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Why Fourier?
• Switch action is periodic by design.
• We often have specific input 

frequencies, and seek specific output 
frequencies, but many frequencies 
occur together.

• These mean that we need to explore 
frequency content of our waveforms.
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The Basics

where the sum is taken over n=1 to infinity,
ω = 2π/T, and the an and bn coefficients are
given by explicit integral equations,

Any physically realizable periodic function,
f(t) = f(t+T), (period T) can be written as a
sum of sinusoids:
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The Basics
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The series works, provided the coefficients 
are:
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Notice that the integrals are taken over a period – but it is fine 
to start anywhere.
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Another Form

We can also write

This form is common
in electrical engineering and works if:
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Another Form
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Some Terminology
• Each cosine term, cn cos(nωt + θn), 

is called a Fourier component or a 
harmonic of the function f(t).  We 
call each the nth harmonic.

• The value cn is the component 
amplitude; θn is the component phase.
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Some Terminology

• c0 = a0 is the dc component, equal to 
the average value of f(t), c0 = <f(t)>.

• The term c1 cos(ωt + θ1) is the 
fundamental of f(t), while 1/T is the 
fundamental frequency.



Engineering at IllinoisEngineering at Illinois

257

Some Terminology

• In most converters, we seek a single 
desired frequency (perhaps the output 
frequency).  This is associated with a 
single  wanted component.

• All others are unwanted components.
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Angular Time
• The change of variables θ = ωt is often 

useful. In many cases, the waveform 
shape, rather than explicit timing, is the 
important issue. 

• The variable θ is angular time. 
• This is strictly a change of variables.
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Angular Time
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Angular Time

Useful when the shape of the waveform 
is important. Frequency will not matter.

TimeAngular :

0  2 
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Why Fourier Analysis?
• Many converters create waveforms by 

“chopping up” pieces of sinusoids.
• Fourier analysis applies readily to 

piecewise sinusoidal waveforms.
• Identifies the dc and various ac 

frequency components created.
• Establishes conditions on whether a 

conversion is successful.
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Some Examples
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Some Examples
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Some Examples
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Some Examples
Piecewise sinusoidal:
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Another Example

   )cos(sgn ttsq 

2



+1

-1

sq(t)



 













,1
0,0
0,1

sgn
 0x

x
x

x



Engineering at IllinoisEngineering at Illinois

267

Another Example

Analysis of the square wave:
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The Terms
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The Terms

sin(x) - sin (-x)
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The Terms
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The Terms
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The Terms

Given: Square wave is in phase with cosine

0sin4:So  nn bna
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Fourier components at n = 1,3,5, … 
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The Square Wave

• More examples can be found in Appendix D.
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The Terms
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If the square wave is in phase with the sine, 
it can be represented as sgn [sin(wt)]. 
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What About Power?

v and i are expected to be periodic.





V(t)

i(t)

ENERGY
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What About Power?
Assume a voltage

and a current

with the same base frequency ω.

   cosn nv t c n t  

   cosm mi t d m t  
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What About Power?
• We are interested in conversion:

– Energy flow over time.
– Determined by the average 

power flow <p(t)>
• Since /T, then 1/T = 
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The Power Integral
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Simplify

• Integration is a linear operation, so an integral of 
sums is the sum of the integrals.
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The Power Integral

• Sine and cosine have the following property:

• Cross-frequency terms with n and m not equal 
do not contribute to average power.

• Average power becomes the sum of 
contributions at each frequency.
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The Power Integral

• Only Fourier components that appear in both the 
voltage and the current will contribute to the 
average power flow.

2
dc

P

   11
11

00 cos dc

  


0

2cos1 dtntdc
T 0n

T

nnave



Engineering at IllinoisEngineering at Illinois

282

Frequency Matching
• Frequency matching condition:

– To draw power from a source or 
– To deliver it to a load, there must be 

components at matching frequencies.
• If the source is given, we must match it.
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Frequency Matching

Must provide current at same frequency.
E.g.: Resistor

Linear
Source
 tV 120cos0

   
R
tvti 
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Some Examples
• 60 Hz to 50 Hz, voltage to current, 

conversion.
– The converter creates the input 

current and the output voltage.

