Lecture 39 - final exam review

Mark Hasegawa-Johnson
5/4/2020

Facts about the final exam

- Final exam will be on Compass.
- The regular section is $7-10 \mathrm{pm}$ on May 13.
- Alternate exam is 7-10am May 13; if you prefer 7am, please e-mail the instructor.
- Exam is open-book, open-notes, open-internet. You can search for a solution on-line, but you MAY NOT ASK FOR HELP from another human being.
- Exception: you can ask the instructors, if you have a question. Piazza will be locked so that it ONLY accepts private posts to the instructors; please use piazza if you have questions during the exam.

Topics covered

There will be approximately 20 questions on the exam (at most two parts per question), distributed as follows:

- Part 1 of the course (Search-based AI): ~ 4 questions
- Part 2 of the course (Probability-based AI): ~ 4 questions
- Part 3 of the course (Learning-based AI): ~ 12 questions

Material from part 1 of the course

- Search (BFS, DFS, UCS, Greedy, A*): lectures 2-4
- Constraint satisfaction problems \& planning: lectures 5 and 8
- Robots/configuration space: lectures 6-7
- Two-player games (minimax and alpha-beta): lectures 9-10

Material from part 2 of the course

- Probability \& Naïve Bayes: lectures 12,14
- Bayes Nets: lectures 15, 16
- Natural language and Computer vision: lectures 17, 20
- HMMs: lectures 18, 19

Material from part 3 of the course

- Linear classifiers, KNN, Perceptron: lectures 22, 25, 26
- Differentiable loss functions \& Deep neural networks (logistic regression, softmax, cross-entropy loss, back-propagation): lectures 26-28
- MDP (Bellman's equation, value iteration, policy iteration) \& Reinforcement learning (model-based, Q-learning, deep Q-learning, actor-critic): lectures 29-32
- RL for two-player games, games of chance, imperfect information: lectures 33-34
- Game theory \& Mechanism design: lectures 35-36

Linear classifiers

- $y^{*}=\operatorname{sgn}\left(w_{1} x_{1}+\cdots+w_{D} x_{D}+b\right)=\operatorname{sgn}\left(\vec{w}^{T} \vec{x}\right)$
- A linear classifier can learn many types of binary functions (e.g., AND, OR, NOT), but it can't learn XOR.
- Perceptron:
- If $y_{i}=y_{i}^{*}$ then do nothing.
- If $y_{i} \neq y_{i}^{*}$ then set $\vec{w}=\vec{w}+\eta y_{i} \vec{x}_{i}$
- If the data are linearly separable, perceptron converges with $\eta=1$. If not, you need a decreasing η, e.g., $\eta=\frac{1}{n}$.
- K-nearest neighbors (KNN):
- Find the K training tokens closest to the test token. Have them vote: majority label is the label of the test token.
- Result is a piece-wise linear classifier because the

By Smok Bazyli - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index. php?curid=16864492 boundary between the features where training token \#1 is closest, vs. training token \#2 closest, is a line.

Deep neural networks

- Each excitation is a linear combination of the previous node's activations:

$$
\beta_{k i}^{(l)}=\sum_{j=1}^{N+1} w_{k j}^{(l)} h_{j i}^{(l-1)}
$$

...where $w_{k j}^{(l)}$ is called a "network weight," and will be learned using back-propagation.

- Each activation is a scalar nonlinearity applied to the excitation:

$$
h_{k i}^{(l)}=g\left(\beta_{k i}^{(l)}\right)
$$

...where $g(\cdot)$ is called the "activation function;" it needs to be chosen in advance by the network designer.

Softmax

Input
Weights

Training target is a one-hot vector:

$$
\vec{y}=[0, \ldots, 0,1,0, \ldots, 0]
$$

Classifier output is
$\vec{y}^{*}=\left[y_{0}^{*}, \ldots, y_{V-1}^{*}\right]$, where $y_{c}^{*}=\frac{\exp \left(\vec{w}_{c}^{T} \vec{x}\right)}{\sum_{j=0}^{V=1} \exp \left(\vec{w}_{j}^{T} \vec{x}\right)}$

We usually train using the cross-entropy loss, also known as negative log-likelihood:

$$
\mathrm{L}=-\frac{1}{n} \sum_{i=1}^{n} \sum_{c=0}^{V-1} y_{c} \ln y_{c}^{*}
$$

The derivative of L w.r.t. W has a surprisingly simple form:

$$
\frac{d L}{d w_{c d}}=-\frac{1}{n} \sum_{i=1}^{n}\left(y_{c}-y_{c}^{*}\right) x_{d}
$$

