

Power Electronics Day 3 – Fourier Series and Their Applications to Power Electronics; Distortion and Regulation

P. T. Krein

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

© 2011 Philip T. Krein. All rights reserved.

Why Fourier?

- Switch action is periodic by design.
- We often have specific input frequencies, and seek specific output frequencies, but many frequencies occur together.
- These mean that we need to explore frequency content of our waveforms.

The Basics Any physically realizable periodic function, f(t) = f(t+T), (period *T*) can be written as a sum of sinusoids:

$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

where the sum is taken over n=1 to infinity, $\omega = 2\pi/T$, and the a_n and b_n coefficients are given by explicit integral equations,

The Basics

$$f(t) = f(t+T)$$

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega t) + b_n \sin(n\omega t) \right]$$

$$\omega = \frac{2\pi}{T}, \quad freq = \frac{1}{T}, \quad \omega = 2\pi freq$$

$$a_0 : \text{Average of } f(t) = \langle f(t) \rangle$$

The series works, provided the coefficients

$$a_0 = \frac{1}{T} \int_{\tau}^{\tau+T} f(t) dt$$

$$a_{n} = \frac{2}{T} \int_{\tau}^{\tau+T} f(t) \cos(n\omega t) dt$$
$$b_{n} = \frac{2}{T} \int_{\tau}^{\tau+T} f(t) \sin(n\omega t) dt$$

Notice that the integrals are taken over a period – but it is fine to start anywhere. 2^4

Another Form

We can also write

$$f(t) = \sum_{n=0}^{\infty} c_n \cos(n\omega t + \theta_n)$$

This form is common in electrical engineering and works if:

Another Form

$$f(t) = \sum_{n=0}^{\infty} c_n \cos(n\omega t + \theta_n)$$
$$c_0 = a_0, \quad \theta_0 = 0$$
$$c_n = \sqrt{a_n^2 + b_n^2}$$

$$\theta_n = -\tan^{-1}\left(\frac{b_n}{a_n}\right)$$

I

Some Terminology • Each cosine term, $c_n \cos(n\omega t + \theta_n)$, is called a *Fourier component* or a *harmonic* of the function *f(t)*. We call each the *n*th harmonic.

• The value c_n is the component amplitude; θ_n is the component phase.

Some Terminology

- $c_0 = a_0$ is the dc component, equal to the average value of f(t), $c_0 = \langle f(t) \rangle$.
- The term $c_1 \cos(\omega t + \theta_1)$ is the fundamental of f(t), while 1/T is the fundamental frequency.

Some Terminology

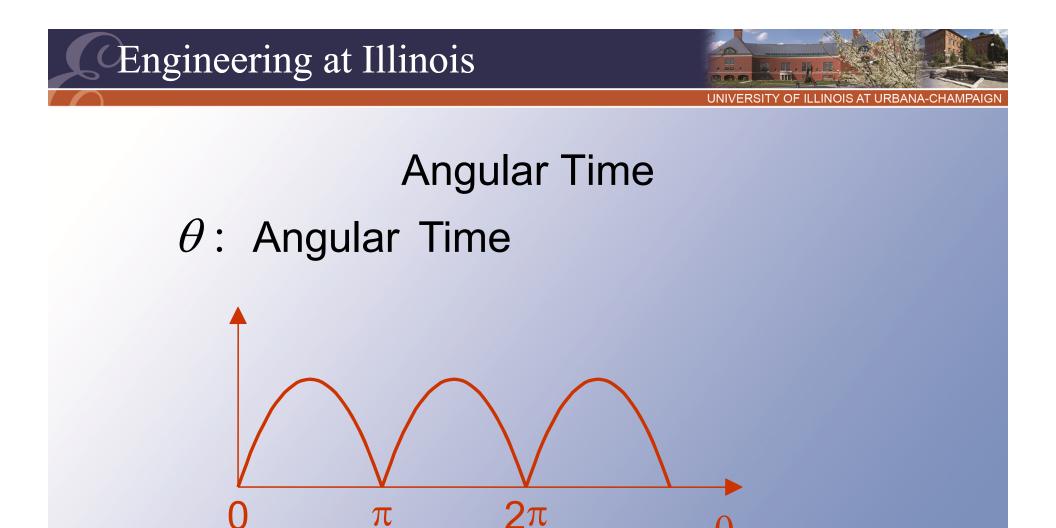
- In most converters, we seek a single desired frequency (perhaps the output frequency). This is associated with a single wanted component.
- All others are unwanted components.

Angular Time

- The change of variables $\theta = \omega t$ is often useful. In many cases, the waveform shape, rather than explicit timing, is the important issue.
- The variable θ is angular time.
- This is strictly a change of variables.

$$a_{n} = \frac{2}{T} \int_{\tau}^{\tau+T} f(t) \cos(n\omega t) dt$$
$$\theta = \omega t, \quad \omega = \frac{2\pi}{T}$$
$$\omega T = 2\pi = \theta \frac{T}{t}$$
$$a_{n} = \frac{2}{2\pi} \int_{\theta_{0}}^{\theta_{0}+2\pi} f(\theta) \cos(n\theta) d\theta$$

