
CS440/ECE448 Lecture 34:
Games of Chance and
Imperfect Information

Mark Hasegawa-Johnson, 4/2020

Including slides by Svetlana Lazebnik

CC-BY 4.0: you may remix or redistribute if
you cite the source.

A contemporary backgammon set. Public domain photo by Manuel Hegner,
2013, https://commons.wikimedia.org/w/index.php?curid=25006945

A game of Texas Hold’em in progress. Copyright US Navy, released for public
distribution 2009,

https://commons.wikimedia.org/w/index.php?curid=8361356

Types of game environments
Deterministic Stochastic

Perfect
information
(fully observable)
Imperfect
information
(partially
observable)

Chess, checkers,
go

Backgammon,
monopoly

Battleship Scrabble,
poker,
bridge

Content of today’s lecture

• Stochastic games: the Expectiminimax algorithm
• Imperfect information: belief states

Stochastic games

How can we incorporate dice throwing into the game
tree?

Minimax
State evolves deterministically (when a player
acts, that action uniquely determines the
following state).

Current state is visible to both players.

Each player tries to maximize his or her own
reward:

• Maximize (over all possible moves I can
make) the

• Minimum (over all possible moves Min can
make) of the resulting utility:

𝑈 𝑠 = max
!"∈$(!)

𝑈(𝑠")

𝑈 𝑠′ = min
!""∈$(!")

𝑈(𝑠"")

Bellman’s Equation
State evolves stochastically (when a player
acts, that action influences the state transition
probability).

Current state is visible to the player.

The player tries to maximize his or her own
reward:

• Maximize (over all possible moves I can
make) the

• Expected value (over all possible successor
states) of the resulting utility:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾max
'

/
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

Expectiminimax
State evolves stochastically (when a player acts, that
action influences the state transition probability).

Current state is visible to both players.

Each player tries to maximize his or her own reward:

• Maximize (over all possible moves I can make) the

• Minimum (over all possible moves Min can make) of the

• Expected value (over all possible successor states) of the
resulting utility:

𝑈 𝑠 = max
'

/
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

𝑈 𝑠′ = min
'"

/
!""

𝑃 𝑠"" 𝑠′, 𝑎′ 𝑈(𝑠"")

Expectiminimax: notation
= MAX node. 𝑈 𝑠 = max

'∈((!)
𝑄(𝑠, 𝑎)

= MIN node. 𝑈 𝑠 = min
'∈((!)

𝑄(𝑠, 𝑎)

= Chance node. 𝑄 𝑠, 𝑎 = ∑!"𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

H

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

H

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

By ICMA Photos - Coin
Toss, CC BY-SA 2.0,

https://commons.wikimed
ia.org/w/index.php?curid=

71147286

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

H

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

Expectiminimax example

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

• MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: he flips a coin and moves his
game piece in the direction indicated.

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

Expectiminimax example

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366.
$2 By Bureau of Engraving and Printing: U.S. Department of the Treasury - own scanned, Public

Domain, https://commons.wikimedia.org/w/index.php?curid=56299470

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

• MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: he flips a coin and moves his
game piece in the direction indicated.

Reward: $2 to the winner, $0 for a draw.

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: he flips a coin and moves his
game piece in the direction indicated.

Reward: $2 to the winner, $0 for a draw. 0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

H

H

H

H

HHH

H

T

T T

TTTT

T H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

H

H

H

H

HHH

H

T

T T

TTTT

T

Chance node:

𝑄 𝑠, 𝑎 = ∑!"𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

-1 1 -1 1

H

H

H

H

HHH

H

T

T T

TTTT

T

Max node:

𝑈 𝑠 = max
#∈%(!)

𝑄(𝑠, 𝑎)

H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

-1 1 -1 1

0 0

H

H

H

H

HHH

H

T

T T

TTTT

T

Chance node:

𝑄 𝑠, 𝑎 = ∑!"𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

-1 1 1 -1

0 0

H

H

H

H

HHH

H

T

T T

TTTT

T

Min node:

𝑈 𝑠 = min
#∈%(!)

