
Lecture 38 – tf/idf and
information retrieval

Mark Hasegawa-Johnson
5/1/2020

CC-BY 4.0: you may remix or redistribute if you cite the source

Outline

• similarity vs. semantic field: word2vec at different scales
• term frequency (tf): the term-document matrix
• cosine similarity
• document classification: tf on a log scale
• document classification: inverse document frequency (idf)
• relatedness again: the word co-occurrence matrix

Similarity: The Internet is the database
Similarity = words can be used interchangeably in most contexts
How do we measure that in practice?
Answer: extract examples of word 𝑤!, +/- k words (2 ≤ 𝑘 ≤ 5, for example):

…hot, although iced coffee is a popular…
…indicate that moderate coffee consumption is benign…

…and of 𝑤":

…consumed as iced tea. Sweet tea is…
…national average of tea consumption in Ireland…

The words “iced” and “consumption” appear in both contexts, so we can conclude that
𝑠(coffea, tea) > 0. No other words are shared, so we can conclude 𝑠(coffee, tea) < 1.

Similarity vs.
Relatedness

Levy & Goldberg (2014) trained
word2vec in three different ways:
• k=2
• k=5
• Context determined by first parsing

the sentence to get syntactic
dependency structure (Deps)

They tested all three method for the
similarity vs. relatedness of the
nearest-neighbor of each word.

Precision vs. Recall on the
WordSim-353 database,
in which word pairs may
be either related or
similar (Fig. 2(a), Levy &
Goldberg 2014)

Precision vs. Recall on the
Chiarello et al. database,
in which word pairs are
only similar (Fig. 2(b),
Levy & Goldberg 2014)

Similarity vs.
Relatedness
• Apparently, the smaller context

window (k=2) produces vectors
whose nearest neighbors are more
similar (they can be used
identically in a sentence).
• The larger context (k=5) produces

vectors whose nearest neighbors
are related, not just similar.
• More specifically, the latter words

pairs are said to inhabit the same
semantic field.
• A semantic field is a group of

words that refers to the same
subject.

Precision vs. Recall on the
WordSim-353 database,
in which word pairs may
be either related or
similar (Fig. 2(a), Levy &
Goldberg 2014)

Precision vs. Recall on the
Chiarello et al. database,
in which word pairs are
only similar (Fig. 2(b),
Levy & Goldberg 2014)

Similarity vs. Relatedness
…studied at hogwarts, a castle… w=hogwarts … harry potter studied at

hogwarts…
vector nearest

neighbors, context
k=2

vector nearest
neighbors, context

k=5

…studied at evernight, a castle… evernight dumbledore …harry potter learned from
dumbledore…

…studied at sunnydale… sunnydale hallows …harry potter and the deathly
hallows..

…a castle garderobe… garderobe half-blood …harry potter and the half-blood…

…lives at blandings, a castle… blandings malfoy …harry potter said to malfoy…

…lives at collinwood, a castle… collinwood snape …harry potter said to snape…

Examples of k=2 and k=5 nearest-neighbors, from (Levy & Goldberg, 2014)

What if you wanted semantic field, not
similarity?

• What if you wanted your vector
embedding to capture semantic
field, as in the second column
(not similar usage, like the first
column)?
• If you want that, it seems that

larger contexts are better.
• Why not just set context window

= the whole document?

w=hogwarts
vector nearest

neighbors, context
k=2

vector nearest
neighbors, context

k=5

evernight dumbledore
sunnydale hallows
garderobe half-blood
blandings malfoy

collinwood snape

Outline

• similarity vs. semantic field: word2vec at different scales
• term frequency (tf): the term-document matrix
• cosine similarity
• document classification: tf on a log scale
• document classification: inverse document frequency (idf)
• relatedness again: the word co-occurrence matrix

the term-document matrix

Hogwarts School of Witchcraft and Wizardry,
commonly shortened to Hogwarts, is a fictional
British school of magic for students aged eleven to
eighteen, and is the primary setting for the first six
books in J. K. Rowling's Harry Potter series…

Albus Percival Wulfric Brian Dumbledore is a fictional
character in J. K. Rowling's Harry Potter series. For
most of the series, he is the headmaster of the
wizarding school Hogwarts. As part of his backstory, it
is revealed that he is the founder and leader of …

