Lecture 39 — final exam
review

Mark Hasegawa-Johnson
5/4/2020

Facts about the final exam

* Final exam will be on Compass.

* The regular section is 7-10pm on May 13.

* Alternate exam is 7-10am May 13; if you prefer 7am, please e-mail the
instructor.

* Exam is open-book, open-notes, open-internet. You can search for a
solution on-line, but you MAY NOT ASK FOR HELP from another

human being.
* Exception: you can ask the instructors, if you have a question. Piazza

will be locked so that it ONLY accepts private posts to the instructors;
please use piazza if you have questions during the exam.

Topics covered

There will be approximately 20 questions on the exam (at most two
parts per question), distributed as follows:

 Part 1 of the course (Search-based Al): ~4 questions
 Part 2 of the course (Probability-based Al): ~4 questions
 Part 3 of the course (Learning-based Al): ~12 questions

Material from part 1 of the course

 Search (BFS, DFS, UCS, Greedy, A*): lectures 2-4

* Constraint satisfaction problems & planning: lectures 5 and 8
* Robots/configuration space: lectures 6-7

e Two-player games (minimax and alpha-beta): lectures 9-10

Material from part 2 of the course

* Probability & Naive Bayes: lectures 12, 14

* Bayes Nets: lectures 15, 16
* Natural language and Computer vision: lectures 17, 20

e HMMis: lectures 18, 19

Material from part 3 of the course

* Linear classifiers, KNN, Perceptron: lectures 22, 25, 26

e Differentiable loss functions & Deep neural networks (logistic
regression, softmax, cross-entropy loss, back-propagation): lectures
26-28

 MDP (Bellman’s equation, value iteration, policy iteration) &
Reinforcement learning (model-based, Q-learning, deep Q-learning,
actor-critic): lectures 29-32

 RL for two-player games, games of chance, imperfect information:
lectures 33-34

* Game theory & Mechanism design: lectures 35-36

Linear classifiers

By Smok Bazyli - Own work, CC BY-SA 3.0,
° y* = Sgn (Wlxl + .o 4 WDxD + b) = Sgn (WT)_C)) https://commons.wikimedia.org/w/index.
php?curid=16864492

A linear classifier can learn many types of binary functions

X
(e.g., AND, OR, NOT), but it can’t learn XOR. ?

* Perceptron:
By Mand - This fil derived fi
* If y; =y then do nothing. Maine Coon female 2 g, CC BY-SA 4.0
I;k N N N https://commons.wikimedia.org/w/index.p \
e |If Vi * Vi thenset w = w + nyiXi p?curid=7938914 \
 If the data are linearly separable, perceptron converges \

withn = 1. If not, you need a decreasing n, e.g., 1 = %

K-nearest neighbors (KNN):

* Find the K training tokens closest to the test token. Have N
them vote: majority label is the label of the test token. commanswl

https://commons.wikimedia.

. pe org/w/index.php?curid=550
* Result is a piece-wise linear classifier because the 84303

boundary between the features where training token #1
is closest, vs. training token #2 closest, is a line.

Deep neural networks

* Each excitation is a linear combination of the previous
node’s activations:

N+1

{0 _ (D), (1-1)

ki — Z Wi hji
Jj=1

...where ng-) is called a “network weight,” and will be
learned using back-propagation.

* Each activation is a scalar nonlinearity applied to the

excitation:
o _)
hei =9 (ki)

..where g(-) is called the “activation function;” it needs
to be chosen in advance by the network designer.

Training target is a one-hot vector:

Softmax % =1[0,...,0,1,0, .., 0]
Classifier output is
Input 4 . * * * __ exp(ng)
Weights V' = Do yyal whereye = o TR

We usually train using the cross-entropy loss,

also known as negative log-likelihood:
Output: n V-1

softmax?=3 (Wl%) 1 x
’ L=_£223’c1n37c

i=1 c=0

The derivative of L w.r.t. W has a surprisingly
simple form:

Xp Wy_1p dL _ 1i .
v n. 1(yc Ve)Xq
1=

Markov Decision Process

* MDP defined by states, actions, transition model, reward
function

* The “solution” to an MDP is the policy: what do you do
when you’re in any given state

* The Bellman equation:
U(s) = R(s) + ymaxz P(s'|s,a)U(s")
a
S/

 Value iteration:
« Start with U@ (s) =0
« UHD(s) = R(s) + y max Y, P(s'|s,a)UD(s")
a
* Policy iteration:
« Start with arbitrary 7(9(s)
« UO(s) =R(s) +y X P(s'|s, O (s)) UD(s")
« 71+ (s) = argmax Y, P(s’|s,a)UD(s")
a

Grid World drawings © Peter Abbeel
and Dan Klein, UC Berkeley CS 188

Model-based reinforcement learning

e Start with an initial policy that includes some
randomness, governed by an “exploration vs.
exploitation” tradeoff, e.g., epsilon-greedy or
epsilon-first

* Test a few actions, and observe the results

* Based on those results, estimate a model: a .
lookup table (or neural network estimate) of

widely circulated in the public domain,

the transition probabilities P(s’|s, a), and of g i g o
the reward function R(s).