• The input current must have a 60 Hz 
component. The output voltage must 
have a 50 Hz component.

• Notice the implication of a wanted 
component associated with energy.
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Frequency MatchingExample:

sq(t)
(No DC)

No
PAVE
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Some Examples
• If ac voltage is imposed on a battery, 

no average power will be delivered 
to the battery.

• In a rectifier, only the dc component of 
the output matters for power transfer.
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Some Examples

We need <Vout>, towards the power flow.

VOUT

IDC
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Critical Issues So Far
1. KVL + KCL
2. Polarity issues

a) Restricted switch
3. Trial method

b) Diode analysis
4. Frequency matching condition (i.e. 

wanted component)
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Switching Functions

A general picture
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Switching Functions

• This is a generalized switching function 
q(t).

• We should perform Fourier analysis on 
this waveform.

• The average is D, the duty ratio or duty 
cycle.

• The frequency f = 1/T, or radian frequency 
/T.
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Switching Functions

“Duty Ratio”, or “Duty Cycle”
D=0 to 1,   0% to 100%
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Switching Functions

• There is also a phase, determined by the 
time axis position t0.

• We define a phase value 0 = t0.
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Switching Functions
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Switching Functions

Fourier series of “generic” q(t)
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Switching Functions
• This series involves three parameters.
• In general, a periodic (and single-pulsed) 

switching function is determined by:
– Duty ratio (fraction of time when on)
– Frequency
– Phase or timing
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Switching Functions
• To control a converter, we must 

manipulate switching functions.
• This means only three general methods 

are possible:
– Duty ratio adjustment
– Frequency adjustment 

(but must satisfy matching)
– Phase adjustment
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Switching Functions

• Duty ratio:
– Slow adjustment is called duty ratio control.
– Or modulate it to vary regularly:

pulse-width modulation (PWM)
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Switching Functions

• Frequency:
– Must meet matching conditions, so 

frequency adjustment is not common.
– Frequency modulation is possible in 

principle but is rarely a good approach for 
power conversion.
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Switching Functions
• Phase:

– Phase control (slow adjustment)

– Phase modulation (regular variation)
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Source Conversion
• Concept: Converters transfer energy 

among ideal sources.
• Ideal voltage supplies any current, and 

no external effect can alter its voltage.
• We must match frequency to get 

nonzero energy flow over time.
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Source Conversion
• Ideal current sources can deliver into 

any voltage. No external effect can 
alter the flow.

• A transfer source is an internal converter 
port with source characteristics.
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Transfer Source Example

The current source in this converter 
is a transfer source.

#1 #2

VIN VOUT





IOUTIIN

Vt IS
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Summary
• Non-zero average power appears 

only for matching Fourier component 
frequencies of v and i.

• There is a frequency matching 
condition for power flow.

• Switching functions: duty, frequency, 
and phase adjustment.

• Sources are governed by frequency 
matching requirements.
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Distortion is Fundamental

• We generate waveforms that are 
piecewise sinusoids.

• They follow expressions such as  
q(t)V0 cos(t).

• This produces Fourier series results.
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Distortion is Fundamental

– There are terms cos(t)·cos(nt)
– By trig identities (p. 699): 

cos[(n+1)t] + cos[(n-1)t]

       0

sin2cos cosout

n D
v t V t n t

n
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Distortion is Fundamental
• The series represents an infinite number 

of terms and frequencies.
• We must design so the wanted one 

appears.
• There are infinite unwanted terms.
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Distortion is Fundamental
• Distortion is fundamental:

– There will always be unwanted terms 
in addition to wanted terms.

– A switching converter does not produce 
perfect waveforms (ac or dc).
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Distortion is Fundamental
• We must accept unwanted terms --

distortion -- in exchange for a 
lossless switching process.

• It is a question of degree:  we would 
hope for low distortion, but it 
cannot be zero.
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Measures
• Since distortion must be present, 

we need to characterize or measure it.
• For dc output, the distortion is collected 

ac terms, called ripple.
• For ac output, we can talk about 

harmonics (harmonic distortion).