Collinwood Mansion is a fictional house featured in
the Gothic horror soap opera Dark Shadows (1966–
1971). Built in 1795 by Joshua Collins, Collinwood has
been home to the Collins family—and other
sometimes unwelcome supernatural visitors…

document
term Hogwarts Dumbledore Collinwood

a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

the term-document matrix
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

From the term-document matrix, we can
define each term vector to be just the vector
of term frequencies:

�⃗�(𝑖) = [𝑡𝑓(𝑖, 1), … , 𝑡𝑓(𝑖, 𝐷)]

…where we now define the term frequency
(of term 𝑖 in document 𝑗) to be the number
of times the term occurs in the document:
𝑡𝑓(𝑖, 𝑗) = Count word 𝑖 in document 𝑗

For example,
�⃗� a = 1,1,1
�⃗�(of) = [1,2,1]

�⃗�(potter) = [1,1,0]

Outline

• similarity vs. semantic field: word2vec at different scales
• term frequency (tf): the term-document matrix
• cosine similarity
• document classification: tf on a log scale
• document classification: inverse document frequency (idf)
• relatedness again: the word co-occurrence matrix

cosine similarity
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

The relatedness of two words can now be measured
using their cosine similarity. For example,

𝑠(rowling!s, harry) = cos ∡ rowling!s, harry

=
�⃗�(rowling!s) 5 �⃗�(harry)
�⃗�(rowling!s) �⃗�(harry)

=
1×1 + 1×1 + 0×0

2× 2
= 1

𝑠(harry, gothic) = cos ∡ harry, gothic

=
�⃗�(harry) 5 �⃗�(gothic)
�⃗�(harry) �⃗�(gothic)

=
1×0 + 1×0 + 0×1

2×1
= 0

document vectors
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

Now let’s try something different. Let’s
define a vector for each document,
rather than for each term:

𝑑(𝑗) = [𝑡𝑓(1, 𝑗), … , 𝑡𝑓(𝑉, 𝑗)]

Thus,

𝑑 H = 1,1,1,2,1,1,1,1,1,0,0,0

𝑑(D) = [1,2,1,4,1,0,1,1,1,1,0,0,0]

𝑑(C) = [1,0,2,1,1,0,0,0,0,0,1,1,1]

information retrieval
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

Document vectors are useful because they allow us
to retrieve a document, based on the degree to
which it matches a query. For example, the query:

“What school did Harry Potter attend?”
…can be written as a query vector:

�⃗� = [0,0,0,0,0,1,0,1,1,0,0,0,0]

We can sometimes find the most relevant document
using cosine distance:

�⃗� 5 𝑑 H
�⃗� 𝑑 H

=
3
3 13

= 0.48

�⃗� 5 𝑑 D
�⃗� 𝑑 D

=
2
3 27

= 0.22

�⃗� 5 𝑑 C
�⃗� 𝑑 C

=
0
3 10

= 0.00

Outline

• similarity vs. semantic field: word2vec at different scales
• term frequency (tf): the term-document matrix
• cosine similarity
• document classification: tf on a log scale
• document classification: inverse document frequency (idf)
• relatedness again: the word co-occurrence matrix

document classification
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

Suppose that we find a new document
on the web:

Dark Shadows is an American Gothic
soap opera that originally aired

weekdays on the ABC television network,
from June 27, 1966, to April 2, 1971. The
show depicted the lives, loves, trials, and

tribulations of …

Now we want to determine whether this
document is about the Dark Shadows
soap opera, or about the Harry Potter
series.
How?

document classification
document class

term Harry Potter Dark Shadows
a 2 1
of 3
in 2 2
is 6 1

fictional 2 1
school 1

rowling’s 2
harry 2
potter 2
series 2
house 1

featured 1
gothic 1

To start with, let’s create a single
merged document class vector, for
each class, by just adding together all
of the document vectors in the class:

�⃗� Harry Potter = 𝑑 H + 𝑑 D

�⃗� Dark Shadows = 𝑑 C

document classification
Now we turn the new document into
a vector with the same dimensions:

Dark Shadows is an American Gothic
soap opera that originally aired
weekdays on the ABC television

network, from June 27, 1966, to April
2, 1971. The show depicted the lives,

loves, trials, and tribulations of …

�⃗� = [0,1,0,1,0,0,0,0,0,0,0,0,1]

document class
term Harry Potter Dark Shadows

a 2 1
of 3
in 2 2
is 6 1

fictional 2 1
school 1

rowling’s 2
harry 2
potter 2
series 2
house 1

featured 1
gothic 1

document classification
Now let’s just compute the cosine similarity with
each document class:
Dark Shadows is an American Gothic soap opera

that originally aired weekdays on the ABC
television network, from June 27, 1966, to April

