

Equivalent Sources

Any of those waveforms can be a source.

Engineering at Illinois

Equivalent Sources

- Equivalent sources can be a powerful tool:
- Many converters act like an equivalent source in a linear circuit
- We can represent a source as a combination of Fourier components

Equivalent Sources

- With a source in a linear circuit, analysis, filter design, etc. can proceed along familiar lines.
- This is a common way to design interfaces for rectifiers and inverters.

Equivalent Sources

Example:

Ignore capacitor for a moment:

We know $\mathrm{V}_{\text {OUt }}$

Equivalent Sources

We can represent the periodic waveform with a Fourier series.

Equivalent Sources

Linear circuit

i is the sum of the contributions from each of the sources. We can break up the circuit.

Engineering at Illinois

Equivalent Sources

Engineering at Illinois

Equivalent Sources

DC term:

Equivalent Sources

AC terms, based on phasor analysis.

$$
\begin{aligned}
& \tilde{I}_{1}=\frac{V_{1}}{R+j w_{1} L} \\
& \text { Want low ripple } \\
& \rightarrow \text { e.g., want }\left|\tilde{I}_{1}\right| \text { low }
\end{aligned}
$$

Usually, Fourier terms decrease in amplitude as $1 / n$. The fundamental is the largest.

Engineering at Illinois

DAY 4 START Power Filtering

- Filters (or interfaces) for converters have needs distinct from those in signal applications.
- Filters must be lossless, and impedances of sources and loads are unknown.

Power Filtering

- Two common methods of analysis
-Equivalent sources
- "Ideal action" assumption

Engineering at Illinois

Filter Examples

$$
v_{\text {OUT }}=V_{\text {in }} s q(t)
$$

$$
\begin{aligned}
\mathrm{f} & =100 \mathrm{HZ} \\
\mathrm{sq}(\mathrm{t}) & =\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi}{2}\right)}{n} \cos (n \omega t)
\end{aligned}
$$

Engineering at Illinois

Filter Examples

$$
\mathrm{v}_{\mathrm{out}}(\mathrm{t})=\frac{4 \mathrm{~V}_{\text {in }}}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi}{2}\right)}{n} \cos (n \omega t)
$$

$$
\omega=2 \pi 100 \mathrm{rad} / \mathrm{s}
$$

Fundamental
$3^{\text {rd }}$ term

Filter Examples

Look at examples based on the equivalent source method (such as Example 3.6.1).

Ideal Action Assumption

- In a power converter, we know what a filter is trying to achieve.
- Examples: low-ripple dc, ideal ac sine wave, etc.
- In general: give a large wanted component and small unwanted components.

Ideal Action Assumption

- If the filter is well-designed, it ought to work.
- If it works, we know its output.
- Now, use the "known" output with the known input to compute values.

Filter Examples

Substitute

Engineering at Illinois

Filter Examples

Engineering at Illinois

Filter Examples

Choose L to make $\left|\widetilde{I}_{l}\right|<$ Limit. Too much work!

Filter Examples

If L is large and the circuit works, the inductor current is almost constant and so is the voltage across the load resistor.
This voltage can be represented by a constant voltage source.

Switch on: $V_{L}=5 \mathrm{~V}$
Switch off: $V_{L}=-5 \mathrm{~V}$

Engineering at Illinois

Filter Examples

$$
\left.\begin{array}{rl}
\text { If } V_{L}=5 \mathrm{~V} & =L d i / d t \\
\frac{5 \mathrm{~V}}{\mathrm{~L}} & =d i / d t \\
& =\frac{\Delta i}{\Delta t}
\end{array}\right\} \begin{aligned}
\text { If } V_{L}=\frac{-5 \mathrm{~V}}{} & =L d i / d t \\
\frac{-5 \mathrm{~V}}{L} & =d i / d t \\
& =\frac{-\Delta i}{\Delta t}
\end{aligned}
$$

Filter Examples
$\frac{5 V}{L}=\frac{\Delta i}{\Delta t}$
$=\frac{\Delta i}{50 \mu s} \quad$ Choose L to make $\quad \Delta i=0.005 A$

$$
\Delta i=\frac{5 V}{L} \times 50 \mu s
$$

Filter Examples

$$
\begin{gathered}
0.005 \mathrm{~A}=\frac{5 \mathrm{~V}}{L} \times 50 \times 10^{-6} \\
L=\frac{250 \times 10^{-6}}{5 \times 10^{-3}} \\
L=0.005 \mathrm{H} \\
L \geq 5 \mathrm{mH} \text { makes } \Delta i \leq 0.005 \mathrm{~A}
\end{gathered}
$$

Results and Comments

- Since we know the objective of our filters, it is reasonable to design them based on the assumption that the objective is met!
- This simple expedient is a very effective simplifying step.

Results and Comments

- The ideal action assumption works better than one might expect.
- We will analyze this as we build up converter designs.

Summary So Far

- We can analyze the quality of a converter output.
- Equivalent sources give us a way to deal with the interface problem.
- The ideal action assumption helps considerably with design.