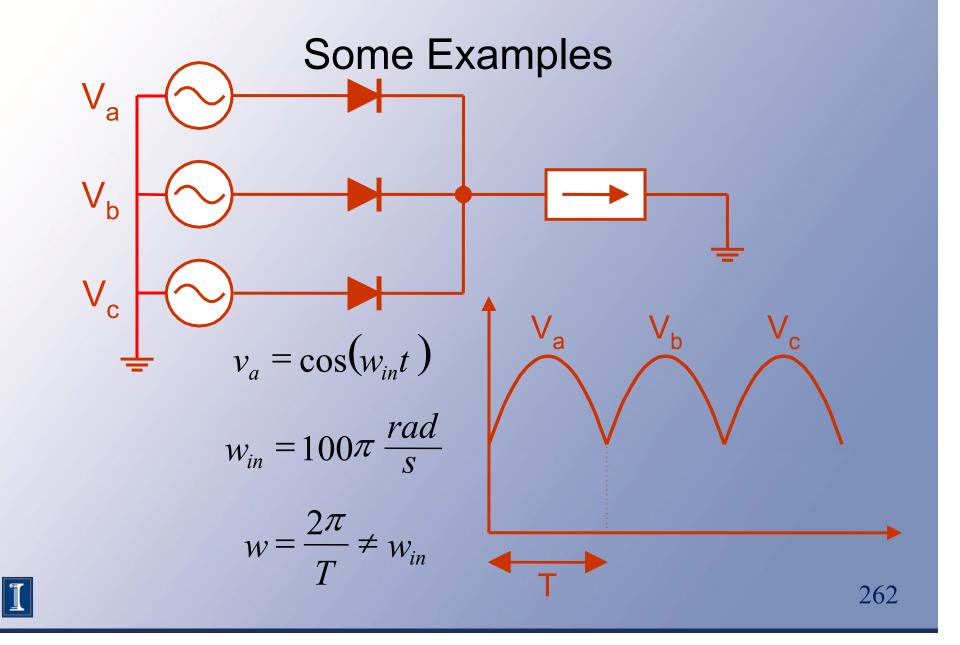
I

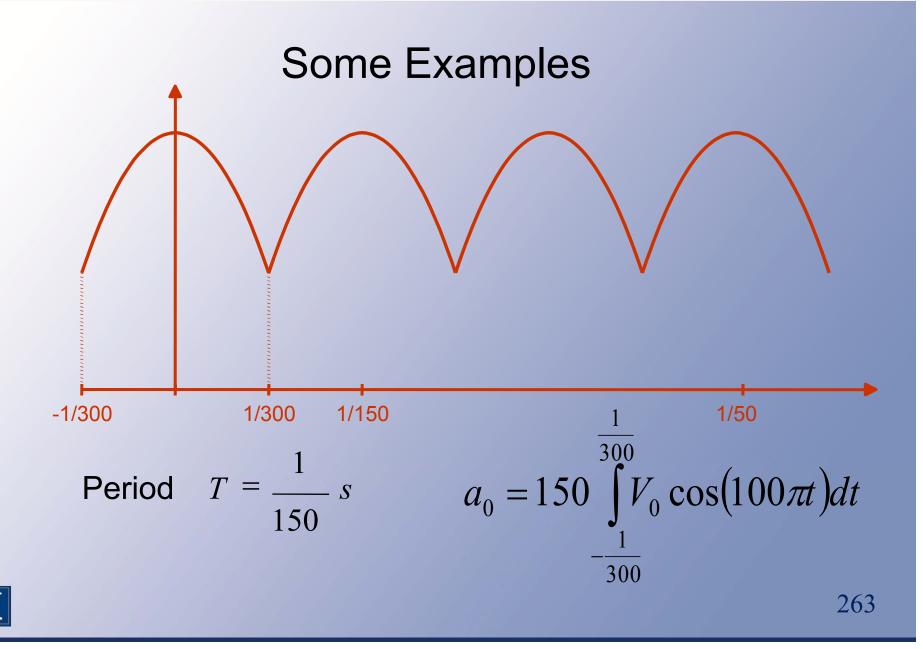


Useful when the shape of the waveform is important. Frequency will not matter.

Why Fourier Analysis?

- Many converters create waveforms by "chopping up" pieces of sinusoids.
- Fourier analysis applies readily to piecewise sinusoidal waveforms.
- Identifies the dc and various ac frequency components created.
- Establishes conditions on whether a conversion is successful.





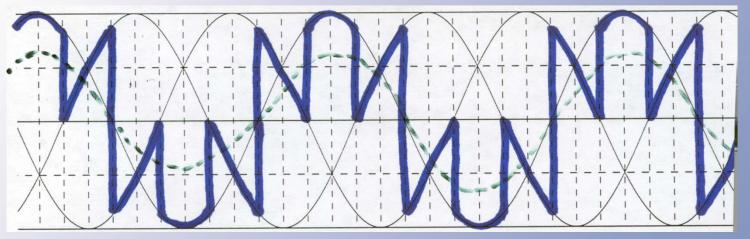
Some Examples

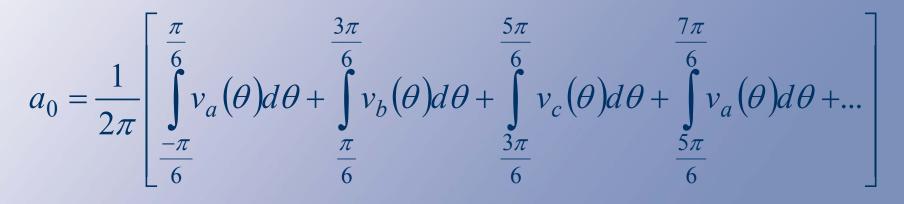
$$a_{n} = 2 \cdot 150 \int_{-\frac{1}{300}}^{\frac{1}{300}} V_{0} \cos(100\pi t) \cos(n300\pi t) dt$$

$$\omega = \frac{2\pi}{T} = 300\pi$$

$$a_{1}: 150 \text{ Hz component}$$

Some Examples Piecewise sinusoidal:

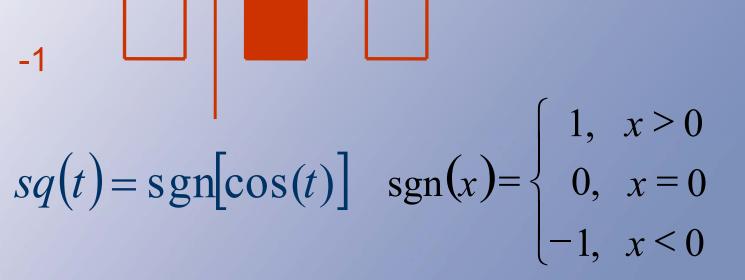




265

+1

266



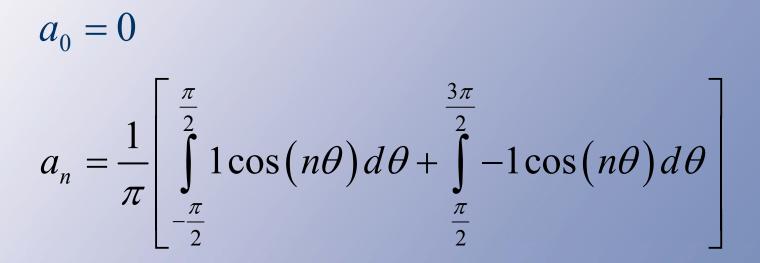
2π

sq(t)

A

Another Example

Analysis of the square wave:



I

The Terms

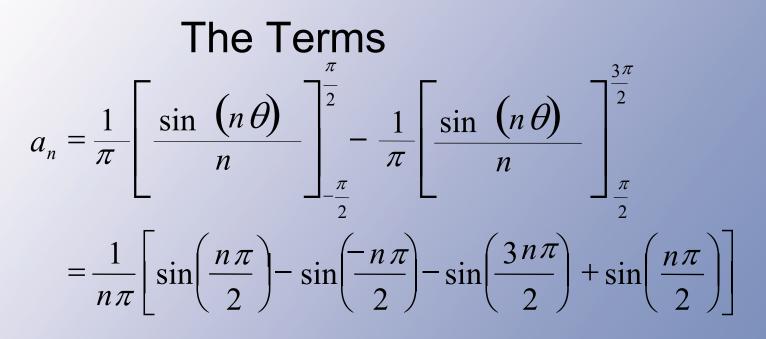
$$a_{n} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} V_{0} sq(\theta) \cos(n\theta) d\theta$$

$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_{0} \cos(n\theta) d\theta - \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} V_{0} \cos(n\theta) d\theta$$

$$= \frac{4V_{0}}{n\pi} \sin\left(\frac{n\pi}{2}\right) + 1$$

$$a_{0} = 0$$

$$-\pi/2 \pi/2 2\pi 268$$



 $\sin(x) = -\sin(-x)$

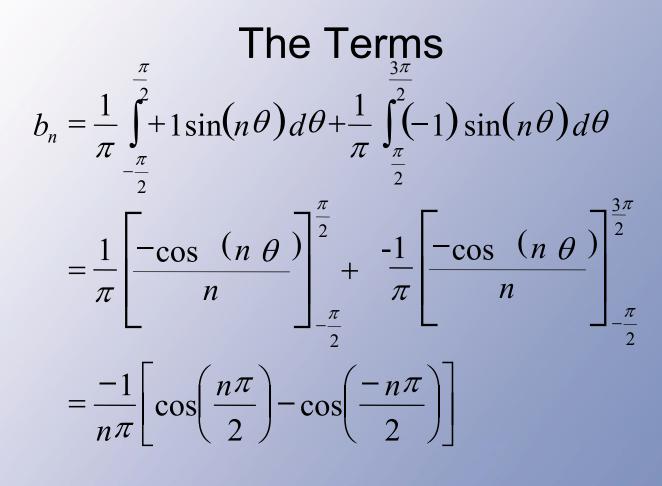
$$\sin\left(\frac{3n\pi}{2}\right) = \sin\left(\frac{n\pi}{2} + \frac{2n\pi}{2}\right)$$
$$= \sin\left(\frac{n\pi}{2} + n\pi\right)$$

The Terms

$$a_n = \frac{1}{n\pi} \left[\sin\left(\frac{n\pi}{2}\right)(4) \right]$$

$$a_n = \frac{4}{n\pi} \sin\left(\frac{n\pi}{2}\right)$$

(= 0 for n even)