Engineering at IllinoisEngineering at Illinois

310

Dc Measures
• In typical dc applications, ripple is 

about 1% (although it is hard to 
achieve less than about 50 mV).

• The usual measures are either the 
peak-to-peak or RMS values of the 
waveform, less its dc component.
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Dc Measures
• This is only part of the story.
• Ripple in the audio band is often 

considered especially objectionable.
• Ultrasonic ripple can be a problem in 

some applications.
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Ac Measures
• How much of the signal is harmonics? 
• Total harmonic distortion (THD) 

measures the distortion content as 
a fraction of the fundamental.
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Harmonic Distortion
• Total harmonic ratio (THR) measures 

the distortion content as a fraction 
of the RMS value.

• Total unwanted distortion (TUD) measures 
the distortion content as a fraction 
of the RMS value of the wanted harmonic.

• THD is used most often.
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Harmonic Distortion
• THD has no upper limit.  Here are 

two guidelines:
– Waveforms with THD below about 1% 

look sinusoidal on an oscilloscope.
– Most converter waveforms are more 

distorted.
• The THD or TUD value can exceed 100% 

(when no filtering is used).
• Filters can reduce but not eliminate 

harmonics.
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Harmonic Distortion
• THR values cannot exceed 100%, 

based on the definition.
• When distortion is “low” (below about 

50%), the THD and THR values are 
not far apart.
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Harmonic Distortion:  TUD
• Often, the fundamental is not the 

wanted component.
• In this case, THD and THR are of 

no interest.
• We can define a total unwanted

distortion (TUD) value, a ratio of 
unwanted to wanted.
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Harmonic Distortion
Total unwanted distortion (TUD):

2
wanted

wanted
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TUD
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Computing THD
• THD often is not hard to compute, 

because the RMS value of a periodic
waveform is

• If we know the RMS value and also 
c1, we can find the total harmonics.

fRMS = (½ 2
nc )½
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Alternative THD Expression
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The RMS value, together with c1, lets us 
compute the THD.
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THD Example
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Alternative THD Expression
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Alternative THD Expression

THD (sq(t)) = 0.483
48.3%

THR (has 2•RMS2 in denominator)
THR = 0.435

43.5%
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Examples
• The square wave sq(t) has THD 

of 48.3% and THR of 43.5%.
• The triangle wave (p. 92) has 

THD of 12.1%.
• The ac-ac waveform of Fig. 2.19 

has THD of 43.3%.
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Examples
• More general ac-ac conversion 

waveforms (Figs. 2.38, 7.10, and 
others in the future) exceed 
THD values of 100%.



Engineering at IllinoisEngineering at Illinois

325

Regulation
• Ripple and harmonics tell us about 

distortion.
• We also want to know how closely 

an ideal source is approached.
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THD, TUD
 Distortion (harmonics)

 “Source quality” 

Real voltage source   change
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Regulation
• Regulation is a set of measures that 

tell us how “ideal” a real source will be.
• An ideal source never changes, 

so regulation measures change.
• Ideally, regulation values are 0.
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Regulation
• The most general 

measures are partial 
derivatives, such as:

• This is not so useful, 
since we do conversion.  
A better ratio is:

in
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Regulation
• Change is taken with respect to any variable of 

interest.
• Example:  a dc output, Vout.
• Ripple is one thing.  We also want to know how 

the dc value changes:

• The variable could be input voltage, load 
current, time, temperature, …

)(
 outV
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Regulation
• In most cases, relative change is needed. 
• Example: 120 V to 1 V and 5 V to 1 V  

converters.

• If what does this mean?

• This measure is absolute, but not useful.

%1
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Regulation
•Relative change.
•Correct but not often used:

•Usually written:

x

V
V
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1% input change 
1% output change
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Regulation

Relative value 1  No Regulation

Ideally  0
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Regulation
• Most products measure regulation in 

terms of a specific change rather than 
in terms of a partial derivative.

