Power Electronics

Day 10 - Power Semiconductor Devices

P. T. Krein

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign
© 2011 Philip T. Krein. All rights reserved.

Engineering at Illinois

Device Basics

- We have used several types of devices, and considered their basic properties (diodes, SCRs, MOSFETs, IGBTs, etc).
- Any real switch has three states:
- On state (low V , high I)
- Off state (low I, high V)
- Commutation (the transition)

On State

- For the on state, we are concerned with current ratings.
- Devices usually have dc (continuous) current ratings, and might also have average ratings, RMS ratings, peak ratings, short-circuit ratings, etc.

Engineering at Illinois

On State

- In the on state, there is a residual voltage, V_{R}. The loss when on is $I_{\text {on }} V_{R}$. On average, the on-state loss is $\mathrm{DI}_{\text {on }} \mathrm{V}_{\mathrm{R}}$ (for constant I).
- The residual voltage might have a fixed component, and also a resistive component.

Engineering at Illinois

Off State

- In the off state, we are concerned with voltage ratings.
- Current ratings are tied to thermal limits in general. (And therefore have a time aspect.)
- Voltage ratings are tied to internal device electric fields. (Instant.)

Engineering at Illinois

Off State

- In the off state, a residual current flows. The loss is $V_{\text {off }} I_{R}$ while off. On average, this is (1-D) $V_{\text {off }}^{R}$ if the voltage is constant.
- If we exceed the voltage limit, avalanche currents are likely. Some devices can handle this.

Off State

- In power electronics, it is very rare to have enough residual current to have an important loss effect.
- Resistive models serve fairly well, but data are sparse.

Engineering at Illinois

Example

- An SCR is used in a three-pulse rectifier. The load current is 50 A . The device has a forward voltage drop of 1.5 V when on.
- Leakage current is about 1 mA with a blocking voltage of 400 V .
- Compare on-state and off-state losses.

Engineering at Illinois

Example

- In the on state, the loss is $\mathrm{D}(50 \mathrm{~A})(1.5 \mathrm{~V})$.
- For three-pulse circuits, $\mathrm{D}=1 / 3$.
- The on-state loss is 25 W .
- In the off state, the loss is $(1-\mathrm{D})(1 \mathrm{~mA})(400 \mathrm{~V})=0.27 \mathrm{~W}$.
- The off-state loss is only 1% of the on-state loss. This is typical.

Commutation State

- Commutation is the transition from on to off (or off to on).
- During this time, the voltage and current are substantial.
- The external circuit has impact on the waveforms.

Engineering at Illinois

- Waveforms in a typical dc-dc converter show high voltages while the current changes.

Engineering at Illinois

Switching Trajectory

- A switching trajectory is a map of I vs. V during commutation.

Off state

- Ideal switching would follow the I and V axes, with no loss.
- This is unrealistic.

Engineering at Illinois

Safe Operating Area

- Devices have a safe operating area in the I-V plane.
- The switching trajectory in general must stay inside the SOA.

Static Models

- A static model uses resistors and voltage drops (static elements) in combination with restricted switches to model real switches.
- This captures on-state and off-state losses well.
- It does not address commutation.

Example: Diode

- Fixed forward drop is a classic (but not very accurate) static model of a diode.
- A much better model is a fixed drop in series with a resistor.
- We can add more elements to follow a curve in detail.

Engineering at Illinois

Example: Diode

- Most static models are piecewise circuits, like these three.

Static Models

- Static models attempt to track results from a curve tracer.
- The extra parts are called static parasitics.
- The objectives are to capture on-state losses, and to capture residual voltage effects on converter operation.

Some Device Cases

- Diode example: ideal diode in series with V_{d} and with R_{d}.
- Typical (high-current) samples have about 1 V if just V_{d} is used.
- With both V and R, a typical case is about 0.75 V in series with a few tens of milliohms.

Some Device Cases

- A real MOSFET is actually bidirectional.
- The model is $\mathrm{R}_{\mathrm{ds}(\text { on })}$ in series with an ideal switch.
- But a reverse-parallel real diode model must be added. Example model: p. 493, with the gate.