Filter Example

- Consider a converter, shown, with switch \#1 duty ratio at 3/4.

Filter Example

- Let the switching frequency be 200 kHz , $\mathrm{L}=1 \mathrm{mH}, \mathrm{C}=10 \mu \mathrm{~F}, \mathrm{R}=10 \Omega, \mathrm{~V}_{\text {in }}=5 \mathrm{~V}$.
- By KVL and KCL, the switches need to alternate.
- We can determine the device types.

ngineering at Illinois

Filter Example

ngineering at Illinois

Filter Example

ngineering at Illinois

ngineering at Illinois

Energy Balance

- With switch \#1 on, the input energy to the inductor is $\left(\mathrm{V}_{\text {in }}\right)\left(\mathrm{i}_{\mathrm{L}}\right)(3 \mathrm{~T} / 4)$. With switch \#2 on, the input is $\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}\right)\left(\mathrm{i}_{\mathrm{L}}\right)(\mathrm{T} / 4)$.
- The total must be zero. This requires

$$
\mathrm{V}_{\text {out }}=4 \mathrm{~V}_{\text {in }}=20 \mathrm{~V} .
$$

Load Current

- The load current is 2 A , and the load power is 40 W .
- The average input current must be $(40 \mathrm{~W}) /(5 \mathrm{~V})=8 \mathrm{~A}$. This is i_{L}.

Current Ripple

- If the inductor and capacitor are large (we will check this), then i_{L} and $V_{\text {out }}$ are nearly constant.
- The inductor sees 5 V when $\# 1$ is on, so its current increases for 3.75 us.

ngineering at Illinois

Current Ripple

- The inductor sees $5 \mathrm{~V}-20 \mathrm{~V}=-15 \mathrm{~V}$ when switch \#1 is off, and the current falls for 1.25 us.
- During the rise, $\mathrm{v}_{\mathrm{L}}=5 \mathrm{~V}=\mathrm{L}$ di/dt, but the rise is linear over 3.75 us, so $(5 \mathrm{~V}) / \mathrm{L}=\Delta \mathrm{i} / \Delta \mathrm{t}, \Delta \mathrm{t}=3.75$ us.

Current ripple

With a 1 mH inductor, this means
$\Delta \mathrm{i}=(5 \mathrm{~V})(3.75 \mathrm{us}) /(1 \mathrm{mH})$,
$\Delta \mathrm{i}=0.0188 \mathrm{~A}$.
This is less than 0.25% of i_{L}.
Check the current fall. Does it match? Why?

Current ripple

Voltage Ripple

- We can do the same thing to find ripple on the output capacitor.
- The capacitor current is known: With switch \#2 off, the resistor draws out 2 A . With switch \#2 on, the current is $8 \mathrm{~A}-2 \mathrm{~A}=6 \mathrm{~A}$.

Voltage Ripple

- i_{C} is fully determined.
- \#2 off: $\mathrm{i}_{\mathrm{C}}=-2 \mathrm{~A} \mathrm{v}_{\mathrm{C}}$ decreases
- \#2 on : $\mathrm{i}_{\mathrm{C}}=\mathrm{i}_{\mathrm{L}}-2=8-2=6 \mathrm{~A} \mathrm{~V}_{\mathrm{C}}$ increases

Voltage Ripple

- Thus $\mathrm{i}_{\mathrm{C}}=6 \mathrm{~A}$ for 1.25 us, and -2A for 3.75 us.
- Since $\mathrm{i}_{\mathrm{C}}=\mathrm{C} \mathrm{dv} / \mathrm{dt}$ gives linear voltage ramps, the voltage rises when $\mathrm{i}_{\mathrm{C}}=6 \mathrm{~A}$: $(6 \mathrm{~A}) / \mathrm{C}=\Delta \mathrm{v} / \Delta \mathrm{t}$.
- The time involved is 1.25 us.

Voltage Ripple

- $(6 \mathrm{~A})(1.25 u s) /(10 u F)=\Delta v=0.75 \mathrm{~V}$.
- This is 3.75% of the 20 V dc level.
- Not perfect, but still very nearly constant.
- Thus with switching frequency of 200 $\mathrm{kHz}, \mathrm{L}=1 \mathrm{mH}, \mathrm{C}=10 \mu \mathrm{~F}, \mathrm{R}=10 \Omega, \mathrm{~V}_{\text {in }}$ $=5 \mathrm{~V}$, we get 20 V out and 3.75% peak-to-peak output ripple.

Power Factor

- A conventional measure in utility systems is power factor -- the fraction of energy flow that does useful work.
- Recall that cross-frequency terms do not contribute <P>.
- But, the cross terms do require current and voltage.
- The extra current means extra $I^{2} R$ loss, and should be avoided is possible.

Power Factor

Capture fraction of energy flow that performs useful work.

Power Factor

- Power factor is defined by

$$
p f=\frac{\langle P\rangle}{V_{R M S} I_{R M S}} \leq 1
$$

- Ideally, this is 1 . When harmonics or phase shifts are present, it is less than 1.
- pf can be less than 1 even in a linear circuit, but it is never greater than 1.