 $\cos\left(x\right) = \cos\left(-x\right)$

The Terms
So:
$$a_n = \frac{4}{n\pi} \sin\left(\frac{n\pi}{2}\right) \quad b_n = 0$$

sq(θ): Fourier components at n = 1,3,5,...Component amplitudes as $\frac{1}{n}$. Fundamental: n = 1

$$\frac{4}{\pi}\sin\left(\frac{\pi}{2}\right)\cos(\theta) \qquad f(t) = \frac{4}{\pi}\cos\left(wt\right)$$

Given: Square wave is in phase with cosine

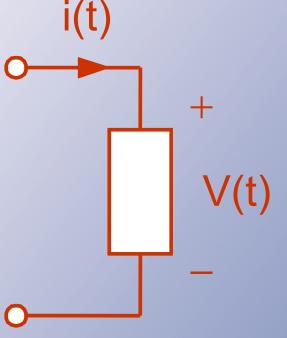
The Square Wave

Series is

$$sq(\theta) = \sum_{n=1}^{\infty} \frac{4}{n\pi} \sin\left(\frac{n\pi}{2}\right) \cos(n\theta)$$

• More examples can be found in Appendix D.

The Terms If the square wave is in phase with the sine, it can be represented as sgn [sin(wt)]. $a_n = 0$ $b_n = \frac{4}{n\pi} \sin\left(\frac{n\pi}{2}\right)$ $f(t) = \sum c_n \cos(nwt + \theta_n)$ n=0 $sq(t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin\left(\frac{n\pi}{2}\right)}{n} \cos(nwt - nt_0)$ 274



ENERGY

v and i are expected to be periodic.

What About Power? Assume a voltage

$$v(t) = \sum c_n \cos(n\omega t + \theta_n)$$

and a current

$$i(t) = \sum d_m \cos(m\omega t + \varphi_m)$$

with the same base frequency ω .

What About Power?

- We are interested in conversion:
 - Energy flow over time.
 - Determined by the average power flow <p(t)>
- Since $\omega = 2\pi/T$, then $1/T = \omega/(2\pi)$.

The Power Integral $p(t) = v(t) \cdot i(t)$ $p(t) = \left[\sum_{n} \cos(t)\right] \left[\sum_{n} d_{m} \cos(t)\right]$ **Energy conversion** $\langle p(t) \rangle = P_{ave}$ $=\frac{1}{T}\int \left[\sum c_n \cos(t)\right] \left[\sum d_m \cos(t)\right] dt$ $P_{ave} = \frac{1}{T} \int \sum_{n} \sum_{m} c_n d_m \cos(n\omega t + \theta_n) \cos(m\omega t + \phi_m) dt$ 278

Simplify

• Integration is a linear operation, so an integral of sums is the sum of the integrals.

$$P_{ave} = \frac{1}{T} \sum_{n} \sum_{m} \int_{0}^{T} c_{n} d_{m} \cos(n\omega t + \theta_{n}) \cos(m\omega t + \phi_{m}) dt$$

The Power Integral

• Sine and cosine have the following property:

$$\int_{0}^{2\pi} c_n d_m \cos(n\theta) \cos(m\theta) d\theta = 0 \quad \text{if } n \neq m$$

- Cross-frequency terms with n and m not equal do not contribute to average power.
- Average power becomes the sum of contributions at each frequency.

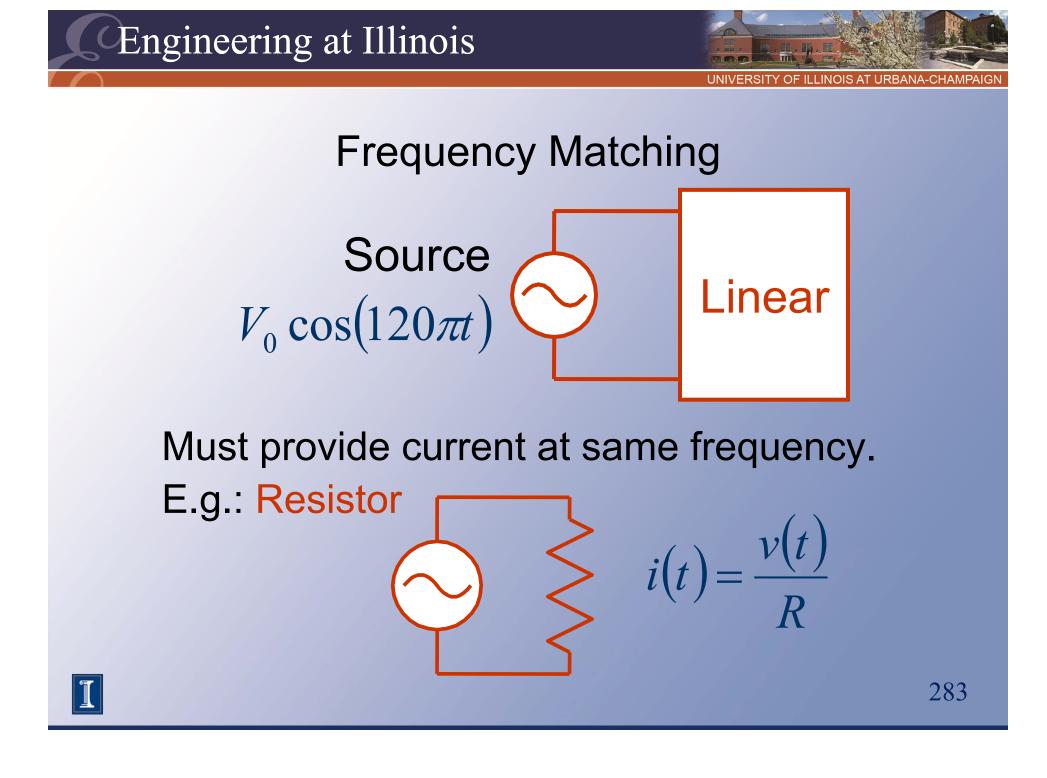
The Power Integral

 Only Fourier components that appear in both the voltage and the current will contribute to the average power flow.

$$P_{ave} = \frac{1}{T} \sum_{n=0}^{\infty} \int_{0}^{T} c_{n} d_{n} \cos^{2}(n\omega t + ...) dt$$
$$= c_{0} d_{0} + \frac{c_{1} d_{1}}{2} \cos(\theta_{1} - \phi_{1}) + ...$$