Some Device Cases

- An SCR is built as four layers, and looks rather like two diodes in series when on.
- A real device, once on, acts like an ideal diode in series with a somewhat higher voltage drop, and usually a lower R.

Some Device Cases

- An IGBT has limited reverse blocking ability.
- Its construction effectively places a diode in series with a BJT, with a MOSFET to drive the base.
- This results in a FCBB switch with substantial V_{R} and with series R as well.

Engineering at Illinois

Static Models

- Consider, for instance, a boost converter.
- We want 5 V input, 100 kHz switching. The load is 10Ω.
- How high a voltage can be provided, and at what duty?

Converter Model

- We have to recognize that all the devices have static parasitics.
- Take a typical situation: the inductor might have 0.5Ω of resistance. The FET might have 0.1Ω of on-state resistance. The diode might be a 1 V drop. There is ESR as well.

Equations

- With the FET as \#1 and the diode as \#2, the \#1 voltage v_{t} is
$\mathrm{v}_{\mathrm{t}}=\mathrm{q}_{1}\left(\mathrm{I}_{\mathrm{L}} \mathrm{R}_{\mathrm{ds}(\text { on })}\right)+\mathrm{q}_{2}\left(\mathrm{~V}_{\text {out }}+1\right)$.
- The inductor voltage: $V_{\text {in }}-I_{L} R_{L}-v_{t}$. On average, this must be zero.
- Thus $V_{\text {in }}-I_{L} R_{L}=D_{1}\left(I_{L} R_{\text {dson }}\right)+D_{2}\left(V_{\text {out }}+1\right)$.

Engineering at Illinois

Equations

- The diode current: $\mathrm{i}_{\mathrm{d}}=\mathrm{q}_{2} \mathrm{I}_{\mathrm{L}}$.
- On average, this must match the load current $V_{\text {out }} / R_{\text {load }}$.
- Thus $\mathrm{V}_{\text {out }} / \mathrm{R}_{\text {load }}=\mathrm{D}_{2} \mathrm{I}$.
- Combine: $\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }} / \mathrm{R}_{\text {load }} \mathrm{R}_{\mathrm{L}} / \mathrm{D}_{2}=\mathrm{D}_{1} \mathrm{~V}_{\text {out }} / \mathrm{R}_{\text {load }}$ $R_{\text {dson }} / D_{2}+D_{2}\left(V_{\text {out }}+1\right)$.

Equations

- Since $D_{1}+D_{2}=1$, this gives us a relation between $\mathrm{V}_{\text {in }}, \mathrm{D}_{1}$, and $\mathrm{V}_{\text {out }}$.
- We can solve for $\mathrm{V}_{\text {out }}$, then plot it as a function of D_{1}.
- The maximum output is not quite 10 V ! The drop across R_{L} is the largest effect.

Engineering at Illinois

Static Models

- Static models are very important for design, and for guiding the selection of parts.
- This is especially true when a converter is intended to provide boost action.

Switching Losses

- During commutation, voltage and current can be high as each crosses over the other.
- There is an energy loss, $\mathrm{W}_{\text {switch }}$, the integrated $\mathrm{V} \times \mathrm{I}$ product during the commutation state.
- Average loss is $\mathrm{f}_{\text {switch }} \mathrm{W}_{\text {switch }}$.

Switching Losses

- Switching losses often depend on the external circuit.
- Switch-off of inductors tends to yield high loss, etc.
- We can get a better idea with some test cases.

Engineering at Illinois

Linear Commutation

- Linear commutation is a useful test case.
- Here, we assume that the voltage and current change linearly during switching.
- The switching trajectory is also linear.

Engineering at Illinois

- These are time traces based on linear change

Engineering at Illinois

- The switching trajectory can be plotted: a straight line between on and off points.

Linear Commutation

- When the linear action is integrated to get the turn-on and turn-off loss:

$$
\begin{aligned}
W_{\text {switch }} & =\int_{0}^{t_{\text {urn-on }}} I_{\text {on }} / t_{\text {turn-on }} t\left(V_{\text {off }}-V_{\text {off }} / t_{\text {turn-on }} t\right) d t \\
& +\int_{0}^{t_{\text {urn-off }}} V_{\text {off }} / t_{\text {turn-off }} t\left(I_{\text {on }}-I_{\text {on }} / t_{\text {turn-off }} t\right) d t
\end{aligned}
$$

- We can do this integration with a little effort.