Power Factor Example

$$
\langle D=0 \rightarrow 0 \rightarrow=0
$$

Two contributions to the pf : "Distortion power" and "Displacement power." The "displacement factor:"

$$
d f=\frac{\langle P\rangle}{V_{R M S_{1}} I_{R M S 1}}=\cos \left(\theta_{1}\right)
$$

Power Factor Issues

- pf is often divided into a phase effect at the wanted frequency (displacement power, with a displacement factor), and a distortion effect at unwanted frequencies.
- pf < 1 causes extra loss, and limits flow capabilities.

ngineering at Illinois

Power Factor Issues

Why do we want pf = 1 ?

1) Minimizes system loss. Maximizes "device utilization."
2) Gives more available power.

$$
\begin{array}{llr}
120 \mathrm{~V}, & & 12 \mathrm{~A} \\
\mathrm{pf}=1 & \rightarrow & 1440 \mathrm{~W} \\
\mathrm{pf}=0.5 & \rightarrow & 720 \mathrm{~W}
\end{array}
$$

3) Examples

Rectifiers can have pf $\sim \underline{0.3}$

Dc-Dc Converters

- We would like to have a dc transformer -- a device with $P_{\text {in }}=P_{\text {out }}$ and $V_{\text {out }} / V_{\text {in }}=a$.
- Magnetic transformers cannot handle dc, but the dc transformer is still a valid concept.
- Our objective in dc-dc converter design is to approach a dc transformer as best we can.

ngineering at Illinois

Dc Transformers

- We would like to have a box like this, for DC.

$$
\begin{aligned}
& P_{\text {in }}=V_{\text {in }} I_{\text {in }}=P_{\text {out }}=V_{\text {out }} I_{\text {out }} \\
& \frac{V_{\text {out }}}{V_{\text {in }}}=a \quad \frac{I_{\text {in }}}{I_{\text {out }}}=a
\end{aligned}
$$

Dividers?

- We might try a voltage divider.
- Two problems:
- No regulation
- Losses within the "converter"

ngineering at Illinois

Dividers?

$$
\eta=\frac{P_{o u t}}{P_{\text {in }}}
$$

$V_{\text {OUT }}$
No load: $V_{\text {out }}=\frac{R_{I}}{R_{I}+R_{2}} V_{\text {in }}$

If $P_{\text {out }}=0$, then $\eta=0$

ngineering at Illinois

Dividers?

Dividers?

- The load regulation problem can be addressed through excess loading:
- Make the divider input draw so much power that the load power causes no change.

Divider Efficiency

- Instead, if somehow all output power is delivered to the load (best possible case), the efficiency is $\mathrm{V}_{\text {out }} I V_{\text {in }}$.
- This occurs only at a single load value, if designed in advance. The design has no load regulation.
- Reality is always worse.

Dividers -- Conclusion

- Voltage dividers are useful for sensing applications when the load power is intended to be zero.
- A voltage divider is not useful for dc-dc conversion.
- It is not a power electronic circuit, since the efficiency cannot be 100%.

ngineering at Illinois

Sensing application

1A Can keep load change small, if η is low

ngineering at Illinois

Sensing application

$$
\begin{aligned}
P_{\text {in }} & =V_{\text {in }} I_{\text {in }} \\
P_{\text {out }} & =V_{\text {out }} I_{\text {out }} \\
I_{\text {in }} & =I_{\text {out }} \\
\frac{P_{\text {out }}}{P} & =\frac{V_{\text {out }} I_{\text {in }}}{V_{\text {in }} I_{\text {out }}} \\
& =\frac{V_{\text {out }}}{V_{\text {in }}} \\
n & =5 / 12
\end{aligned}
$$

Dc Regulators

- Since a divider has no regulation, it motivates new types of circuits.
- In these types of "converters," the output is independent (within limits) of the input and of the load.
- They perform a regulation function rather than energy conversion.
- We call them "dc regulators."

Amplifiers

- It is also possible to use amplifier methods for dc-dc conversion.
- These are common, because they have excellent regulation properties.
- In general, efficiency is poor.

ngineering at Illinois

Shunt Regulator

Voltage divider, 12 V to $5 \mathrm{~V}, 1 \mathrm{~W}$.

- With exact values, best efficiency is $5 / 12$.
- To provide regulation, the divider current path must carry much more than the load current.
- Problems: line regulation, load regulation, loss even if $\mathrm{P}_{\text {out }}=0$, low η.
Shunt regulator.
- Zener diode in place of low-side resistor.
- Requires $\mathrm{I}_{\mathrm{z}}>0$.
- For 12 V to $5 \mathrm{~V}, 1 \mathrm{~W}, \mathrm{R}_{1}<35 \Omega$.
- Solves the line and load regulation challenges, but not the others.

ngineering at Illinois

Example

12 V to 5 V regulation at up to 0.2 A .
At 0.2 A load, the input current must be at least 0.2 A to ensure $\mathrm{I}_{\mathrm{z}}>0$.
This current flows through a drop of 7 V , so $\mathrm{R}_{\mathrm{s}}<35 \Omega$.
Try it . . .