2, 1971. The show depicted the lives, loves,
trials, and tribulations of …

�⃗� = [0,1,0,1,0,0,0,0,0,0,0,0,1]

�⃗� 9 �⃗� HP
�⃗� 𝑑 HP

=
1×3 + 1×6 + 1×0

3 74
= 0.60

�⃗� 9 �⃗� DS
�⃗� 𝑑 DS

=
1×0 + 1×1 + 1×1

3 10
= 0.37

…oops…

document class
term Harry Potter Dark Shadows

a 2 1
of 3
in 2 2
is 6 1

fictional 2 1
school 1

rowling’s 2
harry 2
potter 2
series 2
house 1

featured 1
gothic 1

document classification: tf on a log scale
• We need some way to point out that

the difference between
𝑡𝑓(HP, gothic) = 0 and
𝑡𝑓(DS, gothic) = 1 is much more
important than the difference
between 𝑡𝑓(HP, is) = 6 and
𝑡𝑓(DS, is) = 1.
• One way to think about it: it’s not

the difference between term
frequencies that matters, it’s their
ratio that matters.

6 − 1 ≫ 1− 0
6
1 ≪

1
0

document class
term Harry Potter Dark Shadows

a 2 1
of 3
in 2 2
is 6 1

fictional 2 1
school 1

rowling’s 2
harry 2
potter 2
series 2
house 1

featured 1
gothic 1

document classification: tf on a log scale
We can emphasize ratios, rather than
differences, by measuring the log of tf,
rather than the raw frequencies:

log 6 − log 1 ≪ log 1 − log 0

So let’s redefine term frequency to be

𝑡𝑓(𝑖, 𝑗)
= log!" Count word 𝑖 in document 𝑗

The use of a base-10 logarithm is a sort
of anachronism; it’s because this
definition was first published in 1972.
Really, though, the base of the logarithm
doesn’t matter much.

document class
term Harry Potter Dark Shadows

a 0.3 0
of 0.5 −∞
in 0.3 0.3
is 0.8 0

fictional 0.3 0
school 0 −∞

rowling’s 0.3 −∞
harry 0.3 −∞
potter 0.3 −∞
series 0.3 −∞
house −∞ 0

featured −∞ 0
gothic −∞ 0

document classification: tf on a log scale
All those −∞ terms are annoying and
numerically awful. There are two standard
ways to deal with them:
• If you’re in the big data regime, where the

difference between 0 and 1 is
unimportant, and the difference between
1 and 10 is about the same as the
difference between 10 and 100:

𝑡𝑓 𝑖, 𝑗 = 1 + max 0, log!" Count

• If you’re in the small-data regime (as in our
example), where the difference between 0
and 1 is about as important as the
difference between 1 and 3:

𝑡𝑓 𝑖, 𝑗 = log!" 1 + Count

document class
term Harry Potter Dark Shadows

a 0.5 0.3
of 0.6 0
in 0.5 0.5
is 0.8 0.3

fictional 0.5 0.3
school 0.3 0

rowling’s 0.5 0
harry 0.5 0
potter 0.5 0
series 0.5 0
house 0 0.3

featured 0 0.3
gothic 0 0.3

document classification: tf on a log scale
Using this new notation, our query
vector is:

�⃗� = [0,0.3,0,0.3,0,0,0,0,0,0,0,0,0.3]

�⃗� I �⃗� HP
�⃗� 𝑑 HP

=
0.18 + 0.24 + 0

0.27 2.84
= 0.48

�⃗� I �⃗� DS
�⃗� 𝑑 DS

=
0 + 0.09 + 0.09

0.27 0.79
= 0.39

So, now the “Dark Shadows” class is
closer to correctly claiming this query.
But we’re not quite there yet…

document class
term Harry Potter Dark Shadows

a 0.5 0.3
of 0.6 0
in 0.5 0.5
is 0.8 0.3

fictional 0.5 0.3
school 0.3 0

rowling’s 0.5 0
harry 0.5 0
potter 0.5 0
series 0.5 0
house 0 0.3

featured 0 0.3
gothic 0 0.3

Digression: relationship between tf and naïve Bayes
Did you notice that most words occur in a query either once, or zero times? So every element of the query vector is
either log!" 1 + 0 = 0 or log!" 1 + 1 = 0.3. So, for q but not for x, let’s return it to binary, �⃗� = [0,1,0,…]. Then:

�⃗� 4 �⃗� 𝑗 =7
#$!