𝑄(𝑠, 𝑎)

H

Expectiminimax example #2

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366.

By Kolby Kirk, CC BY 3.0,
https://commons.wikimedia.or
g/w/index.php?curid=3037476

• MIN: Min decides whether she’s going
to move 𝐷 − 3 or 3 − 𝐷 steps forward,
where 𝐷 is the roll of the dice.

• Chance: she rolls the dice and moves
her game piece in the direction
indicated.

• MAX: Max decides whether he’s going
to move 𝐷 − 3 or 3 − 𝐷 steps forward,
where 𝐷 is the roll of the dice.

• Chance: he rolls the dice and moves his
game piece in the direction indicated.

Reward: loser pays the winner a number
of dollars equal to the number of spaces
difference.

Expectiminimax example #2
• MIN: Min decides whether she’s going

to move 𝐷 − 3 or 3 − 𝐷 steps forward,
where 𝐷 is the roll of the dice.

• Chance: she rolls the dice and moves
her game piece in the direction
indicated.

• MAX: Max decides whether he’s going
to move 𝐷 − 3 or 3 − 𝐷 steps forward,
where 𝐷 is the roll of the dice.

• Chance: he rolls the dice and moves his
game piece in the direction indicated.

Reward: loser pays the winner a number
of dollars equal to the number of spaces
difference.

3 − 𝐷

…2

𝐷 − 3

1 1
…… …… ……

3 4 5 6 …
…

…

Expectiminimax summary

• All of the same methods are useful:
• Alpha-Beta pruning
• Evaluation function
• Quiescence search, Singular move

• Computational complexity is pretty bad
• Branching factor of the random choice can be high
• Twice as many “levels” in the tree

Content of today’s lecture

• Stochastic games: the Expectiminimax algorithm
• Imperfect information: belief states

Imperfect information example

• Min chooses a coin.
• I say the name of a U.S. President.

• If I guessed right, she gives me the coin.
• If I guessed wrong, I have to give her a

coin to match the one she has.

1 -5 5-1

Imperfect information example

• The problem: I don’t know which
state I’m in. I only know it’s one of
these two.

1 -5 5-1

Imperfect information example

The equivalent of the minimax question, in
this environment, is:

1. Is there any strategy I can use that
will guarantee that I win a positive
reward? (Minimax strategy)

2. If I assume a probability distribution
over the set of possible states, what is
the strategy that maximizes my
expected reward? (Expectiminimax
strategy)

1 -5 5-1

Belief states

If the environment is only partially observable, then an agent’s “belief
state,” 𝑏, is the set of all states, 𝑠, that are currently possible, given the
agent’s past and current actions, 𝑎, and observations, 𝑜.

Example: Maze War
Orange robot and blue robot can see one
another if there is no wall in the way. They
can’t see around corners.

A complete description of the current game
state specifies the locations of both robots,
e.g., 𝑠 = [𝑂: 2,1 , 𝐵: 4,2].
The loser is the robot who moves to a
position from which it can be seen by the
other robot.

Example: Maze War
Orange robot knows:

• Orange robot is in (2,1)

• Blue robot might be in (1,2), (1,3), (2,3), …

we can say that

Orange robot’s current belief state is

𝑏 = 𝑂: 2,1 , 𝐵 ∈ 1,2 , 1,3 , 2,3 , 3,2 , 3,3 , 4,2 , (4,3)

Belief state update equations
When the robot in belief state 𝑏 performs action 𝑎 and then sees
observation 𝑜, it can then update its belief state using a two-part
algorithm:
• 𝑃𝑅𝐸𝐷𝐼𝐶𝑇(𝑏, 𝑎) is the set of all states 𝑠’ that could be reached by

performing action 𝑎 in any state 𝑠 in the current belief state:
𝑃𝑅𝐸𝐷𝐼𝐶𝑇 𝑏, 𝑎 = 𝑠": 𝑠 ∈ 𝑏, 𝑠′ = 𝑅𝐸𝑆𝑈𝐿𝑇(𝑠, 𝑎)

• 𝑈𝑃𝐷𝐴𝑇𝐸(𝑏, 𝑜) is the set of states in 𝑏 from which it is possible to
perceive 𝑜:

𝑈𝑃𝐷𝐴𝑇𝐸 𝑏, 𝑜 = 𝑠: 𝑠 ∈ 𝑏, 𝑜 = 𝑃𝐸𝑅𝐶𝐸𝑃𝑇(𝑠)

Example: Maze War
Orange robot moves as shown.