Linear Commutation

- The result shows that the energy loss when the switch is operated is:

$$
W_{\text {switch }}=\frac{V_{\text {off }} I_{\text {on }} t_{\text {turn-on }}}{6}+\frac{V_{\text {off }} I_{\text {on }} t_{\text {turn-off }}}{6}
$$

- Define a total switching time or total commutation time, $t_{\text {switch }}=t_{\text {turn-on }}+t_{\text {turn-off. }}$. Then

$$
W_{\text {switch }}=\frac{V_{\text {off }} I_{\text {on }} t_{\text {switch }}}{6}
$$

Engineering at Illinois

Linear Commutation

- This energy is lost in every period, so the average rate of energy loss - the power becomes:
$\mathrm{P}_{\text {switch }}=\mathrm{V}_{\text {off }} \mathrm{l}_{\text {on }} \mathrm{t}_{\text {switch }} \mathrm{f}_{\text {switch }} / 6$.
- The values involved reflect the off-state voltage and the on-state current near the moment of switching.
- Linear commutation is a best case result.

Rectangular Commutation

- In a typical converter, if a true ideal diode were present, the active switch would have to maintain 100% voltage during the current transition.
- The voltage is high as the current changes.

Engineering at Illinois

- (Idealized) waveforms in a typical dc-dc converter show high voltages while the current changes.

Engineering at Illinois

Typical Commutation

- If the switching trajectory is plotted, we get rectangular commutation.

I

Engineering at Illinois

Rectangular Commutation

- It is easy to show that in rectangular commutation, the power loss becomes
$P_{\text {switch }}=V_{\text {offf }} \mathrm{I} \mathrm{t}_{\text {switch }} \mathrm{f}_{\text {switch }} / 2$.
- This is $\left(\mathrm{V}_{\text {off }} \mathrm{I}_{\text {on }} \mathrm{t}_{\text {switch }} / \mathrm{T}\right) / 2$.
- In general, commutation loss is proportional to the product of the off-state voltage and on-state current near the switching instants, and to the ratio of switching time to switching period.

Engineering at Illinois

Commutation

- We can define a commutation parameter, a such that
$\mathrm{P}_{\text {switch }}=\left(\mathrm{V}_{\text {off }}{ }{ }^{\mathrm{t}} \mathrm{t}_{\text {switch }} / \mathrm{T}\right) / \mathrm{a}$.
- Cases:

$$
\begin{aligned}
& a=6 \\
& a=2 \\
& a=1 \text { to } 1.5
\end{aligned}
$$

Linear
Rectangular (and a typical estimate)
Inductive switching

Commutation

- When only a little information is given, a value a $=2$ generally gives a good estimate of the actual loss.
- Notice that the total switching loss should include the on state, the off state, and commutation.

Other Converters

- In more general converters, we need to know the voltage just before turn-on or just after turnoff, and the current just after or just before.
- This would be true if there is no fixed $\mathrm{V}_{\text {off }}$ or $\mathrm{I}_{\text {on }}$.

Engineering at Illinois

Examples

- Dc-dc conversion: a 12 V to 48 V converter at 200 W for an automotive system. The switching frequency is 50 kHz . The inductor and capacitor are well above the critical values.
- Take a MOSFET with 0.05Ω on-state resistance and a diode with 0.8 V in series with $20 \mathrm{~m} \Omega$.
- The switching time is 200 ns .

Engineering at Illinois

Examples

- There is loss, so the efficiency is less than 100%. We can check this later, but let us assume 85% efficiency (typical for such specs) and see what happens.
- $P_{\text {out }}=200 \mathrm{~W}$ and $\eta=85 \%$ so $P_{\text {in }}=235 \mathrm{~W}$.
- Input voltage is 12 V , so input current is (235 $W) /(12 \mathrm{~V})=19.6 \mathrm{~A}$.