Example

- Test a load of 0.1 A . The input current, if the regulator works, is
$(12 \mathrm{~V}-5 \mathrm{~V}) /(35 \Omega)=0.2 \mathrm{~A}$. The load current is 0.1 A , so the zener current must be 0.1 A .
- This is wasteful, but it works.
- Useful for generating low-power reference voltages.

$$
\begin{aligned}
& \quad \text { Example } \\
& \mathrm{P}_{\text {out }}=(0.1 \mathrm{~A})(5 \mathrm{~V}) \\
&=0.5 \mathrm{~W} \\
& \mathrm{P}_{\text {IN }}=(12 \mathrm{~V})(0.2 \mathrm{~A}) \\
&=2.4 \mathrm{~W} \\
& \eta=\frac{P_{\text {out }}}{P_{\text {in }}} \\
&=20.8 \%
\end{aligned}
$$

Series Regulator

- Instead find a series device that can provide an output that is approximately independent of the input.
- A bipolar transistor can do the job - in its linear operating region.
- With proper bias, the output depends on the base voltage.
- Not a switching method.

ngineering at Illinois

Series Pass Arrangement

The emitter voltage follows the (low-power) base voltage.

ngineering at Illinois

Series Pass Arrangement

 Suppose a 6 V output is needed. precise potential om shunt egulator)
(6.7 V)

ngineering at Illinois

Here, a shunt regulator provides the reference voltage for a series reaulator.

ngineering at Illinois

Series Pass Arrangement

- In the bipolar case, if there is high gain, the base current is very low.
- The emitter voltage will be roughly 0.7 V below the base voltage.
- This works provided the collector input is high enough.

ngineering at Illinois

Series Pass Arrangement
$I_{I N}=I_{C}$
If I_{B} is small (high gain), then

$$
\begin{aligned}
I_{\text {OUT }} & =I_{E} & & I_{C}=I_{E} \\
& =I_{B}+I_{C} & & I_{I N}=I_{\text {OUT }} .
\end{aligned}
$$

$$
\eta=\frac{P_{o u t}}{P_{i n}}=\frac{V_{o u t} I_{o u t}}{V_{i n} I_{i n}}=\frac{V_{o u t}}{V_{i n}}
$$

ngineering at Illinois

Series Pass Comments

- Common for local dc power, e.g., 12 V in, 5 V out, but extremely inefficient unless voltages are nearly the same.
- Notice that $\mathrm{I}_{\text {in }} \approx \mathrm{I}_{\text {out }}$.
- Best-case efficiency is $\mathrm{V}_{\text {out }} \mathrm{V}_{\text {in }}$ since current is conserved.
- Requires $\mathrm{V}_{\text {in }}>\mathrm{V}_{\text {out }}+\sim 2 \mathrm{~V}$

ngineering at Illinois

More Comments

Although this is common, it is only acceptable when voltages are close. Useful example: 14 V to 12 V regulator for automotive application. Efficiency could be 86%.
Poor example: 48 V to 5 V regulator for telephone application. Efficiency is only 10\%.

Key Advantage

- $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {control }}-\mathrm{V}_{\text {be }}$--- entirely independent of input, load, etc.
- This is a "linear regulator," since $\mathrm{V}_{\text {out }}$ is a linear function of a control potential.

Parting Comments

Series linear regulators make good filters -- if we can keep the input and output close together.
Shunt regulators provide fine fixed reference voltages but are not so useful for power.

Now, Switching

- The circuits so far cannot provide 100% efficiency. We need switching.
- Two possibilities of general dc-dc conversion:
-2×2 matrix, voltage in, current out
-2×2 matrix, current in, voltage out.
- These are the direct dc-dc converters.

ngineering at Illinois

Direct DC-DC Converters

ngineering at Illinois

Direct DC-DC Converters Two direct converters for DC-DC:

ngineering at Illinois

Voltage to Current

ngineering at Illinois

Switch Relations

- Output is $+\mathrm{V}_{\text {in }}$ if 1,1 and 2,2 are on together, etc.
- A switching function representation is $v_{\text {out }}(t)=q_{11} q_{22} V_{\text {in }}-q_{12} q_{21} V_{\text {in }}$
- But KVL, KCL require $q_{11}+q_{21}=1$, $q_{12}+q_{22}=1$.

ngineering at Illinois

Switch Relations

 In switching function form:$$
v_{\text {out }}(t)=q_{11} q_{22} V_{\text {in }}-q_{21} q_{12} V_{\text {in }}
$$

$$
i_{\text {in }}(t)=q_{11} q_{22} I_{\text {out }}-q_{21} q_{12} I_{\text {out }}
$$