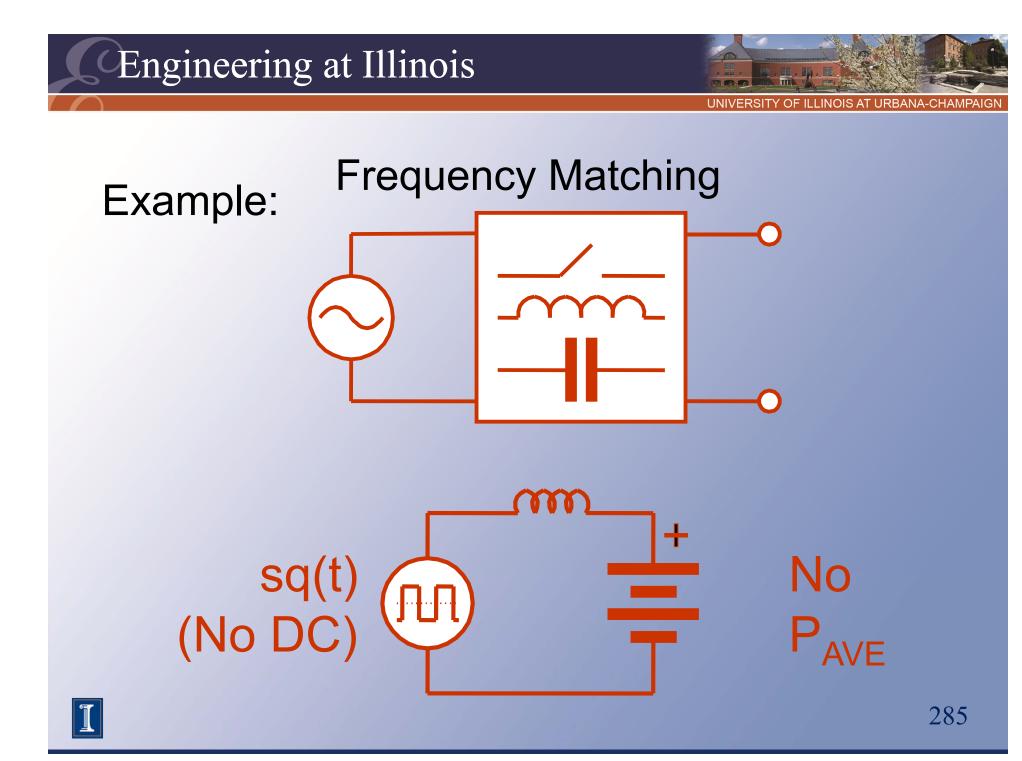
Frequency Matching

- Frequency matching condition:
 - To draw power from a source or
 - To deliver it to a load, there must be components at matching frequencies.
- If the source is given, we must match it.



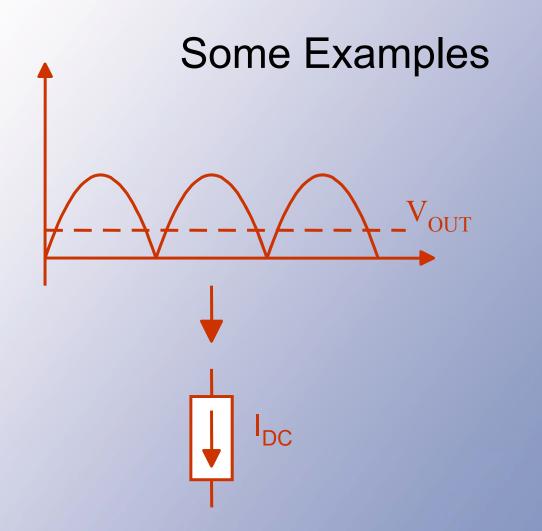
Some Examples

- 60 Hz to 50 Hz, voltage to current, conversion.
 - The converter creates the input current and the output voltage.
- The input current must have a 60 Hz component. The output voltage must have a 50 Hz component.
- Notice the implication of a *wanted component* associated with energy.



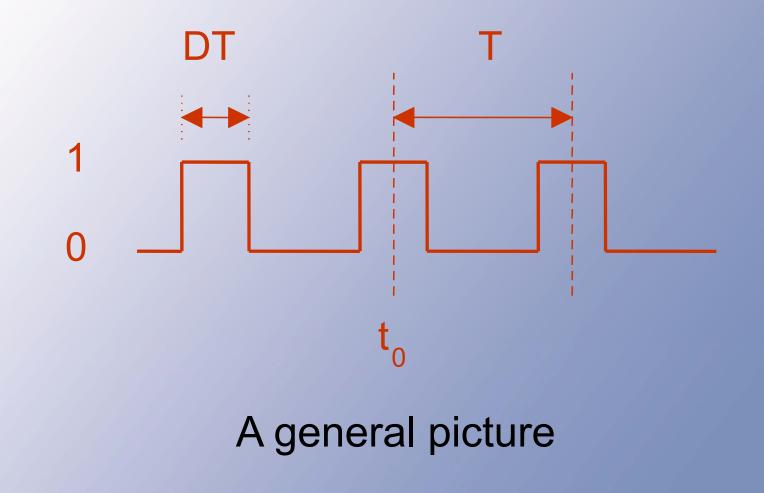
Some Examples If ac voltage is imposed on a battery, no average power will be delivered to the battery.

• In a rectifier, only the dc component of the output matters for power transfer.

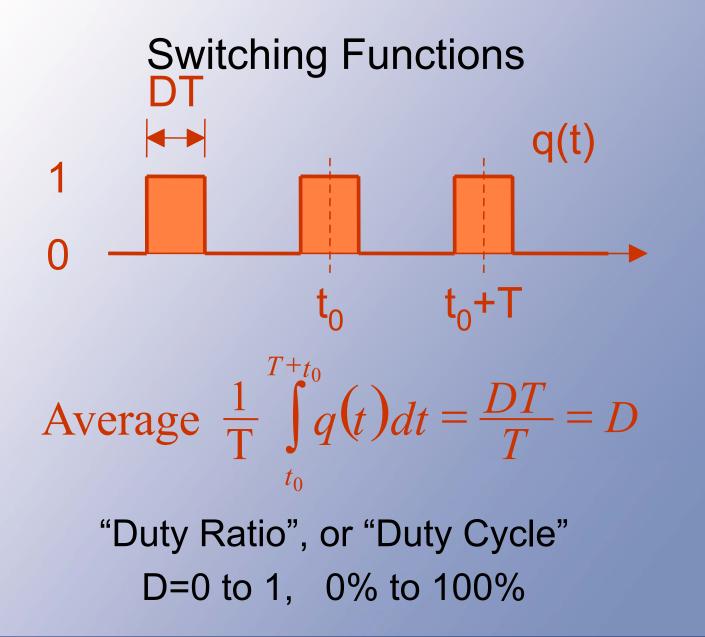


We need $\langle V_{out} \rangle$, towards the power flow.

Critical Issues So Far 1. KVL + KCL 2. Polarity issues a) Restricted switch 3. Trial method b) Diode analysis 4. Frequency matching condition (i.e. *wanted* component)



- This is a generalized switching function q(t).
- We should perform Fourier analysis on this waveform.
- The average is *D*, the *duty ratio* or *duty cycle*.
- The frequency f = 1/T, or radian frequency $\omega = 2\pi/T$.



291

- There is also a phase, determined by the time axis position t_0 .
- We define a phase value $\phi_0 = \omega t_0$.

I

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Switching Functions

$$f = \frac{1}{T}$$

$$\omega = \frac{2\pi}{T} = 2\pi f$$

$$a_n = \frac{2}{T} \int_{t_0}^{t_0+T} q(t) \cos(n\omega t) dt = \dots$$

$$q(t) = D + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin(n\pi D)}{n} \cos[n\omega(t-t_0)]$$
293

Switching Functions

$$q(t) = D + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin(n\pi D)}{n} \cos(n\omega t - \theta_n)$$

 $\theta_n = n \omega t_0$

Fourier series of "generic" q(t)

- This series involves three parameters.
- In general, a periodic (and single-pulsed) switching function is determined by:
 - Duty ratio (fraction of time when on)
 - Frequency
 - Phase or timing

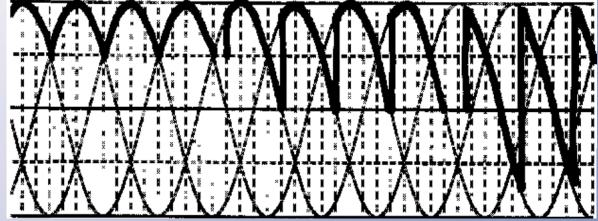
- To control a converter, we must manipulate switching functions.
- This means only three general methods are possible:
 - Duty ratio adjustment
 - Frequency adjustment (but must satisfy matching)
 - Phase adjustment

- Duty ratio:
 - Slow adjustment is called duty ratio control.
 - Or modulate it to vary regularly: pulse-width modulation (PWM)

- Frequency:
 - Must meet matching conditions, so frequency adjustment is not common.
 - Frequency modulation is possible in principle but is rarely a good approach for power conversion.