Markov Decision Process

- MDP defined by states, actions, transition model, reward function
- The "solution" to an MDP is the policy: what do you do when you're in any given state
- The Bellman equation :

$$
U(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right)
$$

- Value iteration:
- Start with $U^{(0)}(s)=0$

Grid World drawings © Peter Abbeel and Dan Klein, UC Berkeley CS 188

- $U^{(t+1)}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U^{(t)}\left(s^{\prime}\right)$
- Policy iteration:
- Start with arbitrary $\pi^{(0)}(s)$
- $U^{(t)}(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi^{(t)}(s)\right) U^{(t)}\left(s^{\prime}\right)$
- $\pi^{(t+1)}(s)=\operatorname{argmax} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U^{(t)}\left(s^{\prime}\right)$

Model-based reinforcement learning

- Start with an initial policy that includes some randomness, governed by an "exploration vs. exploitation" tradeoff, e.g., epsilon-greedy or epsilon-first
- Test a few actions, and observe the results
- Based on those results, estimate a model: a lookup table (or neural network estimate) of the transition probabilities $P\left(s^{\prime} \mid s, a\right)$, and of the reward function $R(s)$.
- Based on the model, use value iteration or policy iteration to update your policy.
- ... and repeat this loop, as often as you can.

Model-free reinforcement learning, e.g., Q-learning

Putting it all together, here's the whole TD learning algorithm:

1. When you reach state s, use your current exploration versus exploitation policy, $\pi_{t}(s)$, to choose some action $a=\pi_{t}(s)$.
2. Observe the state s' that you end up in, and the reward you receive, and then calculate Qlocal:
$Q_{\text {local }}(s, a)=R_{t}(s)+\gamma \max _{a \prime \in A\left(s^{\prime}\right)} Q_{t}\left(s^{\prime}, a^{\prime}\right)$
3. Calculate the time difference, and update:
$Q_{t+1}(s, a)=Q_{t}(s, a)+\alpha\left(Q_{\text {local }}(s, a)-Q_{t}(s, a)\right)$

Repeat.

Deep Q-learning and Actor-Critic Learning

1. What is deep Q-learning?
2. How to make Q-learning converge to the best answer?
3. How to make it converge more smoothly?
4. What are policy learning and actor-critic networks?
5. What is imitation learning?
6. Estimate $Q(s, a)$ using a neural net, with Qlocal as training signals.
7. Epsilon-greedy usually works.
8. Experience replay.
9. Actor network: $\operatorname{Pr}(a$ is the best action). Critic network: $Q(s, a)$, used only to train the actor.
10. Learn to imitate an expert player.

RL for two-player games

- Review: minimax and alpha-beta
- Complexity: $(2 b-1)^{d / 2}=O\left\{b^{d / 2}\right\}$ with depth d and branching factor b, if the children of each node are ordered just right (MAX: largest first, MIN: smallest first)
- Move ordering: policy network
- Can be used to order the children, with no loss of accuracy; Can also limit the set of moves evaluated, with some loss of accuracy
- Evaluation function: value network
- Estimates the value of each board position in limitedhorizon search
- Exact value: endgames
- Minimax search backward from a set of known terminal positions
- Stochastic training: Monte Carlo tree search
- Choose a policy that includes exploration vs. exploitation, play games at random, use the data to
 estimate win frequency

Games of chance and

 imperfect informationStochastic games: Expectiminimax

$$
\begin{aligned}
U(s) & =\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right) \\
U\left(s^{\prime}\right) & =\min _{a^{\prime}} \sum_{s^{\prime \prime}} P\left(s^{\prime \prime} \mid s^{\prime}, a^{\prime}\right) U\left(s^{\prime \prime}\right)
\end{aligned}
$$

Imperfect information: belief states

$$
\begin{gathered}
\operatorname{PREDICT}(b, a)=\left\{s^{\prime}: s \in b, s^{\prime}=\operatorname{RESULT}(s, a)\right\} \\
\operatorname{UPDATE}(b, o)=\{s: s \in b, o=\operatorname{PERCEPT}(s)\}
\end{gathered}
$$

Game Theory

- Dominant strategy

- a strategy that's optimal for one player, regardless of what the other player does
- Not all games have dominant strategies
- Nash equilibrium
- an outcome (one action by each player) such that, knowing the other player's action, each player has no reason to change their own action
- Every game with a finite set of actions has at least one Nash equilibrium, though it might be a mixed-strategy equilibrium.
- Pareto optimal
- an outcome such that neither player would be able to win more without simultaneously forcing the other player to lose more
- Every game has at least one Pareto optimal outcome. Usually there are many, representing different tradeoffs between the two players.
- Mixed strategies
- A mixed strategy is optimal only if there's no reason to prefer one action over the other, i.e., if $0 \leq p \leq 1$ and $0 \leq q \leq 1$ such that:

$$
\begin{aligned}
& (1-p) w+p x=(1-p) y+p z \\
& (1-q) a+q c=(1-q) b+q d
\end{aligned}
$$

Straight

Chicken

Mechanism Design

- Nash equilibrium occurs if:
- All players have sufficient computation
- All available actions listed in the payoff matrix
- Payoff matrix lists true outcome values
- Iterated games:
- Fixed \# games: start from the end, plan backward
- Random \# games: maximize expected gain
- Nash Equilibrium in various auctions:
- English auction: $b_{i}=d+\max _{j \neq i} v_{j}$ iff $v_{i}>\max _{j \neq i} v_{j}$

- Sealed Bid: $b_{i}=d+\max _{j \neq i} p_{i j}$ iff $v_{i}>\max _{j \neq i} p_{i j}$
- Second-Price: $b_{i}=v_{i}$, all players
- VCG mechanism to avoid tragedy of the commons: each unsuccessful bidder pays nothing; each successful bidder pays b_{N+1}.