$K V L+K C L: \quad q_{11}+q_{21}=1$

$$
q_{12}+q_{22}=1
$$

$$
v_{\text {out }}(t)=q_{11} q_{23} V_{\text {in }}-\left(1-q_{11}\right)\left(1-q_{23}\right) V_{\text {in }}
$$

ngineering at Illinois

Switch Relations

$$
v_{\text {out }}(t)=\left(q_{11}+q_{22}-1\right) V_{\text {in }}
$$

In this dc application, we are interested in $<v_{\text {out }}(t)>$. The switching function averages are the duty ratios, and

$$
\left\langle v_{\text {out }}(t)\right\rangle=\left(D_{11}+D_{22}-1\right) V_{\text {in }}
$$

We can choose duty ratios D_{11} and D_{22} to provide a desired $<v_{\text {OUT }}>$.

ngineering at Illinois

Switch Relations

$$
\begin{aligned}
& 0 \leq D_{\text {ii }} \leq 1 \Rightarrow 0 \leq D_{\text {II }}+D_{22} \leq 2 \\
& \Rightarrow-V_{\text {in }} \leq\left\langle v_{\text {out }}\right\rangle \leq V_{\text {in }} \Rightarrow\left|\left\langle v_{\text {out }}\right\rangle\right| \leq V_{\text {in }}
\end{aligned}
$$

"Buck Converter" or

 "Step-Down Converter"$$
\left\langle i_{\text {in }}\right\rangle=\left(D_{11}+D_{22}-1\right) I_{\text {out }}
$$

ngineering at Illinois

Outnuit curront ic +1 $\cap \cap r-1$

ngineering at Illinois

Switch Relations

$$
\begin{aligned}
& \left\langle i_{\text {out }}\right\rangle=\left(D_{11}+D_{22}-1\right) I_{\text {in }} \\
& \left\langle v_{\text {in }}\right\rangle=\left(D_{11}+D_{22}-1\right) V_{\text {out }}
\end{aligned}
$$

$$
V_{\text {out }}=\frac{\left\langle v_{\text {in }}\right\rangle}{\left(D_{11}+D_{22}-1\right)}
$$

$$
0 \leq D_{i i} \leq 1 \Rightarrow 0 \leq D_{11}+D_{22} \leq 2
$$

$$
\Rightarrow\left|\left\langle v_{\text {out }}\right\rangle\right| \geq V_{\text {in }} \quad \text { Boost Converter }
$$

Summary

- The dc transformer is an important practical function.
- Non-switching methods, such as voltage dividers and dc regulators, are not really suitable for power conversion.
- We considered two switching circuits that accomplish buck and boost dc-dc conversion functions - types of dc transformers.

Simplifications

- In many applications, it is desirable to share a common input-output node (ground reference).
- This requires one switch always on and one always off.

ngineering at Illinois

Common-Ground Dc-Dc

Example: 2×2 switch matrix, with common input-output ground

ngineering at Illinois

Common-Ground Dc-Dc

ngineering at Illinois

Common-Ground Dc-Dc

With two switches left, label them \#1 and \#2.

One becomes

and one
This can be checked by testing current (on) polarity and voltage (off) polarity.

ngineering at Illinois

Switching Functions

With ideal, or near-ideal, current and voltage sources, KVL and KCL require $\mathrm{q}_{1}+\mathrm{q}_{2}=1$.
The buck converter:

ngineering at Illinois

Buck Converter

- The voltage $\mathrm{v}_{\text {out }}$ is the "switch matrix output."
- The load voltage is $\left\langle v_{0}\right\rangle$ since $\left\langle v_{l}\right\rangle=0$.

ngineering at Illinois

$$
\begin{gathered}
\text { Relationships } \\
v_{\text {out }}=q_{1} V_{\text {in }}<v_{\text {out }}>=D_{1} V_{\text {in }} \\
i_{\text {in }}=q_{1} l_{\text {out }}<i_{\text {in }}>=D_{1} l_{\text {out }} \\
\text { There is no loss. }
\end{gathered}
$$

Instantaneous power: $p_{\text {in }}(t)=q_{1} V_{\text {in }} I_{\text {out }}$

$$
=p_{\text {out }}(t)
$$

Average power: $\left\langle p_{\text {out }}>=<p_{\text {in }}\right\rangle$

$$
=D_{1} V_{\text {in }} I_{\text {out }}
$$

ngineering at Illinois

Relationships

$v_{\text {out }}$ is the switching matrix output.