Blue robot is not observed.

𝑃𝑅𝐸𝐷𝐼𝐶𝑇(𝑏, 𝑎) = 𝑂: 1,1 , 𝐵 ∈ 1,2 , 1,3 , 2,3 , 3,2 , 3,3 , 4,2 , (4,3)

Example: Maze War
Orange robot moves as shown.

Blue robot is not observed.

𝑃𝑅𝐸𝐷𝐼𝐶𝑇 𝑏, 𝑎 = 𝑂: 1,1 , 𝐵 ∈ 1,2 , 1,3 , 2,3 , 3,2 , 3,3 , 4,2 , 4,3

𝑈𝑃𝐷𝐴𝑇𝐸(𝑃𝑅𝐸𝐷𝐼𝐶𝑇 𝑏, 𝑎 , 𝑜) = 𝑂: 1,1 , 𝐵 ∈ 2,3 , 3,2 , 3,3 , 4,2 , (4,3)

Stochastic games of imperfect information

Source

States are grouped into
information sets for

each player

http://www.sciencemag.org/content/347/6218/145.abstract

Game AI: Origins

• Minimax algorithm: Ernst Zermelo, 1912
• Chess playing with evaluation function, quiescence

search, selective search:
Claude Shannon, 1949 (paper)
• Alpha-beta search: John McCarthy, 1956
• Checkers program that learns its own evaluation

function by playing against itself: Arthur Samuel,
1956 (Rodney Brooks blog post)

http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%2520and%25202-1.Programming_a_computer_for_playing_chess.shannon/2-0%2520and%25202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
https://rodneybrooks.com/forai-machine-learning-explained/

Game AI: State of the art
• Observable & Deterministic:

• Checkers: solved in 2007
• Chess: Deep learning machine teaches itself chess in 72 hours,

plays at International Master Level (arXiv, September 2015)
• Go: AlphaGo beats Lee Sedol, 2015

• Observable & Stochastic:
• Backgammon: TD-Gammon system (1992) used reinforcement

learning to learn a good evaluation function
• Partially Observable and Stochastic:

• Poker
• Heads-up limit hold’em poker is solved (2015)

• Simplest variant played competitively by humans
• Smaller number of states than checkers, but partial observability makes it difficult
• Essentially weakly solved = cannot be beaten with statistical significance

in a lifetime of playing
• CMU’s Libratus system beats four of the best human players at no-limit

Texas Hold’em poker (2017)

https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/
http://www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/
https://en.wikipedia.org/wiki/TD-Gammon
http://www.sciencemag.org/content/347/6218/145.abstract
https://www.wired.com/2017/02/libratus/

Content of today’s lecture

• Stochastic games: the Expectiminimax algorithm

𝑈 𝑠 = max
#
A
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

𝑈 𝑠′ = min
#"

A
!""

𝑃 𝑠"" 𝑠′, 𝑎′ 𝑈(𝑠"")

• Imperfect information: belief states
𝑃𝑅𝐸𝐷𝐼𝐶𝑇 𝑏, 𝑎 = 𝑠": 𝑠 ∈ 𝑏, 𝑠′ = 𝑅𝐸𝑆𝑈𝐿𝑇(𝑠, 𝑎)
𝑈𝑃𝐷𝐴𝑇𝐸 𝑏, 𝑜 = 𝑠: 𝑠 ∈ 𝑏, 𝑜 = 𝑃𝐸𝑅𝐶𝐸𝑃𝑇(𝑠)