Switching Functions

- Phase:
 - Phase control (slow adjustment)



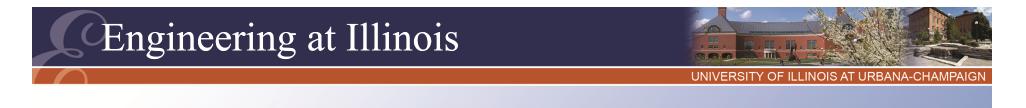
- Phase modulation (regular variation)

Source Conversion

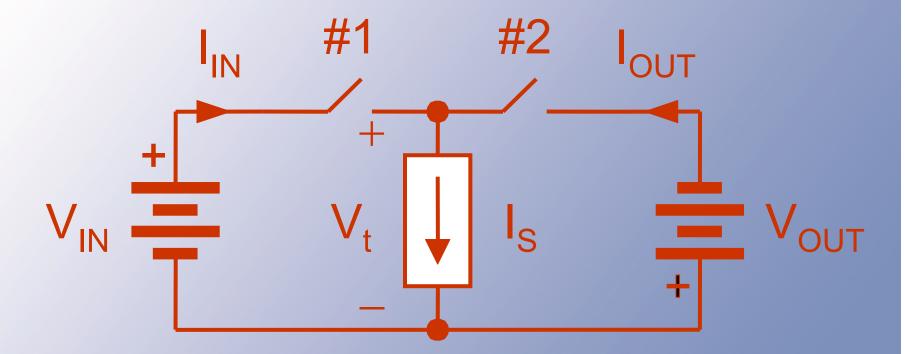
- Concept: Converters transfer energy among ideal sources.
- Ideal voltage supplies any current, and no external effect can alter its voltage.
- We must match frequency to get nonzero energy flow over time.

Source Conversion

- Ideal current sources can deliver into any voltage. No external effect can alter the flow.
- A transfer source is an internal converter port with source characteristics.



Transfer Source Example



The current source in this converter is a transfer source.

Summary

- Non-zero average power appears only for matching Fourier component frequencies of v and i.
- There is a frequency matching condition for power flow.
- Switching functions: duty, frequency, and phase adjustment.
- Sources are governed by frequency matching requirements.

- We generate waveforms that are piecewise sinusoids.
- They follow expressions such as q(t)V₀ cos(ωt).
- This produces Fourier series results.

$$v_{out}(t) = V_0 \cos(\omega t) \cdot \frac{2}{\pi} \sum \frac{\sin(n\pi D)}{n} \cos(n\omega t)$$

- There are terms $cos(\omega t) \cdot cos(n\omega t)$
- By trig identities (p. 699):
 cos[(n+1)ωt] + cos[(n-1)ωt]

- The series represents an infinite number of terms and frequencies.
- We must design so the wanted one appears.
- There are infinite unwanted terms.

- Distortion is fundamental:
 - There will always be unwanted terms in addition to wanted terms.
 - A switching converter does not produce perfect waveforms (ac or dc).

- We must accept unwanted terms -distortion -- in exchange for a lossless switching process.
- It is a question of degree: we would hope for low distortion, but it cannot be zero.

Measures

- Since distortion must be present, we need to characterize or measure it.
- For dc output, the distortion is collected ac terms, called *ripple*.
- For ac output, we can talk about harmonics (harmonic distortion).

Dc Measures

- In typical dc applications, ripple is about 1% (although it is hard to achieve less than about 50 mV).
- The usual measures are either the peak-to-peak or RMS values of the waveform, less its dc component.

Dc Measures

- This is only part of the story.
- Ripple in the audio band is often considered especially objectionable.
- Ultrasonic ripple can be a problem in some applications.

- Ac Measures
 How much of the signal is harmonics?
- *Total harmonic distortion* (THD) measures the distortion content as a fraction of the fundamental.

$$THD = \sqrt{\frac{\sum_{n=2}^{\infty} c_n^2}{c_1^2}}$$

 Harmonic Distortion
 Total harmonic ratio (THR) measures the distortion content as a fraction of the RMS value.

- *Total unwanted distortion* (TUD) measures the distortion content as a fraction of the RMS value of the wanted harmonic.
- THD is used most often.

Harmonic Distortion

- THD has no upper limit. Here are two guidelines:
 - Waveforms with THD below about 1% look sinusoidal on an oscilloscope.
 - Most converter waveforms are more distorted.
- The THD or TUD value can exceed 100% (when no filtering is used).
- Filters can reduce but not eliminate harmonics.

Harmonic Distortion

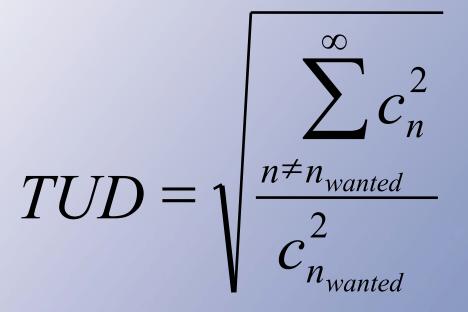
- THR values cannot exceed 100%, based on the definition.
- When distortion is "low" (below about 50%), the THD and THR values are not far apart.

$$THR = \sqrt{\frac{\sum_{n=2}^{\infty} c_n^2}{\sum_{n=1}^{\infty} c_n^2}}$$

Harmonic Distortion: TUD

- Often, the fundamental is not the wanted component.
- In this case, THD and THR are of no interest.
- We can define a *total unwanted distortion* (TUD) value, a ratio of unwanted to wanted.

Harmonic DistortionTotal unwanted distortion (TUD):n (wanted) $(n \ge 1)$



Computing THD

 THD often is not hard to compute, because the RMS value of a periodic waveform is

$$f_{\rm RMS} = (\frac{1}{2} \sum c_n^2)^{\frac{1}{2}}$$

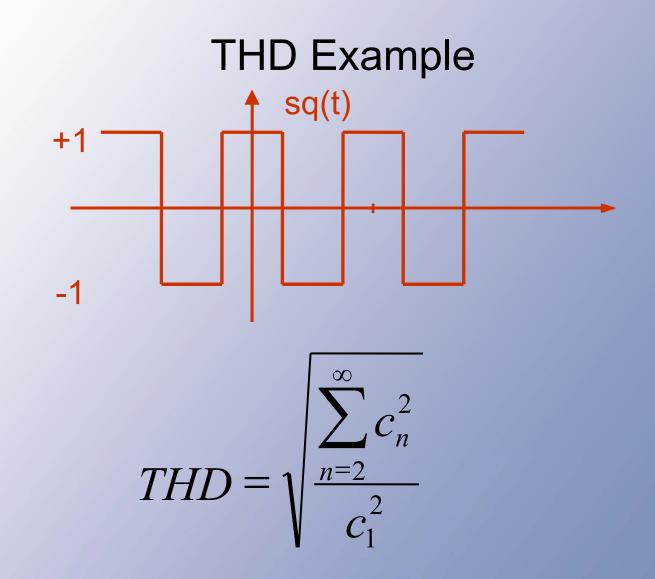
If we know the RMS value and also c₁, we can find the total harmonics.