$$
v_{\text {out }}=q_{1} V_{\text {in }} \quad\left\langle v_{\text {out }}\right\rangle=\left\langle q_{1} V_{\text {in }}\right\rangle
$$

load voltage

$$
=V_{i n}\left\langle q_{1}\right\rangle \rightarrow
$$

$\rightarrow V_{\text {out }}=D_{l} V_{\text {in }} \quad\left\langle i_{\text {in }}\right\rangle=\left\langle q_{1} I_{\text {out }}\right\rangle$
$=D_{I} I_{\text {out }}$
$\left\langle v_{\text {out }}\right\rangle=V_{\text {out }} \rightarrow$ load voltage

ngineering at Illinois

Relationships

$$
\begin{aligned}
V_{\text {out }}=\left\langle v_{\text {out }}\right\rangle & =\left\langle v_{\text {load }}\right\rangle \\
& \approx \text { constant }
\end{aligned}
$$

ngineering at Illinois

$$
\begin{aligned}
p_{\text {in }}(t) & =V_{\text {in }} i_{\text {in }}(t)^{\text {Relationships }} p_{\text {in }}(t)=p_{\text {out }}(t) \\
& =V_{\text {in }} q_{1} I_{\text {out }}
\end{aligned}
$$

$$
p_{\text {out }}(t)=v_{\text {out }} I_{\text {out }} \quad\left\langle p_{\text {in }}\right\rangle=\left\langle p_{\text {out }}\right\rangle
$$

$$
=q_{1} V_{\text {in }} I_{o u t}
$$

$$
=D_{I} V_{\text {in }} I_{\text {out }}
$$

ngineering at Illinois

The RMS "output"

The voltage $\mathrm{v}_{\text {out }}$ has an RMS value of

$$
\sqrt{\frac{1}{T} \int_{0}^{T} q_{1}(t)^{2} V_{i n}^{2} d t}=V_{i n} \sqrt{D_{1}}
$$

Is this relevant?

Notice that $q^{2}(t)=q(t)$

$$
q_{R M S}=\sqrt{D}
$$

ngineering at Illinois

A Design

A 24 V to 5 V converter, switching at 100 kHz . The nominal load is 25 W , and the ripple is to be less than 1% peak-to-peak.
This could be met with a buck converter, since $\mathrm{V}_{\text {out }}<\mathrm{V}_{\text {in }}$.

ngineering at Illinois

A Design

- The duty ratio will need to be $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=(5 \mathrm{~V}) /(24 \mathrm{~V})=0.208$
- The output current is $(25 \mathrm{~W}) /(5 \mathrm{~V})=5 \mathrm{~A}$.
- When switch \#1 is on, the inductor sees
$24 \mathrm{~V}-5 \mathrm{~V}=19 \mathrm{~V}$.

ngineering at Illinois

A Design

- With \#1 off, the inductor sees -5 V
- So, since $\mathrm{v}_{\mathrm{L}}=\mathrm{L}$ di/dt, with \#1 on,

$$
\begin{aligned}
19 \mathrm{~V} & =\mathrm{L} \mathrm{di} / \mathrm{dt} \\
& =\mathrm{L} \Delta \mathrm{i} / \Delta \mathrm{t}
\end{aligned}
$$

- The time involved is 0.208 T , or 2.08 us. We want $\Delta \mathrm{i}<0.01(5 \mathrm{~A})$.
Thus (19 V)(2.08 us)/L < 0.05 A, and $\mathrm{L}>0.792 \mathrm{mH}$

ngineering at Illinois

A Design

- We expect that $D_{1}=0.208$, $\mathrm{f}_{\text {switch }}=100 \mathrm{kHz}, \mathrm{L}=0.8 \mathrm{mH}$, and $R=1 \Omega$ will meet the need.
- Practice: What is the peak-to-peak ripple if $\mathrm{L}=8 \mathrm{uH}$? \rightarrow it will be 100 x as big

ngineering at Illinois

Boost Converter

A boost converter is a buck converter flipoed horizontallv.

ngineering at Illinois

Boost Converter

With common ground, the matrix reduces to two switches.
$\mathrm{I}_{\text {in }}$ is formed as a voltage in series with L .

Relationships

- The input voltage to the switch matrix is $v_{\text {in }}$, the voltage across the transistor.
- Since $<v_{L}>=0$, the average transistor voltage matches $\mathrm{V}_{\text {in }}$.

ngineering at Illinois

Relationships

$\left\langle v_{L}\right\rangle=0$

ngineering at Illinois

Relationships

- By KVL and KCL, sources require $q_{1}+q_{2}=1$.
- Then $v_{\text {in }}=q_{2} V_{\text {out }}$

$$
\begin{aligned}
& =\left(1-q_{1}\right) V_{\text {out }} \\
\mathrm{i}_{\text {out }} & =\mathrm{q}_{2} \mathrm{l}_{\text {in }} \\
& =\left(1-\mathrm{q}_{1}\right) \mathrm{l}_{\text {in }} .
\end{aligned}
$$

