
Lecture 39 – final exam
review

Mark Hasegawa-Johnson
5/4/2020

Facts about the final exam

• Final exam will be on Compass.
• The regular section is 7-10pm on May 13.

• Alternate exam is 7-10am May 13; if you prefer 7am, please e-mail the
instructor.

• Exam is open-book, open-notes, open-internet. You can search for a
solution on-line, but you MAY NOT ASK FOR HELP from another
human being.
• Exception: you can ask the instructors, if you have a question. Piazza

will be locked so that it ONLY accepts private posts to the instructors;
please use piazza if you have questions during the exam.

Topics covered

There will be approximately 20 questions on the exam (at most two
parts per question), distributed as follows:
• Part 1 of the course (Search-based AI): ~4 questions
• Part 2 of the course (Probability-based AI): ~4 questions
• Part 3 of the course (Learning-based AI): ~12 questions

Material from part 1 of the course

• Search (BFS, DFS, UCS, Greedy, A*): lectures 2-4
• Constraint satisfaction problems & planning: lectures 5 and 8
• Robots/configuration space: lectures 6-7
• Two-player games (minimax and alpha-beta): lectures 9-10

Material from part 2 of the course

• Probability & Naïve Bayes: lectures 12, 14
• Bayes Nets: lectures 15, 16
• Natural language and Computer vision: lectures 17, 20
• HMMs: lectures 18, 19

Material from part 3 of the course

• Linear classifiers, KNN, Perceptron: lectures 22, 25, 26
• Differentiable loss functions & Deep neural networks (logistic

regression, softmax, cross-entropy loss, back-propagation): lectures
26-28
• MDP (Bellman’s equation, value iteration, policy iteration) &

Reinforcement learning (model-based, Q-learning, deep Q-learning,
actor-critic): lectures 29-32
• RL for two-player games, games of chance, imperfect information:

lectures 33-34
• Game theory & Mechanism design: lectures 35-36

Linear classifiers
• 𝑦∗ = sgn 𝑤1𝑥1+⋯+ 𝑤𝐷𝑥𝐷 + 𝑏 = sgn(𝑤"𝑥⃗)

• A linear classifier can learn many types of binary functions
(e.g., AND, OR, NOT), but it can’t learn XOR.

• Perceptron:
• If 𝑦# = 𝑦#∗ then do nothing.
• If 𝑦# ≠ 𝑦#∗ then set 𝑤 = 𝑤 + 𝜂𝑦#𝑥⃗#
• If the data are linearly separable, perceptron converges

with 𝜂 = 1. If not, you need a decreasing 𝜂, e.g., 𝜂 = $
%
.

• K-nearest neighbors (KNN):
• Find the K training tokens closest to the test token. Have

them vote: majority label is the label of the test token.
• Result is a piece-wise linear classifier because the

boundary between the features where training token #1
is closest, vs. training token #2 closest, is a line.

𝑥#

𝑥$
CC BY-SA 4.0,

https://commons.wikimedia.
org/w/index.php?curid=550

84303

By Smok Bazyli - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.
php?curid=16864492

By Mandruss - This file was derived from:
Maine Coon female 2.jpg, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.ph
p?curid=79389146

Deep neural networks
• Each excitation is a linear combination of the previous

node’s activations:

𝛽!"
($) = #

&'(

)*(

𝑤!&
($)ℎ&"

($+()

…where 𝑤!&
($) is called a “network weight,” and will be

learned using back-propagation.

• Each activation is a scalar nonlinearity applied to the
excitation:

ℎ!"
($) = 𝑔 𝛽!"

($)

…where 𝑔 ' is called the “activation function;” it needs
to be chosen in advance by the network designer.

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗

1

1

Softmax

1

x1

xD

x2

Input
Weights

.

.

.

Output:
softmax%&'()$ 𝑤%*𝑥⃗

Training target is a one-hot vector:
𝑦⃗ = [0, … , 0,1,0, … , 0]

Classifier output is

𝑦⃗∗ = 𝑦"∗, … , 𝑦#$%∗ , where 𝑦&∗ =
'() *+,,⃗

∑-./
012 '() *-

,,⃗

We usually train using the cross-entropy loss,
also known as negative log-likelihood:

L = −
1
𝑛
3
./%

0

3
&/"

#$%

𝑦& ln 𝑦&∗

The derivative of L w.r.t. W has a surprisingly
simple form:

𝑑𝐿
𝑑𝑤&1

= −
1
𝑛
3
./%

0

(𝑦& − 𝑦&∗)𝑥1

.