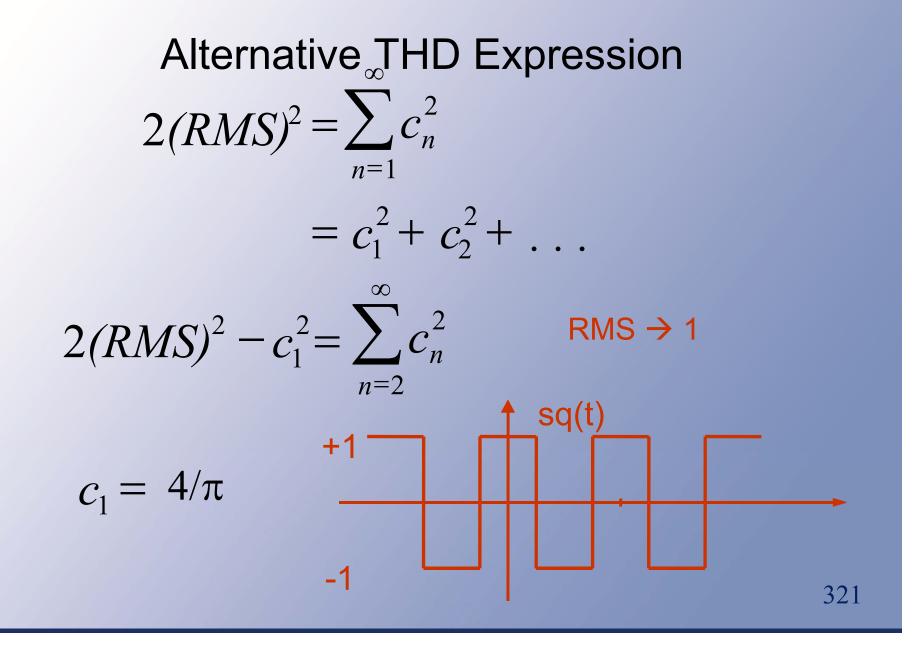
Alternative THD Expression

Periodic with no DC: RMS = $\sqrt{\frac{1}{T} \int_{0}^{T} f^{2}(t) dt} = \sqrt{\frac{1}{2} \sum_{n=1}^{\infty} c_{n}^{2}}$

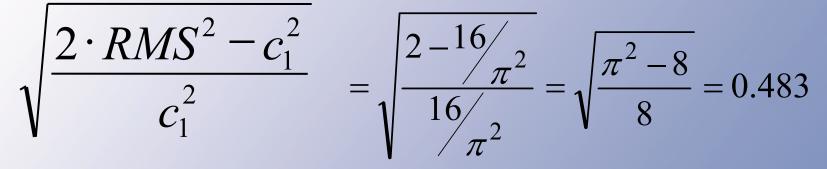
$$THD = \sqrt{\frac{\sum_{n=2}^{\infty} c_n^2}{c_1^2}} = \sqrt{\frac{2 \cdot RMS^2 - c_1^2}{c_1^2}}$$

The RMS value, together with c_1 , lets us compute the THD.





Alternative THD Expression



THD (sq(t)) = 0.483 48.3%

THR (has 2•RMS² in denominator) THR = 0.435 43.5%

Examples The square wave sq(t) has THD of 48.3% and THR of 43.5%.

- The triangle wave (p. 92) has THD of 12.1%.
- The ac-ac waveform of Fig. 2.19 has THD of 43.3%.

Examples

 More general ac-ac conversion waveforms (Figs. 2.38, 7.10, and others in the future) exceed THD values of 100%.

- Ripple and harmonics tell us about distortion.
- We also want to know how closely an ideal source is approached.

→ Distortion (harmonics)

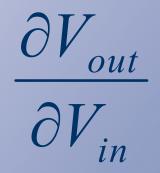
 \rightarrow "Source quality"

Real voltage source \rightarrow <u>change</u>

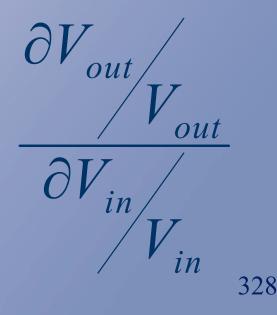
- *Regulation* is a set of measures that tell us how "ideal" a real source will be.
- An ideal source never changes, so regulation measures change.
- Ideally, regulation values are 0.

Regulation

 The most general measures are partial derivatives, such as:



 This is not so useful, since we do conversion.
 A better ratio is:



Regulation

- Change is taken with respect to any variable of interest.
- Example: a dc output, V_{out}.
- Ripple is one thing. We also want to know how the dc value changes:

 $\frac{\partial V_{out}}{\partial}$

• The variable could be input voltage, load current, time, temperature, ...

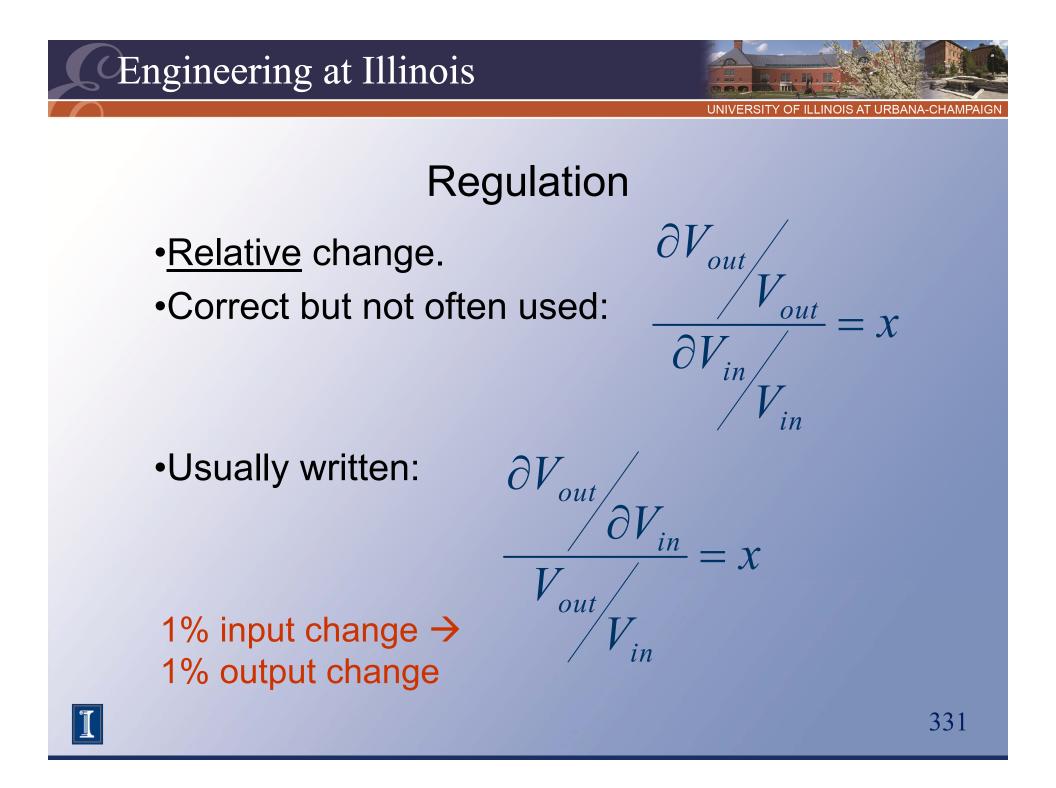
Regulation

- In most cases, relative change is needed.
- Example: 120 V to 1 V and 5 V to 1 V converters.

• If
$$\frac{\partial V_{out}}{\partial V_{in}} = 1\%$$

what does this mean?

• This measure is absolute, but not useful.