Switching Losses

- Commutation loss: $\mathrm{V}_{\text {off }}=48 \mathrm{~V}$, $\mathrm{I}_{\text {on }}=19.6 \mathrm{~A}, \mathrm{t}_{\text {switch }}=200 \mathrm{~ns}, \mathrm{a}=2$.
- $P_{\text {switch }}=4.7 \mathrm{~W}$ for each device.
- On-state loss: The average output current should be $(200 \mathrm{~W}) /(48 \mathrm{~V})=$ 4.17 A, so the duty ratio D_{2} should be 21.3%.

Switching Losses

- Diode loss: The forward drop at 19.6 A will be 1.19 V. The on-state loss is $D_{2}(19.6 \mathrm{~A})(1.19 \mathrm{~V})=$ 4.98 W .
- Transistor loss: The resistance is 0.05Ω when on, so the loss is $D_{1}(19.6 \mathrm{~A})^{2}(0.05 \Omega)=15.1 \mathrm{~W}$.
- Total switching loss: $4.98 \mathrm{~W}+15.1 \mathrm{~W}+4.7 \mathrm{~W}+$ $4.7 \mathrm{~W}=29.5 \mathrm{~W}$.

Example

- Loss in a rectifier. The voltage and current values depend on what is happening at the moment of switching.
- Consider a six-pulse SCR bridge rectifier with 20 A load.
- The devices have on-state forward drop of 1.5 V.
- On-state loss is easy:

$$
\mathrm{D}\left(\mathrm{I}_{\mathrm{on}}\right)\left(\mathrm{V}_{\mathrm{r}}\right)=(20 \mathrm{~A})(1.5 \mathrm{~V}) / 3=10 \mathrm{~W} .
$$

Engineering at Illinois

Example

- Switching loss requires the off-state voltage near the moment of turn-off. The value depends on phase delay angle.
- Turn-off time for an SCR is rather long, while turn-on can be quick.
- The device I am using here has total switching time of about 17 us.

Summary so far

- Static models, plus an estimated commutation parameter, allow a good estimate of losses in a converter.
- Now, the actual duty ratios and other factors can be found to support efficiency estimates and similar analysis.
- In principle, we can analyze nearly any converter and design many types.

P-N Junctions as Power Devices

- Semiconductor devices are formed from junctions of dissimilar materials.
- As we know, such a junction has polaritydependent conduction.
- Metal-semiconductor junctions are Schottky diodes, with limited blocking voltage but low forward drop.

P-N Junctions as Power Devices

- P-N junctions, and also "P-i-N" devices with an internal "intrinsic layer" are suitable for power diodes.
- The current rating depends on area (current density!)
- The voltage rating depends on the depth of the doped regions.

Engineering at Illinois

Dynamics

- When a PN junction is unbiased, the doping provides free charge.
- Near the junction, charges cancel and we have a "depletion region."

Engineering at Illinois

Dynamics

- Notice that we have charges with a spatial separation: a capacitor.
- In forward bias, the imposed voltage drives the charges closer together.
- Current flows as charges actively diffuse into and recombine within the depletion region.

Engineering at Illinois

Diffusion region

- With forward bias, the layer spacing is small and there is much more charge.
- We have a diffusion capacitance with a relatively high value.

Dynamics

- To turn the junction off, and allow it to block once again, the charge must be removed.
- In effect, the diffusion capacitance must be discharged before reverse blocking is supported again.
- The result is a reverse recovery current.

Engineering at Illinois

The discharge process takes time.

Engineering at Illinois

Turn-Off Dynamics

- The model is only approximate, since it is hard to speed up the turn-off process by imposing negative current.
- Most of the charge is removed through recombination .
- Power diodes often have special dopants to provide extra sites for charge recombination.

Engineering at Illinois

Turn-Off Dynamics

- The reverse recovery current is not related to off-state residual current.
- Power diode data sheets often convey information about reverse recovery time, current, or charge values.

Engineering at Illinois

Depletion region

- Once the device is off, a wider depletion layer forms.
- There is a depletion capacitance with a value much lower than for diffusion.

Turn-On Dynamics

- To turn the device on, we must charge up the depletion capacitance and form a smaller depletion region.
- There is a forward recovery time required to set up the charges and get current flowing.
- Forward recovery is always faster than reverse recovery (and rarely specified).