.

.

𝑏'𝑏$

𝑤'3

𝑏()$

𝑤$3
𝑤()$,3

softm
ax

.

.

.

Markov Decision Process
• MDP defined by states, actions, transition model, reward

function
• The “solution” to an MDP is the policy: what do you do

when you’re in any given state
• The Bellman equation :

𝑈 𝑠 = 𝑅 𝑠 + 𝛾max
,
#
-.

𝑃 𝑠. 𝑠, 𝑎 𝑈(𝑠.)

• Value iteration:
• Start with 𝑈(') 𝑠 = 0
• 𝑈(78$) 𝑠 = 𝑅 𝑠 + 𝛾max

9
∑:;𝑃 𝑠; 𝑠, 𝑎 𝑈(7)(𝑠;)

• Policy iteration:
• Start with arbitrary 𝜋(') 𝑠
• 𝑈(7) 𝑠 = 𝑅 𝑠 + 𝛾 ∑:;𝑃 𝑠; 𝑠, 𝜋(7) 𝑠 𝑈(7)(𝑠;)
• 𝜋(78$) 𝑠 = argmax

9
∑:;𝑃 𝑠; 𝑠, 𝑎 𝑈(7)(𝑠;)

Grid World drawings © Peter Abbeel
and Dan Klein, UC Berkeley CS 188

Model-based reinforcement learning
• Start with an initial policy that includes some

randomness, governed by an “exploration vs.
exploitation” tradeoff, e.g., epsilon-greedy or
epsilon-first
• Test a few actions, and observe the results
• Based on those results, estimate a model: a

lookup table (or neural network estimate) of
the transition probabilities 𝑃(𝑠’|𝑠, 𝑎), and of
the reward function 𝑅(𝑠).
• Based on the model, use value iteration or

policy iteration to update your policy.
• … and repeat this loop, as often as you can.

© Bell Labs, part of a press release,
widely circulated in the public domain,

https://en.wikipedia.org/w/index.php?c
urid=4289542

0.78
0.77 0.81

0.74

0.83
0.78 0.87

0.83

0.88
0.81 0.92

0.68
0.66

0.64 -.69
0.42

-0.74
0.39 0.21

0.37

0.59
0.61 0.40

0.55

0.62
0.66 0.58

0.62

0.71
0.67 0.63

0.66

0.76
0.72 0.72

0.68

Model-free reinforcement learning, e.g., Q-learning

𝑸𝒕3𝟏 𝒔, 𝒂

= 𝑸𝒕 𝒔, 𝒂 + 𝜶 3
𝒔,𝒂/𝒔𝒊,𝒂𝒊

𝑸𝒍𝒐𝒄𝒂𝒍,𝒊 − 𝑸𝒕 𝒔, 𝒂

Putting it all together, here’s the whole TD learning
algorithm:

1. When you reach state s, use your current
exploration versus exploitation policy, 𝜋&(𝑠),
to choose some action 𝑎 = 𝜋&(𝑠).

2. Observe the state s’ that you end up in, and
the reward you receive, and then calculate
Qlocal:

𝑄'()*' 𝑠, 𝑎 = 𝑅&(𝑠) + 𝛾 max
*+∈-(/+)

𝑄&(𝑠′, 𝑎′)

3. Calculate the time difference, and update:

𝑄&1$ 𝑠, 𝑎 = 𝑄& 𝑠, 𝑎 + 𝛼 𝑄'()*' 𝑠, 𝑎 − 𝑄& 𝑠, 𝑎

Repeat.

Deep Q-learning and Actor-Critic Learning

1. What is deep Q-learning?
2. How to make Q-learning

converge to the best answer?
3. How to make it converge more

smoothly?
4. What are policy learning and

actor-critic networks?
5. What is imitation learning?

1. Estimate Q(s,a) using a neural
net, with Qlocal as training
signals.

2. Epsilon-greedy usually works.
3. Experience replay.
4. Actor network:

Pr(𝑎 is the best action). Critic
network: 𝑄(𝑠, 𝑎), used only to
train the actor.