%

Count(𝑖, 𝑞) log!" 1 + Count(𝑖, 𝑗)

= log!"?
#$!

%

1 + Count(𝑖, 𝑗) &'()*(#,-)

Just for the heck of it, let’s divide by 𝑉 +N(𝑗) /(-), where 𝑉 is vocabulary size, N(𝑗) is the number of words in class 𝑗,
and N(𝑞) is the number of words in the query. That gives us:

�⃗� 4 �⃗� 𝑗 = log!"?
#$!

%
1 + Count 𝑖, 𝑗
𝑉 +N 𝑗

&'()* #,-

= log!" ?
#:1'23 #

45 4) *678(729

𝑝 word 𝑖 class 𝑗

Outline

• similarity vs. semantic field: word2vec at different scales
• term frequency (tf): the term-document matrix
• cosine similarity
• document classification: tf on a log scale
• document classification: inverse document frequency (idf)
• relatedness again: the word co-occurrence matrix

document classification: idf
We saw that putting tf on a log scale
is not quite enough for us to correctly
classify the test document as being
part of class “Dark Shadows,” so let’s
look for more problems to fix.
Here’s a problem: why do the words
“a,” “of,” “in,” “is” count more than
“potter” and “gothic”?
Those function words are used by all
classes, so we shouldn’t really pay so
much attention to them.

document class
term Harry Potter Dark Shadows

a 0.5 0.3
of 0.6 0
in 0.5 0.5
is 0.8 0.3

fictional 0.5 0.3
school 0.3 0

rowling’s 0.5 0
harry 0.5 0
potter 0.5 0
series 0.5 0
house 0 0.3

featured 0 0.3
gothic 0 0.3

document classification: idf
Inverse document frequency (idf) is a
discount weight, meant to reduce the
importance of any word that’s used
equally across all classes. A typical
definition is:

𝑖𝑑𝑓 𝑖 = log!"
𝐷

𝑑𝑓(𝑖)
...where 𝐷 is the number of document
classes (2, in our example), and 𝑑𝑓(𝑖)
is the number of documents in which
the ith word appears.

document class
term (idf) Harry Potter Dark Shadows

a(0) 0.5 0.3
of(0.3) 0.6 0
in(0) 0.5 0.5
is(0) 0.8 0.3

fictional(0) 0.5 0.3
school(0.3) 0.3 0

rowling’s(0.3) 0.5 0
harry(0.3) 0.5 0
potter(0.3) 0.5 0
series(0.3) 0.5 0
house(0.3) 0 0.3

featured(0.3) 0 0.3
gothic(0.3) 0 0.3

document classification: tf-idf
With that definition, we get

𝑡𝑓(𝑖, 𝑗)𝑖𝑑𝑓 𝑖
= log!" 1 + Count(𝑖, 𝑗) log!"

𝐷
𝑑𝑓(𝑖)

…and the document class vectors are
now

�⃗�(𝑗) = [𝑡𝑓 1, 𝑗 𝑖𝑑𝑓(1), … , 𝑡𝑓 𝑉, 𝑗 𝑖𝑑𝑓(𝑉)]

document class
term (idf) Harry Potter Dark Shadows

a(0) 0 0
of(0.3) 0.18 0
in(0) 0 0
is(0) 0 0

fictional(0) 0 0
school(0.3) 0.09 0

rowling’s(0.3) 0.15 0
harry(0.3) 0.15 0
potter(0.3) 0.15 0
series(0.3) 0.15 0
house(0.3) 0 0.09

featured(0.3) 0 0.09
gothic(0.3) 0 0.09

document classification: tf-idf
Remember, the original word counts in
our query were:

�⃗� = [0,1,0,1,0,0,0,0,0,0,0,0,1]
If we convert those into tf-idf, we get
�⃗� = [0,0.09,0,0,0,0,0,0,0,0,0,0,0.09]

Then

�⃗� I �⃗� HP
�⃗� 𝑑 HP

=
0.0162 + 0 + 0
0.0162 0.1305

= 0.35

�⃗� I �⃗� DS
�⃗� 𝑑 DS

=
0 + 0 + 0.0081
0.0162 0.0243

= 0.41

It worked! We got the right answer!