Alternatives

- P-i-N diodes use an additional intrinsic layer.
- This raises the voltage rating, and does not hurt speed.
- It tends to give a slightly higher forward drop.
- Common in power diodes

Alternatives

- Schottky barrier diodes do not function in the same manner.
- Charge must overcome a work function rather than diffuse into a depletion layer.
- The effective capacitances are much lower, and reverse recovery is minimal.
- But, the off-state voltages are low and leakage is high.

Thyristors

- The four-layer PNPN combination was the first type of thyristor. The SCR is most common.
- The action can be modelled with two transistors.
- Historically, the model was actually built and used before the semiconductor was made.

Engineering at Illinois

Two-transistor SCR model.

Engineering at Illinois

Thyristor Action

- When the gate is open, the center N-P combination can block forward voltage, while the others block reverse voltage.
- When gate current is applied, collector current flows in the bottom NPN.
- This applies base current to the top PNP.
- Collector current in the PNP then takes over for the gate.

Thyristor Action

- This is a regeneration process.
- But we notice that three semiconductor junctions must change.
- This requires extended time.
- If a "long" gate pulse is applied (20 us for typical small devices), the regeneration process can work.

Engineering at Illinois

Thyristor Action

- The transistors must have some gain, but it is sufficient if $\beta_{\text {PNP }} \times \beta_{\mathrm{NPN}}>1$.
- This low gain constraint is helpful, because transistor gains are low at very high current densities.
- One problem is that stray capacitance can inject gate current if $\mathrm{dv} / \mathrm{dt}$ is positive.

Gate Requirements

- Thyristors always have limits on $\mathrm{dv} / \mathrm{dt}$ because of possible stray gate pulses.
- To turn off, the anode current must be removed.
- In fact, the gain goes below 1 if the current is low enough.
- We call this minimum value the holding current.

Turn-Off Issues

- In an SCR, turn-off is very slow. Two transistors must shut off, and charge is to be removed from multiple junctions.
- There are few external connections to allow us to force faster turn-off.
- However, a negative gate current can help if the NPN gain is "high."

Engineering at Illinois

GTO

- In a gate-turn-off SCR (a GTO), the junctions are designed to give different gains to the two transistors.
- The NPN is provided with a "high" gain (which might be 5 to 10).
- A negative gate pulse can force the NPN collector current to zero.
- Then the device turns off.

Engineering at Illinois

GTO

- A GTO has a turn-off gain, typically about 5 .
- For a 50 A on-state current, this means a turn-off pulse of 10 A is needed.
- The turn-on pulse is generally just a few milliamps!

Power BJTs

- While power BJTs are getting less common, an understanding of their dynamics helps with other devices.

- Most power BJTs are NPN because the current density is higher.
- The base region is narrow.
- For turn-on, the base-emitter junction first turns on, then base charge forms.

Power BJTs

- Off state: Zero base current (or connect base to a small negative voltage).
- On state: Inject the highest possible base current to drive the device close to saturation.

Power BJTs

- There is a turn-on delay as the base-emitter junction depletion layer is established.
- Then some electrons diffuse into the collector region, and electron flow takes place.
- The gain is low because considerable base charge is needed when the collector current is high.

Power BJTs

- Typically, the gain does not exceed 10, and can be much less.
- For turn-off, there is a challenge:
- When base current is simply removed, base-emitter reverse recovery takes time.
- After reverse recovery, charge in the base and collector recombines to turn off the flow.
- The result is the storage time required to remove all the charge.

Engineering at Illinois

Power BJTs

- Storage time is longer for higher collector current.
- We can speed up turn-off by imposing a negative base current.
- This reduces recovery time, but also gives a circuit path for charge removal.

Engineering at Illinois

Power BJTs: Active Region

- Notice that diodes and thyristors have only switch-like operation: an on state and an off state.
- Diodes and thyristors must commutate, but have no "in-between" operation.
- In contrast, BJTs have an active regime, and we could get stuck there without proper care.

Engineering at Illinois

Power BJTs: Active Region

- With inadequate base current, the collectoremitter drop can be large.
- This produces high losses.
- The tradeoff is that high base current extends the storage time.