Some sample problems

- Linear classifiers: practice exam problem 4 (today)
- DNNs: next lecture, probably l'll write a new practice problem
- Q-learning: next lecture, probably I'll write a new practice problem
- Games of chance \& imperfect information: next lecture
- Game theory \& Mechanism design: next lecture

Practice Exam Problem 4

You are a Hollywood producer. You have a script in your hand, and you want to make a movie. Before starting, however, you want to predict if the movie you want to make will rake in huge profits, or utterly fail at the box office. You hire two critics A and B to read the script and rate it on a scale of 1 to 5 (assume only integer scores). Each critic reads it independently and announces their verdict. Of course, the critics might be biased and/or not perfect, therefore you may not be able to simply average their scores. Instead, you decide to use a perceptron toclassify your data. There are three features: a constant bias, and the two reviewer scores. Thus $\mathrm{fO}=1$ (a constant bias), $\mathrm{f} 1=$ score given by reviewer A , and f 2 = score given by reviewer B.

Movie Name	A	B	Profit?
Pellet Power	1	1	No
Ghosts!	3	2	Yes
Pac is bac	4	5	No
Not a pizza	3	4	Yes
Endless Maze	2	3	Yes

Practice Exam Problem 4

(a) Train the perceptron to generate $Y^{*}=1$ if the movie returns a profit, $Y^{*}=-1$ otherwise. The initial weights are $w 0=-1, \mathrm{w} 1$ $=0, w 2=0$. Present each row of the table as a training token and update the perceptron weights before moving on to the next row. Use a learning rate of eta=1. After each of the training examples has been presented once (one epoch), what are the weights?

Movie Name	A	B	Profit?
Pellet Power	1	1	No
Ghosts!	3	2	Yes
Pac is bac	4	5	No
Not a pizza	3	4	Yes
Endless Maze	2	3	Yes

Practice Exam Problem 4

Iterati on	Weights	$y^{*}=$ $\operatorname{sgn}\left(\vec{w}^{T} \vec{x}\right)$	Change weights?	
1	$[-1,0,0]$	-1	No	
2	$[-1,0,0]$	-1	Yes	$[1,3,2]$
3	$[0,3,2]$	+1	Yes	$[-1,-4,-5]$
4	$[-1,-1,-3]$	-1	Yes	$[1,3,4]$
5	$[0,2,1]$	+1	No	

Movie Name	A	B	Profit?
Pellet Power	1	1	No
Ghosts!	3	2	Yes
Pac is bac	4	5	No
Not a pizza	3	4	Yes
Endless Maze	2	3	Yes

Practice Exam Problem 4

(b) Suppose that, instead of learning whether the movie is profitable, you want to learn a perceptron that will always output $Y^{*}=+1$ when the total of the two reviewer scores is more than 8 , and $Y^{*}=-1$ otherwise. Is this possible? If so, what are the weights w 0 , w 1 , and w 2 that will make this possible?

Movie Name	A	B	Profit?
Pellet Power	1	1	No
Ghosts!	3	2	Yes
Pac is bac	4	5	No
Not a pizza	3	4	Yes
Endless Maze	2	3	Yes

Practice Exam Problem 4

(b) Suppose that, instead of learning whether the movie is profitable, you want to learn a perceptron that will always output

$$
Y^{*}=\operatorname{sgn}(A+B-8)
$$

($\mathrm{Y}^{*}=+1$ when the total of the two reviewer scores is more than 8 , and $Y^{*}=-1$ otherwise). Is this possible?

Movie Name	A	B	Profit?
Pellet Power	1	1	No
Ghosts!	3	2	Yes
Pac is bac	4	5	No
Not a pizza	3	4	Yes
Endless Maze	2	3	Yes

Answer: yes, sure. For example,

$$
w_{0}=-8, w_{1}=1, w_{2}=1
$$

Practice Exam Problem 4

(c) Instead of either part (a) or part (b), suppose you want to learn a perceptron that will always output $Y^{*}=+1$ when the two reviewers agree (when their scores are exactly the same), and will output $Y^{*}=-1$ otherwise. Is this possible? If so, what are the weights w 0 , w 1 and w 2 that will make this possible?

Movie Name	A	B	Profit?
Pellet Power	1	1	No
Ghosts!	3	2	Yes
Pac is bac	4	5	No
Not a pizza	3	4	Yes
Endless Maze	2	3	Yes