- The averages require $\left\langle\mathrm{V}_{\text {in }}\right\rangle=\mathrm{V}_{\text {in }}$, and

$$
V_{\text {out }}=V_{\text {in }} /\left(1-D_{1}\right)
$$

ngineering at Illinois

Relationships

$$
i_{\text {out }}=q_{2} I_{\text {in }}
$$

$$
v_{i n}=\left(1-q_{1}\right) V_{o u t}
$$

$$
=\left(1-q_{1}\right) I_{i n}
$$

$$
\left.v_{\text {in }}\right\rangle=V_{\text {in }} \quad\left\langle i_{\text {out }}\right\rangle=I_{\text {in }}\left(1-D_{1}\right)
$$

$$
=\left\langle\left(1-q_{1}\right) V_{\text {out }}\right\rangle \quad=I_{\text {load }}
$$

$$
V_{\text {in }}=V_{\text {out }}\left(1-D_{l}\right) \quad=I_{\text {out }}
$$

ngineering at Illinois

Relationships

$$
\text { If } D_{1}=1:
$$

$$
\text { If } D_{1} \neq 1
$$

$$
\begin{aligned}
V_{\text {out }} & =\frac{V_{\text {in }}}{1-D_{l}} \\
& =\frac{V_{\text {in }}}{n}>V_{\text {in }}
\end{aligned}
$$

ngineering at Illinois

Example

2 V to 5 V boost (input might be one Li-ion cell, for instance, with 2 V as its lowest value).
Switching: 80 kHz . Load: 5 W . Input ripple: $\pm 10 \mathrm{~mA}$. Output ripple: $\pm 1 \%$. This gives a period of 12.5 us.

Boost Example

With 2 V input and 5 V output, the load current at 5 W is 1 A , but the input current must be $(5 \mathrm{~W}) /(2 \mathrm{~V})=2.5 \mathrm{~A}$. With $\pm 10 \mathrm{~mA}$ input ripple, the peak-to-peak value is 20 mA .

ngineering at Illinois

Boost Example

- When switch \#1 is on, the inductor voltage is 2 V , and current increases.
- The duty ratios: $\mathrm{D}_{2}=\mathrm{V}_{\text {in }} / \mathrm{V}_{\text {out }}=0.40$, and $D_{1}=1-D_{2}=0.60$
- Switch \#1 is on $0.60 \mathrm{~T}=7.5$ us.

ngineering at Illinois

Boost Example

$\mathrm{v}_{\mathrm{L}}=\mathrm{L}$ di/dt $=2 \mathrm{~V}$ with $\# 1$ on.
Thus $(2 \mathrm{~V}) / \mathrm{L}=\Delta \mathrm{i} / \Delta \mathrm{t}$,

$$
\Delta t=7.5 \text { us. }
$$

To get $\Delta \mathrm{i}<0.02 \mathrm{~A}$, we need
L > (2 V)(7.5 us)/(0.02 A), or
$\mathrm{L}>0.75 \mathrm{mH}$.

Boost Example

- What about $\mathrm{V}_{\text {out }}$?
- The capacitor current is
$I_{\text {in }}-I_{\text {load }}=2.5 \mathrm{~A}-1 \mathrm{~A}$
when switch \#2 is on, and
-1 A when switch \#1 is on.
- We want $\pm 1 \%$ of 5 V , or a peak-to-peak change below 0.1 V .

ngineering at Illinois

ngineering at Illinois

Boost Example

- With switch \#2 on (duty ratio was found to be 0.4 , so time is 5 us),

$$
\begin{aligned}
\mathrm{i}_{\mathrm{C}} & =1.5 \mathrm{~A} \\
& =\mathrm{C} \mathrm{dv} / \mathrm{dt} \\
& =\mathrm{C} \Delta \mathrm{v} / \Delta \mathrm{t} .
\end{aligned}
$$

- $(1.5 \mathrm{~A})(5 \mathrm{us}) / \mathrm{C}=\Delta \mathrm{v}<0.1 \mathrm{~V}$.
- This requires $C>75 u F$.

Boost Example

2 to $5 \mathrm{~V}, 80 \mathrm{kHz}$ boost converter:

Practice: What if f_{s} is changed to 40 kHz ? \rightarrow

Comments

- With a few practice examples, you should be able to design a common-ground buck or boost converter.
- Challenge: Think about effects of nonideal switching.
- It is not so difficult to include some basic nonideal effects, such as switching device voltage drops and resistances.
- Consider an example with switch and diode voltage drop.

ngineering at Illinois

Nonideal boost

$\approx \frac{\frac{1}{\frac{1}{T}}}{T_{0}^{0}}$ voltage drop

ngineering at Illinois

Nonideal boost

$v_{\text {in }}=q_{1}(0.5 V)+q_{2}\left(V_{\text {out }}+1\right)$
$V-(v)-n(05 V)+(1-n)(V+1)$

ngineering at Illinois

Nonideal boost

- Switching function expressions still apply.
- Boost: $\mathrm{v}_{\text {in }}=\mathrm{q}_{1}(0.5 \mathrm{~V})+\mathrm{q}_{2}\left(\mathrm{~V}_{\text {out }}+1 \mathrm{~V}\right)$
- On average,

$$
\begin{aligned}
\left\langle V_{\text {in }}>\right. & =V_{\text {in }} \\
& =D_{1}(0.5 \mathrm{~V})+\left(1-D_{1}\right)\left(V_{\text {out }}+1 \mathrm{~V}\right), \text { and } \\
V_{\text {out }} & =\left(V_{\text {in }}+0.5 D_{1}-1\right) /\left(1-D_{1}\right)
\end{aligned}
$$