Saturation

- We want to be sure the base current is high enough to get into (or close to) saturation - but not too high.
- This is often accomplished through the use of a forced beta value.
- In this case, $\mathrm{i}_{\mathrm{b}}=\mathrm{i}_{\mathrm{c}} / \beta_{\mathrm{f}}$, with β_{f} equal to a low "forced beta" value.

Engineering at Illinois

Anti-Saturation Circuit

- Sometimes a diode is added to divert excess base current. (A "Baker clamp.")

Engineering at Illinois

Fast Operation

- To switch a BJT quickly, we can impose a high base current for fast turn-on, and a negative base current to speed turn-off.

Fast Operation

- In this case, the base current approaches the intended i_{c} during the turn-on pulse.
- Then base current drops to the force beta value.
- The negative pulse helps reduce storage time.
- In typical devices, the rise and fall times are on a 1 microsecond time scale.

Engineering at Illinois

Darlington

- A Darlington pair enhances gain, at the expense of much slower operation.

- Gains of 1000 are possible.

Engineering at Illinois

- Manufacturers often add internal diodes and other parts to try to speed the action of a Darlington pair.

Engineering at Illinois

Field-Effect Transistor

- Power FETs are almost always MOSFETs. The basic structure of a lateral part:

Engineering at Illinois

FET

- The concept is to apply an electric field between gate and source.
- The field strength should be high enough to bring some charge into the channel region.
- The channel region population inverts to give an effective continuous N-type path.
- This acts like a voltage-controlled resistor.

FET Dynamics

- The dynamics do not involve a PN junction.
- Once charge builds up below the gate, conduction can occur.
- The conduction process is simpler than in a BJT: we have formed a resistive path through the material.

FET Dynamics

- The drain current is not arbitrary, however, since voltage drop will interact with the gatesource electric field.
- MOSFETs in general are much faster than BJTs.
- The switching process can be modelled as the process of charging and discharging capacitance.

FET Operation

- Almost all power FETs are enhancement mode devices: They need an imposed field to form the channel.
- We can also build depletion mode devices, in which the channel has some doping, and a reverse field is used to invert it to P-type and turn the device off.

FET Operation

- An enhancement-mode FET acts as a "normally off" switch.
- A depletion-mode FET is a "normally on" switch.
- A drawback is the narrow channel: current flows in just a small region, and current density is very low.

Engineering at Illinois

Structure

Nearly all power FETs today use a vertical structure.

Drain

Engineering at Illinois

Structure

- There is more room for the channel.
- The channel is short -- resistance is low.
- Better current density -- better material use.
- BUT, notice the reverse diode.
- There is also a parasitic NPN transistor, with no connection to the base.
- The source metallization is set up to short the base and emitter so the NPN will not turn on.

Parallel Operation

- It would be useful to operate BJTs or FETs in parallel to enhance current capability.
- For the FET, this is easy. In silicon, resistance increases with temperature, and the electron flow will divide evenly among devices.

Parallel Operation

- For a BJT, this is more problematic. The carriers flow in P-type material, and the temperature coefficient of resistance is negative.
- This means that locally higher current might lead to local heating and even higher current current focusing.

Parallel Operation

- Therefore, power FETs are always built as arrays of multiple cells.
- BJTs are single devices.
- It is hard (but possible) to use BJTs in parallel.

Engineering at Illinois

IGBTs

- The IGBT attempts to gain the larger current density advantage of the BJT and also the convenient switching action of the FET.
- This is rather like a Darlington combination of FET and BJT.

Engineering at Illinois

IGBTs

- IGBTs have ratings substantially higher than those of FETs of similar size.
- They are easy to use because of the voltagebased gate switching.
- Speed issues are dominated by the BJT.
- The Darlington arrangement leads to forward drop of 1.5 V or more.

Engineering at Illinois

Wrap-Up

- We have covered
- Concepts
- Converters
- Connections
- Devices
- These have brought together a wide range of electrical engineering topics to form a field of endeavor.

Wrap-Up

- Within the next several years, power electronic circuits and systems will dominate the processing and use of electrical energy.
- The field asks you to gain a new perspective on electrical circuits, their design, and their meaning.

Wrap-Up

- I hope you will have the opportunity to apply your knowledge.
- Even at a more general level, I strongly believe that the concepts and topics are helpful across many areas of electrical engineering.
- Thank you for participating in this course!