• A typical value is Vout/Vout(nom), for 
some specified change in conditions.
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Regulation
• Line regulation:

• Vin is taken over the allowed range of input 
values.

• Sample for a converter with 120 V RMS input 
(±10%) and 1 V dc nominal output:  Check 
output with 132 V input, 108 V input, and other 
values in between.

)(

)(

nomout

inout

V
VV
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Line Regulation Example

• The regulation value is

• Checked over the allowed range of input values.
• Usually expressed in %.
• A value of 0.1% would require a total deviation 

of less than 1 mV for this converter.

(max) (min) Line reg.
1V

out out

allowed line values

V V
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Regulation
• Values of interest:

– Line regulation, change in output
when the input is altered

– Load regulation, change in output as
the load current or power changes

– Temperature regulation

– Time regulation (drift)
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Regulation:  Example
• Consider a resistive voltage divider with no 

load.
• This provides an output proportion to the 

input.
• A derivative line regulation measure gives 

1, or 100%.
• This means that any input change appears 

directly at the output.
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Regulation
• Voltage divider

VIN

R2

R1 VOUT





inout V
RR

RV
21

1




21

1

RR
R

V
V

in

out







/
1

/
out in

out in

V V
V V
 

  Unregulated!



Engineering at IllinoisEngineering at Illinois

339

Regulation
Voltage divider: Even worse with a load.  
Now the line regulation is above 100%!

VIN

R2

R1 VOUT





R
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Regulation

• Modern dc supplies often have source regulation 
at the 0.1% level.

• Load regulation can be more difficult:  it depends 
on wiring.

• Examples in Fig. 3.6.
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Summary So Far
• We seek ideal sources, but distortion 

and variation must appear:  wanted vs. 
unwanted components.

• THD and ripple measure distortion.
• Regulation measures tell us about the 

wanted component portion.
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Regulation Examples
Example:
DC supply with 0.1% line regulation.
Input: 120 Vrms 60 Hz.
Output: 5 V.

Assume input = 120 V ± 10% (108 V to 132 V)

001.0


nom
out

Vout

V

V
in
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Regulation Examples
• With input variation as allowed, the
output change will not exceed 5 mV.

• Ripple (which is about 50 mV), is not
included in the line regulation definition.
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Regulation Examples
Example:
Input: 85 to 265 Vrms 60 Hz
Output: Vout,nom=12 V

Vin RMS (V) Vout DC (V)
85 12.032
95 12.027

105 12.052
115 12.058
205 12.069
220 12.073
240 12.072
265 12.075
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Regulation Examples
Line regulation:

(worst case)


V 12
048.0

004.0

%4.0



nom
out
outV

 048.0 V

12 027.12075.  outV
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Load Regulation
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Definition?

Measured over the allowed load range
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Load Regulation Example
Example:
Output: 5 V, 10 to 100 W Pout (W) Vout (V)

0 5.260
10 4.992
30 4.991
50 4.991
70 4.991
90 4.989

100 4.990%06.00006.0 
5
003.0


nom

out

out

V
V

003.0
989.4992.4



 out

V
V

However, if we measure the load regulation in the 
lab with normal wires, we’ll get higher values. Why?
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Load Regulation Example

10 W   I = 2 A
100 W I = 20 A
0.06% change 3 mV
Each wire must have 75  or less!
Very hard to accomplish!

VIN

Lo
ad

Reason:

μΩ 150
A20

mV3


I
VR
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Regulation
• Some power supplies are called regulators, 

if their main function is to prevent change 
at the output.

• Control is required to achieve good regulation.
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Regulation Examples
Kelvin connection: Sense wires have 

I=0 or I=constant.

Lo
ad

Sense wires

Has to be
adjustable,

to have
control
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Regulation
Temperature regulation:

Example: 0.04% per °C.
Range: 20°C to 35°C (15°C change) 

Output change  0.6%

T
VV

T
V outoutout





 /or
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Regulation
Example: Automotive systems

Range: -20°C to +50°C 
(70°C change) 
Output change less than
(0.04%) x (70°) =

2.8%