- For current, $i_{\text {out }}=q_{2} I_{L},<i_{\text {out }}>=D_{2} I_{L}$.
- Since $<i_{\text {out }}>$ is the load current $I_{\text {load }}$, we have $I_{I}=I_{\text {Ioad }} / D_{2}=I_{\text {Inad }} /\left(1-D_{1}\right)$.

ngineering at Illinois

Nonideal boost

- The efficiency: $P_{\text {in }}=V_{\text {in }} I_{L}, P_{\text {out }}=V_{\text {out }} I_{\text {load }}$.
- So $P_{\text {in }}=V_{\text {in }} I_{\text {load }} /\left(1-D_{1}\right)$ and

$$
P_{\text {out }}=\left(V_{\text {in }}+0.5 D_{1}-1\right) I_{\text {load }} /\left(1-D_{1}\right)
$$

- The efficiency ratio $\eta=\left(\mathrm{V}_{\text {in }}+\mathrm{D}_{1} / 2-1\right) / V_{\text {in }}$, and $\eta=1-\left(1-D_{1} / 2\right) / V_{\text {in }}$.
- This is less than 100%, reflecting the losses in the switch forward drops.
- Switching functions support analysis of converters even with these extra parts.

Indirect Dc-Dc Converters

- The buck is a dc transformer with $\mathrm{V}_{\text {out }}<\mathrm{V}_{\text {in }}$.
- The boost gives $\mathrm{V}_{\text {out }}>\mathrm{V}_{\text {in }}$.
- How can we give full range? Use a buck as the input for a boost.
- That is, use the current source output of a buck to provide the input source for a boost.
- Remove redundant or unnecessary switches. Result is the polarity reverser: buck-boost.

ngineering at Illinois

Buck-Boost Development

Buck

Boost

Can be the
same one

Final Simplification

The switch across the current source is not necessary for KCL.
Try removing it.
The current source is a transfer source.

ngineering at Illinois

Buck-Boost Converter

Buck-Boost

Transfer source

Left switch is FCFB. Right switch is FCRB.

Relationships

To meet KVL and KCL, $\mathrm{q}_{1}+\mathrm{q}_{2}=1$.
There are really two matrices now. Let us consider the transfer source, which is manipulated by both matrices.
Transfer voltage is subject to control.
Transfer voltage $v_{t}=q_{1} V_{\text {in }}-q_{2} V_{\text {out }}$.
Transfer source power is $v_{t} I_{s}=q_{1} V_{\text {in }} I_{s}-q_{2} V_{\text {out }} I_{s}$.
We want the average power in the transfer source to be zero -- no loss.

ngineering at Illinois

Relationships

$K V L+K C L:$

$$
\begin{aligned}
& q_{1}+q_{2}=1 \\
& v_{t}=q_{1} V_{\text {in }}-q_{2} V_{\text {out }}
\end{aligned}
$$

$$
v_{t} I_{s}=q_{1} V_{\text {in }} I_{s}-q_{2} V_{\text {out }} I_{s}
$$

$$
\left\langle v_{t}\right\rangle=D_{1} V_{\text {in }}-D_{2} V_{\text {out }}
$$

$\left\langle v_{t} I_{s}\right\rangle=I_{s}\left\langle v_{t}\right\rangle=I_{s}\left(D_{1} V_{\text {in }}-D_{2} V_{\text {out }}\right)$

$<\mathrm{v}_{\mathrm{t}} \mathrm{I}_{\mathrm{s}}>$ must be zero, not to have losses in the transfer source.

ngineering at Illinois

Relationships

This can be done if $D_{1} V_{\text {in }}=D_{2} V_{\text {out }}$.
Since $D_{1}+D_{2}=1$, we have $D_{1} V_{\text {in }}=\left(1-D_{1}\right) V_{\text {out }}$.
This becomes $V_{\text {out }}=D_{1} V_{\text {in }} /\left(1-D_{1}\right)$.
The polarity reversal comes from the cascade process.

ngineering at Illinois

Buck-Boost

Relationships

The buck-boost allows outputs both higher and lower than the input, but a polarity shift is present.
The transfer source can be an inductor alone to avoid loss.

ngineering at Illinois

Relationships

Consumes no average power. Maintains fixed I.

Can be approximated by an inductor.

This will be our transfer current source.

ngineering at Illinois

What About Currents?

The input current: $i_{i n}=q_{1} l_{s}$,
The output current: $i_{\text {out }}=q_{2} I_{s}$,
Average input: $I_{\text {in }}=D_{1} I_{s}$,
Average output: $I_{\text {out }}=D_{2} I_{s}$.
We do not really know I_{s}. Add the above:
$l_{\text {in }}+I_{\text {out }}=\left(D_{1}+D_{2}\right) I_{s}=I_{s}$.

Currents and Stresses

- The transfer source sees a current equal to the sum of input and output average currents.
- Each switch must carry I_{s}, and each must block $\mathrm{V}_{\text {in }}+\mathrm{V}_{\text {out }}$.
- All device ratings are higher than either the input or output needs.