Regulation

Relative value $1 \rightarrow No$ Regulation

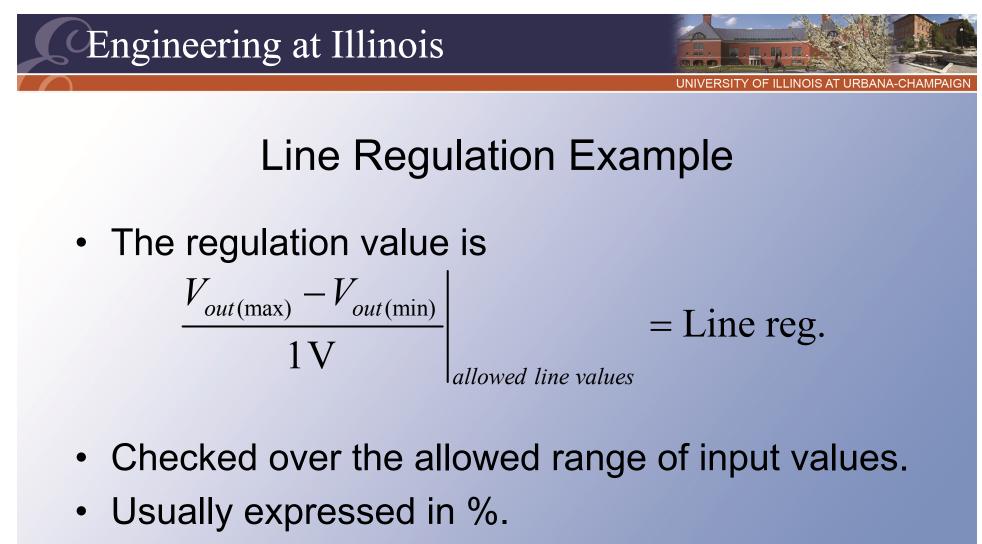
Ideally \rightarrow 0

- Most products measure regulation in terms of a specific change rather than in terms of a partial derivative.
- A typical value is $\Delta V_{out}/V_{out(nom)}$, for some specified change in conditions.

• Line regulation: $\Delta V_{out}(V_{in})$

 $V_{out(nom)}$

- V_{in} is taken over the allowed range of input values.
- Sample for a converter with 120 V RMS input (±10%) and 1 V dc nominal output: Check output with 132 V input, 108 V input, and other values in between.

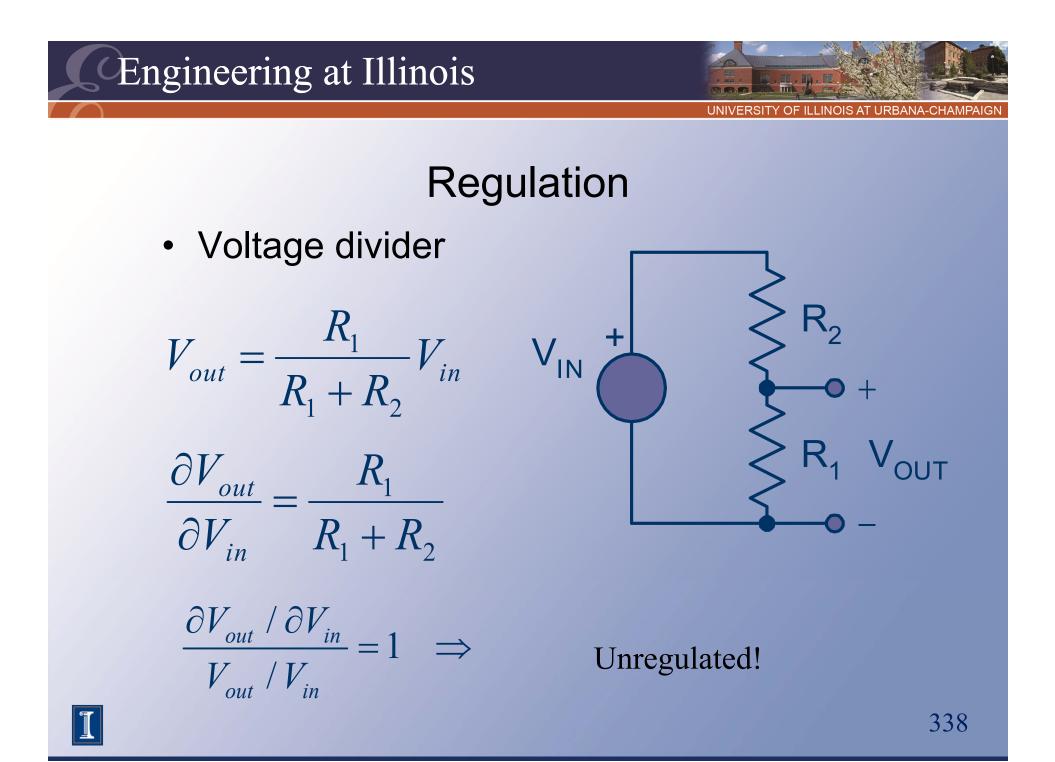


• A value of 0.1% would require a total deviation of less than 1 mV for this converter.

- Values of interest:
 - Line regulation, change in output when the input is altered
 - Load regulation, change in output as the load current or power changes
 - Temperature regulation
 - Time regulation (drift)

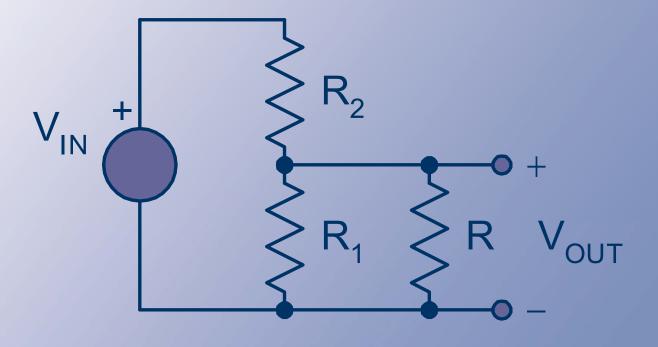
Regulation: Example

- Consider a resistive voltage divider with no load.
- This provides an output proportion to the input.
- A derivative line regulation measure gives 1, or 100%.
- This means that any input change appears directly at the output.



Regulation

Voltage divider: Even worse with a load. Now the line regulation is above 100%!



- Modern dc supplies often have source regulation at the 0.1% level.
- Load regulation can be more difficult: it depends on wiring.
- Examples in Fig. 3.6.

Summary So Far

- We seek ideal sources, but distortion and variation must appear: *wanted* vs. *unwanted* components.
- THD and ripple measure distortion.
- Regulation measures tell us about the wanted component portion.

Regulation Examples Example: DC supply with 0.1% line regulation. Input: 120 V_{rms} 60 Hz. Output: 5 V.

Assume input = 120 V ± 10% (108 V to 132 V)

$$\frac{\Delta V_{out}|_{V_{in}}}{V_{out}^{nom}} < 0.001$$

Regulation Examples
With input variation as allowed, the output change will not exceed 5 mV.

• Ripple (which is about 50 mV), is not included in the line regulation definition.

Regulation Examples Example: Input: 85 to 265 V_{rms} 60 Hz Output: $V_{out,nom}$ =12 V

Vin RMS (V)	Vout DC (V)
85	12.032
95	12.027
105	12.052
115	12.058
205	12.069
220	12.073
240	12.072
265	12.075