5. Learn to imitate an expert
player.

RL for two-player games

• Review: minimax and alpha-beta
• Complexity: (2𝑏 − 1)2/4= 𝑂{𝑏2/4} with depth d and

branching factor b, if the children of each node are
ordered just right (MAX: largest first, MIN: smallest first)

• Move ordering: policy network
• Can be used to order the children, with no loss of

accuracy; Can also limit the set of moves evaluated,
with some loss of accuracy

• Evaluation function: value network
• Estimates the value of each board position in limited-

horizon search
• Exact value: endgames

• Minimax search backward from a set of known terminal
positions

• Stochastic training: Monte Carlo tree search
• Choose a policy that includes exploration vs.

exploitation, play games at random, use the data to
estimate win frequency

Games of chance and
imperfect information
Stochastic games: Expectiminimax

𝑈 𝑠 = max
!
/
"#

𝑃 𝑠# 𝑠, 𝑎 𝑈(𝑠#)

𝑈 𝑠′ = min
!#

/
"##

𝑃 𝑠## 𝑠′, 𝑎′ 𝑈(𝑠##)

Imperfect information: belief states

𝑃𝑅𝐸𝐷𝐼𝐶𝑇 𝑏, 𝑎 = 𝑠<: 𝑠 ∈ 𝑏, 𝑠′ = 𝑅𝐸𝑆𝑈𝐿𝑇(𝑠, 𝑎)
𝑈𝑃𝐷𝐴𝑇𝐸 𝑏, 𝑜 = 𝑠: 𝑠 ∈ 𝑏, 𝑜 = 𝑃𝐸𝑅𝐶𝐸𝑃𝑇(𝑠)

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

-1 1 1 -1

0 0

H

H

H

H

HHH

H

T

T T

TTTT

T H

Game Theory
• Dominant strategy

• a strategy that’s optimal for one player, regardless of what the
other player does

• Not all games have dominant strategies

• Nash equilibrium
• an outcome (one action by each player) such that, knowing the

other player’s action, each player has no reason to change their
own action

• Every game with a finite set of actions has at least one Nash
equilibrium, though it might be a mixed-strategy equilibrium.

• Pareto optimal
• an outcome such that neither player would be able to win more

without simultaneously forcing the other player to lose more
• Every game has at least one Pareto optimal outcome. Usually there

are many, representing different tradeoffs between the two players.

• Mixed strategies
• A mixed strategy is optimal only if there’s no reason to prefer one

action over the other, i.e., if 0 ≤ 𝑝 ≤ 1 and 0 ≤ 𝑞 ≤ 1 such that:
1 − 𝑝 𝑤 + 𝑝𝑥 = 1 − 𝑝 𝑦 + 𝑝𝑧
1 − 𝑞 𝑎 + 𝑞𝑐 = 1 − 𝑞 𝑏 + 𝑞𝑑

Player 1 Player 2

Straight

Straight

Chicken

Chicken

Straight Chicken

Straight

Chicken

-10

-1 0

1
-1-10

1 0

1 − 𝑝 𝑝

1 − 𝑞

𝑞

𝒘

𝒚 𝒛

𝒙
𝒃𝒂

𝒄 𝒅

Mechanism Design
• Nash equilibrium occurs if:

• All players have sufficient computation
• All available actions listed in the payoff matrix
• Payoff matrix lists true outcome values

• Iterated games:
• Fixed # games: start from the end, plan backward
• Random # games: maximize expected gain

• Nash Equilibrium in various auctions:
• English auction: 𝑏" = 𝑑 +max

&/"
𝑣& iff 𝑣" > max

&/"
𝑣&

• Sealed Bid: 𝑏" = 𝑑 +max
&/"

𝑝"& iff 𝑣" > max
&/"

𝑝"&
• Second-Price: 𝑏" = 𝑣", all players

• VCG mechanism to avoid tragedy of the
commons: each unsuccessful bidder pays
nothing; each successful bidder pays 𝑏<=>.