document class
term (idf) Harry Potter Dark Shadows

a(0) 0 0
of(0.3) 0.18 0
in(0) 0 0
is(0) 0 0

fictional(0) 0 0
school(0.3) 0.09 0

rowling’s(0.3) 0.15 0
harry(0.3) 0.15 0
potter(0.3) 0.15 0
series(0.3) 0.15 0
house(0.3) 0 0.09

featured(0.3) 0 0.09
gothic(0.3) 0 0.09

tf-idf for information retrieval: key concepts
1. It’s not the difference between

counts that matters, it’s the ratio.
So instead of raw counts, use log
counts:
𝑡𝑓 𝑖, 𝑗 = log!" 1 + Count

2. Words that occur in many
documents are unimportant.
Discount them by the factor

𝑖𝑑𝑓 𝑖 = log!"
𝐷

𝑑𝑓(𝑖)

document class
term (idf) Harry Potter Dark Shadows

a(0) 0 0
of(0.3) 0.18 0
in(0) 0 0
is(0) 0 0

fictional(0) 0 0
school(0.3) 0.09 0

rowling’s(0.3) 0.15 0
harry(0.3) 0.15 0
potter(0.3) 0.15 0
series(0.3) 0.15 0
house(0.3) 0 0.09

featured(0.3) 0 0.09
gothic(0.3) 0 0.09

Outline

• similarity vs. semantic field: word2vec at different scales
• term frequency (tf): the term-document matrix
• cosine similarity
• document classification: tf on a log scale
• document classification: inverse document frequency (idf)
• relatedness again: the word co-occurrence matrix

The Word Co-Occurrence Matrix

Now that we understand information retrieval, let’s go back to our
original question:

How can we determine whether or not two words are related?

The Word Co-Occurrence Matrix
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

Instead of creating a term-document
matrix, let’s create a matrix that
shows how often each pair of words
occurs in the same document.
This will be

𝑊 𝑖, 𝑘 =O
#$!

%

Count 𝑖, 𝑗 Count(𝑘, 𝑗)

For example, for the words 𝑖 =a and
𝑘 =of,
𝑊 a, of = 1×1 + 1×2 + 0 = 3

The Word Co-Occurrence Matrix
term 2

term 1 a of in school harry potter house gothic
a 3 3 4 1 2 2 1 1
of 3 5 3 1 3 3
in 4 3 6 1 2 2 2 2

school 1 1 1 1 1 1
harry 2 3 2 1 2 2
potter 2 3 2 1 2 2
house 1 2 1 1
gothic 1 2 1 1

Here’s a subset of the
word co-occurrence
matrix.

Notice that this seems,
again, to give too
much credit to the
function words. Let’s
reduce their
importance using tf-
idf.

The Word Co-Occurrence Matrix
term 2

term 1 a of in school harry potter house gothic
a
of 0.032 0.018 0.024 0.024
in

school 0.018 0.027 0.018 0.018
harry 0.024 0.018 0.020 0.020
potter 0.024 0.018 0.020 0.020
house 0.027 0.027
gothic 0.027 0.027

𝑊 𝑖, 𝑘 = log!" 1 +T
IJ!

K

Count 𝑖, 𝑗 Count(𝑘, 𝑗) log!"
𝐷

𝑑𝑓(𝑖) log!"
𝐷

𝑑𝑓(𝑘)

In this example, we
have D=3 documents,
so the possible values
of idf are

log!" 3/3 = 0
log!" 3/2 ≈ 0.2
log!" 3/1 ≈ 0.3

Conclusions
• semantic field = a group of words that refers to the same subject

• term frequency (tf): Count(term i appears in document j)

• cosine similarity

𝑠(rowling!s, harry) = cos ∡ rowling!s, harry =
�⃗�(rowling!s) 5 �⃗�(harry)
�⃗�(rowling!s) �⃗�(harry)

• document classification: tf on a log scale
𝑡𝑓 𝑖, 𝑗 = log"# 1 + Count

• document classification: inverse document frequency (idf)

𝑖𝑑𝑓 𝑖 = log"#
𝐷

𝑑𝑓(𝑖)

• word co-occurrence matrix

𝑊 𝑖, 𝑘 =P
$%"

&

Count 𝑖, 𝑗 Count(𝑘, 𝑗)