* Based on the model, use value iteration or
policy iteration to update your policy.

* ... and repeat this loop, as often as you can.

Model-free reinforcement learning, e.g., Q-learning

Pluttin it all together, here’s the whole TD learning 0.78 0.83 0.88
algorithm:
0.77<0.81 0.78<0.87|0.81<0.92
1. When you reach state s, use your current 0.74 0.83 0.68
exploration versus exploitation policy, . (s), i

to choose some action a = m:(s).

0.66

2. Observe the state s’ that you end up in, and
the reward you receive, and then calculate
Qlocal:

Qiocar(s,a) = Re(s) +y arlélfla()é/) Q¢(s’,a’) 0.62 -0.74
3. Calculate the time difference, and update: 0.66<0.58 0.39<0.21
Qt+1(si Cl) = Qt(sr Cl) + a(Qlocal(S: Cl) - Qt(sr Cl)) 0.62 0.37

Repeat.

What is deep Q-learning?

How to make Q-learning
converge to the best answer?

How to make it converge more
smoothly?

What are policy learning and
actor-critic networks?

What is imitation learning?

Deep Q-learning and Actor-Critic Learning

Estimate Q(s,a) using a neural
net, with Qlocal as training
signals.

Epsilon-greedy usually works.
Experience replay.

Actor network:
Pr(a is the best action). Critic
network: Q(s,a), used only to
train the actor.

Learn to imitate an expert
player.

RL for two-player games

Review: minimax and alpha-beta

« Complexity: (2b — 1)%/?= 0{b%/?} with depth d and
branching factor b, if the children of each node are
ordered just right (MAX: largest first, MIN: smallest first)

Move ordering: policy network

* Can be used to order the children, with no loss of
accuracy; Can also limit the set of moves evaluated,
with some loss of accuracy

Evaluation function: value network
* Estimates the value of each board position in limited-
horizon search
Exact value: endgames
* Minimax search backward from a set of known terminal
positions
Stochastic training: Monte Carlo tree search

* Choose a polic?/ that includes exploration vs.
exploitation, play games at random, use the data to
estimate win frequency

Games of chance and
imperfect information

Stochastic games: Expectiminimax

U(s) = mc?xz P(s'ls,a)U(s") !

-1 -
U(S)=rr6111’n2P(s |s’,a)U(s"") TAH
S/

0-2-20200220020-2-20

Imperfect information: belief states ? ? ?
P

PREDICT(b,a) = {s':s € b,s'" = RESULT (s, a)}
UPDATE(b,0) = {s:s € b,0 = PERCEPT(s)} Y,

Player 1

Game Theory o

* Dominant strategy ®

* astrategy that’s optimal for one player, regardless of what the
other player does

* Not all games have dominant strategies

* Nash equilibrium

* an outcome (one action by each player) such that, knowing the
other player’s action, each player has no reason to change their
own action

* Every game with a finite set of actions has at least one Nash
equilibrium, though it might be a mixed-strategy equilibrium.
* Pareto optimal

* an outcome such that neither player would be able to win more
without simultaneously forcing the other player to lose more

* Every game has at least one Pareto optimal outcome. Usually there

are many, representing different tradeoffs between the two players.

* Mixed strategies

* A mixed strategy is optimal only if there’s no reason to prefer one
action over the other, i.e,, if 0 <p < 1and 0 < q < 1 such that:

A-pw+px=A-p)y +pz
(1-q@a+qc=(1-qb+qd

Straight

Chicken ‘

ﬁ

Straight

Chicken

-10

-1

Mechanism Design

3 = ok
* Nash equilibrium occurs if: & s o &l
* All players have sufficient computation ol o &ﬁw ’ A % \
* All available actions listed in the payoff matrix &l ;
* Payoff matrix lists true outcome values 7 ﬁ v ok

* |terated games:
* Fixed # games: start from the end, plan backward
* Random # games: maximize expected gain

* Nash Equilibrium in various auctions: ,).
* English auction: b; = d + maxv; iff v; > maxv; L
* Sealed Bid: b; = d + max p;; iff v; > maxp;;
J#i J#i

e Second-Price: b; = v;, all players

* VCG mechanism to avoid tragedy of the
commons: each unsuccessful bidder pays
nothing; each successful bidder pays by, 1.