I

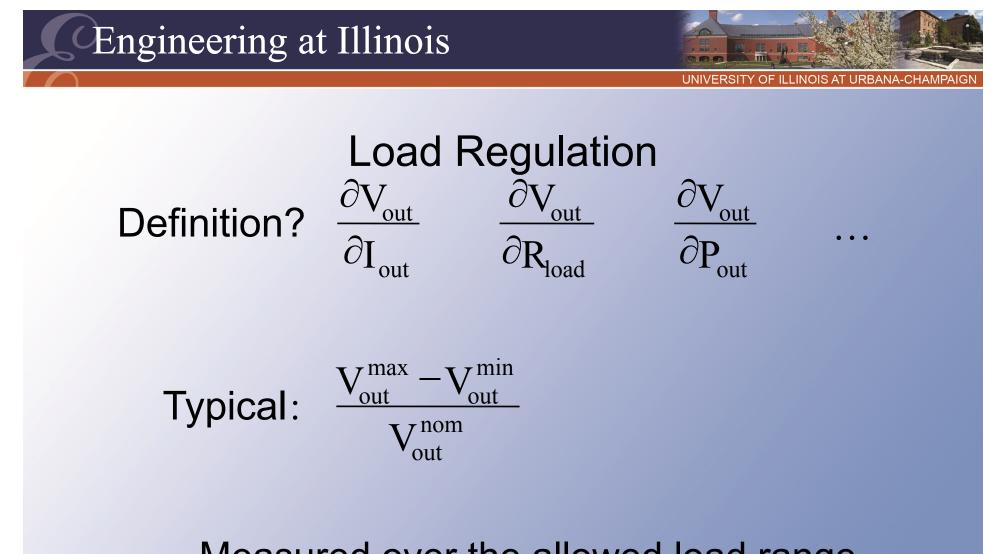
344

$$\Delta V_{out} = 12.075 - 12.027$$

= 0.048V

(worst case)

$$\frac{\Delta V_{\text{out}}}{V_{\text{out}}^{\text{nom}}} = \frac{0.048}{12}$$
$$= 0.004$$
$$= 0.4\%$$



Measured over the allowed load range

Load Regulation Example Example:

Output: 5 V, 10 to 100 W

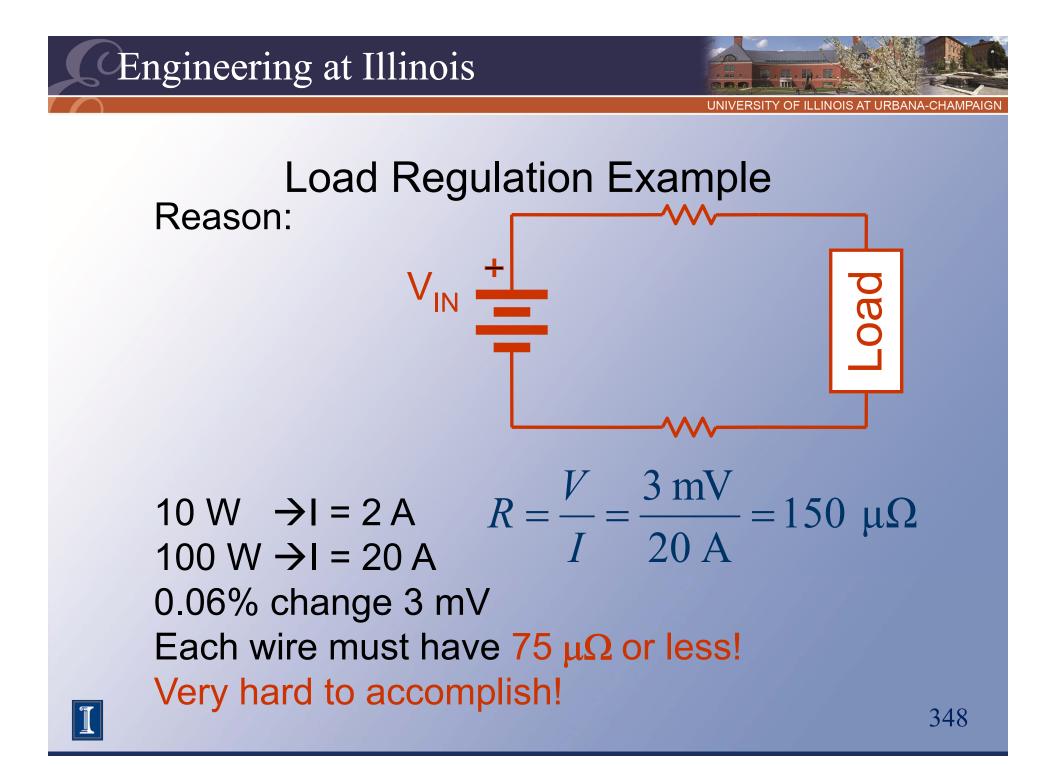
$$\Delta V_{out} = 4.992 - 4.989$$

 $= 0.003 \,\mathrm{V}$

$$\frac{\Delta V_{out}}{V_{out}^{nom}} = \frac{0.003}{5} = 0.0006 = 0.06\%$$

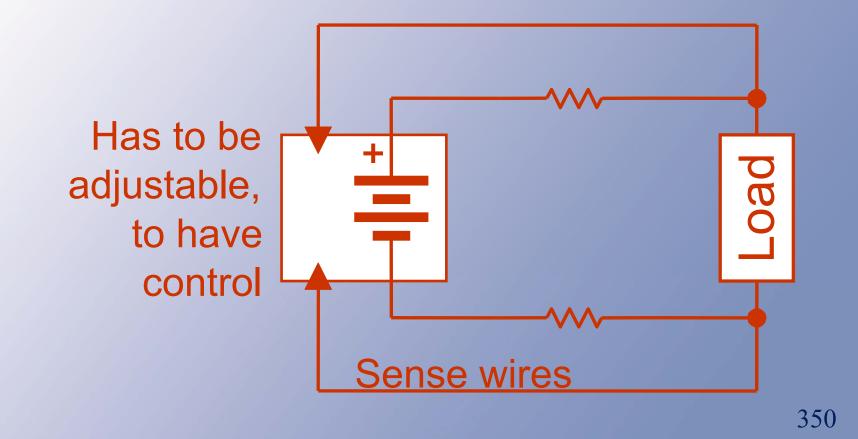
Pout (W)	Vout (V)
0	5.260
10	4.992
30	4.991
50	4.991
70	4.991
90	4.989
100	4.990

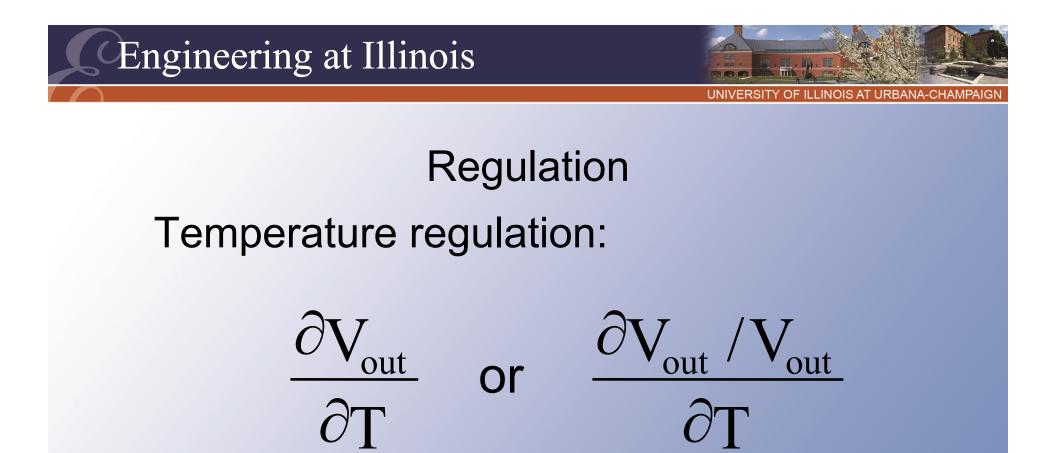
However, if we measure the load regulation in the lab with normal wires, we'll get higher values. Why?



- Some power supplies are called regulators, if their main function is to prevent change at the output.
- Control is required to achieve good regulation.

Regulation Examples Kelvin connection: Sense wires have I=0 or I=constant.





Example: 0.04% per °C. Range: 20°C to 35°C (15°C change) Output change ← 0.6%

Regulation Example: Automotive systems Range: -20°C to +50°C (70°C change) Output change less than (0.04%) x (70°) = 2.8%

T]
<u> </u>	