Some sample problems

• Linear classifiers: practice exam problem 4 (today)
• DNNs: next lecture, probably I’ll write a new practice problem
• Q-learning: next lecture, probably I’ll write a new practice problem
• Games of chance & imperfect information: next lecture
• Game theory & Mechanism design: next lecture

Practice Exam Problem 4

You are a Hollywood producer. You have a
script in your hand, and you want to make a
movie. Before starting, however, you want
to predict if the movie you want to make
will rake in huge profits, or utterly fail at the
box office. You hire two critics A and B to
read the script and rate it on a scale of 1 to
5 (assume only integer scores). Each critic
reads it independently and announces their
verdict. Of course, the critics might be
biased and/or not perfect, therefore you
may not be able to simply average their
scores. Instead, you decide to use a
perceptron toclassify your data. There are
three features: a constant bias, and the two
reviewer scores. Thus f0 = 1 (a constant
bias), f1 = score given by reviewer A, and f2
= score given by reviewer B.

Movie
Name

A B Profit?

Pellet
Power

1 1 No

Ghosts! 3 2 Yes
Pac is bac 4 5 No
Not a
pizza

3 4 Yes

Endless
Maze

2 3 Yes

Practice Exam Problem 4

(a) Train the perceptron to
generate Y* = 1 if the movie
returns a profit, Y* = -1 otherwise.
The initial weights are w0 = -1,w1
= 0,w2 = 0. Present each row of
the table as a training token and
update the perceptron weights
before moving on to the next row.
Use a learning rate of eta=1. After
each of the training examples has
been presented once (one epoch),
what are the weights?

Movie
Name

A B Profit?

Pellet
Power

1 1 No

Ghosts! 3 2 Yes
Pac is bac 4 5 No
Not a
pizza

3 4 Yes

Endless
Maze

2 3 Yes

Practice Exam Problem 4

Movie
Name

A B Profit?

Pellet
Power

1 1 No

Ghosts! 3 2 Yes
Pac is bac 4 5 No
Not a
pizza

3 4 Yes

Endless
Maze

2 3 Yes

Iterati
on

Weights 𝑦∗ =
sgn(𝑤*𝑥⃗)

Change
weights?

𝜂𝑦>𝑥⃗>

1 [−1,0,0] −1 No
2 [−1,0,0] −1 Yes [1,3,2]
3 [0,3,2] +1 Yes [−1,−4,−5]
4 [−1,−1,−3] −1 Yes [1,3,4]
5 [0,2,1] +1 No

Practice Exam Problem 4

(b) Suppose that, instead of
learning whether the movie is
profitable, you want to learn a
perceptron that will always output
Y* = +1 when the total of the two
reviewer scores is more than 8,
and Y* = -1 otherwise. Is this
possible? If so, what are the
weights w0, w1, and w2 that will
make this possible?

Movie
Name

A B Profit?

Pellet
Power

1 1 No

Ghosts! 3 2 Yes
Pac is bac 4 5 No
Not a
pizza

3 4 Yes

Endless
Maze

2 3 Yes

Practice Exam Problem 4

(b) Suppose that, instead of
learning whether the movie is
profitable, you want to learn a
perceptron that will always output

𝑌∗ = 𝑠𝑔𝑛 𝐴 + 𝐵 − 8
(Y* = +1 when the total of the two
reviewer scores is more than 8,
and Y* = -1 otherwise). Is this
possible?
Answer: yes, sure. For example,

𝑤% = −8,𝑤& = 1,𝑤' = 1

Movie
Name

A B Profit?

Pellet
Power

1 1 No

Ghosts! 3 2 Yes
Pac is bac 4 5 No
Not a
pizza

3 4 Yes

Endless
Maze

2 3 Yes

Practice Exam Problem 4

(c) Instead of either part (a) or
part (b), suppose you want to
learn a perceptron that will always
output Y*= +1 when the two
reviewers agree (when their
scores are exactly the same), and
will output Y*= -1 otherwise. Is
this possible? If so, what are the
weights w0, w1 and w2 that will
make this possible?

Movie
Name

A B Profit?

Pellet
Power

1 1 No

Ghosts! 3 2 Yes
Pac is bac 4 5 No
Not a
pizza

3 4 Yes

Endless
Maze

2 3 Yes

Practice Exam Problem 4

(c)

𝑌∗ = = 1 𝐴 − 𝐵 = 0
−1 otherwise

Is this possible? If so, what are the
weights w0, w1 and w2 that will
make this possible?
Answer: NO. This is basically the
XOR problem (but in reverse).
There is no linear classifier that
can solve this problem.

𝑓!

𝑓$

𝑓!

𝑓$

The XOR
problem

This
problem