Some sample problems

* Linear classifiers: practice exam problem 4 (today)

* DNNs: next lecture, probably I'll write a new practice problem

* Q-learning: next lecture, probably I'll write a new practice problem
* Games of chance & imperfect information: next lecture

* Game theory & Mechanism design: next lecture

Practice Exam Problem 4

You are a HoIIKwood producer. You have a
script in your hand, and you want to make a
movie. Before starting, however, you want
to predict if the movie you want to make
will rake in huge profits, or utterly fail at the
box office. You hire two critics A and B to
read the script and rate it on a scale of 1 to
5 (assume only integer scores). Each critic
reads it independently and announces their
verdict. Of course, the critics might be
biased and/or not perfect, therefore you
may not be able to simply average their
scores. Instead, you decide to use a
perceptron toclassify your data. There are
three features: a constant bias, and the two
reviewer scores. Thus fO = 1 (a constant
bias), f1 = score given by reviewer A, and f2
= score given by reviewer B.

Movie
Name

Pellet
Power

Ghosts!
Pac is bac

Not a
pizza

Endless
Maze

1

3
4

-
1 No

2 Yes

No
4 Yes
3 Yes

Practice Exam Problem 4

(a) Train the perceptron to
generate Y* = 1 if the movie
returns a profit, Y* = -1 otherwise.
The initial weights are w0 =-1,w1l
=0,w2 = 0. Present each row of
the table as a training token and
update the perceptron weights
before moving on to the next row.
Use a learning rate of eta=1. After
each of the training examples has
been presented once (one epoch),
what are the weights?

Movie
Name

Pellet
Power

Ghosts!
Pac is bac

Not a
pizza

Endless
Maze

1

3
4
3

-
1 No

2 Yes
5 No
4 Yes
3 Yes

Practice Exam Problem 4

Change Movie Profit?
weights? Name
1 No

Pellet 1
1 [—1,0,0] -1 No Power
2 [—1,0,0] -1 Yes [1,3,2] Ghosts! 3 2 Yes
3 [0,3,2] +1 Yes [—1,—4, 5] Pacisbac 4 5 No
4 [-1,—-1,-3] -1 Yes [1,3,4] Not a 3 4 Yes
5 [0,2,1] +1 No e

Endless 2 3 Yes

Maze

Practice Exam Problem 4

(b) Suppose that, instead of
learning whether the movie is
profitable, you want to learn a
perceptron that will always output
Y* = +1 when the total of the two
reviewer scores is more than 8§,
and Y* = -1 otherwise. Is this
possible? If so, what are the
weights w0, w1, and w2 that will
make this possible?

Movie
Name

Pellet
Power

Ghosts!
Pac is bac

Not a
pizza

Endless
Maze

1

3
4
3

-
1 No

2 Yes
5 No
4 Yes
3 Yes

Practice Exam Problem 4

(b) Suppose that, instead of
learning whether the movie is
profitable, you want to learn a
perceptron that will always output
Y*=sgn(A+ B — 8)

(Y* = +1 when the total of the two

reviewer scores is more than 8§,

and Y* = -1 otherwise). Is this

possible?

Answer: yes, sure. For example,
Wqp = —8,W1 — 1,W2 =1

Movie
Name

Pellet
Power

Ghosts!
Pac is bac

Not a
pizza

Endless
Maze

1

3
4
3

-
1 No

2 Yes
5 No
4 Yes
3 Yes

Practice Exam Problem 4

(c) Instead of either part (a) or
part (b), suppose you want to
learn a perceptron that will always
output Y*= +1 when the two
reviewers agree (when their
scores are exactly the same), and
will output Y*=-1 otherwise. Is
this possible? If so, what are the
weights w0, wl and w2 that will
make this possible?

Movie
Name

Pellet
Power

Ghosts!
Pac is bac

Not a
pizza

Endless
Maze

1

3
4
3

-
1 No

2 Yes
5 No
4 Yes
3 Yes

/2

: ® The XOR
Practice Exam Problem 4 oroblem
) O " h
(c)
. 11 A—B=0 .
= {—1 otherwise f2 This
s this possible? If so, what are the problem

weights w0, wl and w2 that will
make this possible?

Answer: NO. This is basically the
XOR problem (but in reverse).
There is no linear classifier that
can solve this problem.

o N N X
e OO0
eo0000O
eo0000

o
o
O
O
o

“l - f

