
CS440/ECE448 Lecture 34:
Games of Chance and 
Imperfect Information

Mark Hasegawa-Johnson, 4/2020

Including slides by Svetlana Lazebnik

CC-BY 4.0: you may remix or redistribute if 
you cite the source.

A contemporary backgammon set.  Public domain photo by Manuel Hegner,
2013, https://commons.wikimedia.org/w/index.php?curid=25006945

A game of Texas Hold’em in progress. Copyright US Navy, released for public 
distribution 2009, 

https://commons.wikimedia.org/w/index.php?curid=8361356



Types of game environments
Deterministic Stochastic

Perfect
information
(fully observable)
Imperfect 
information
(partially 
observable)

Chess, checkers, 
go

Backgammon, 
monopoly

Battleship Scrabble, 
poker, 
bridge



Content of today’s lecture

• Stochastic games: the Expectiminimax algorithm
• Imperfect information: belief states



Stochastic games

How can we incorporate dice throwing into the game 
tree?



Minimax
State evolves deterministically (when a player 
acts, that action uniquely determines the 
following state).

Current state is visible to both players.

Each player tries to maximize his or her own 
reward: 

• Maximize (over all possible moves I can 
make) the 

• Minimum (over all possible moves Min can 
make) of the resulting utility:

𝑈 𝑠 = max
!"∈$(!)

𝑈(𝑠")

𝑈 𝑠′ = min
!""∈$(!")

𝑈(𝑠"")



Bellman’s Equation
State evolves stochastically (when a player 
acts, that action influences the state transition 
probability).

Current state is visible to the player.

The player tries to maximize his or her own 
reward: 

• Maximize (over all possible moves I can 
make) the 

• Expected value (over all possible successor 
states) of the resulting utility:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾max
'

/
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")



Expectiminimax
State evolves stochastically (when a player acts, that 
action influences the state transition probability).

Current state is visible to both players.

Each player tries to maximize his or her own reward: 

• Maximize (over all possible moves I can make) the 

• Minimum (over all possible moves Min can make) of the 

• Expected value (over all possible successor states) of the 
resulting utility:

𝑈 𝑠 = max
'

/
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

𝑈 𝑠′ = min
'"

/
!""

𝑃 𝑠"" 𝑠′, 𝑎′ 𝑈(𝑠"")



Expectiminimax: notation
= MAX node.   𝑈 𝑠 = max

'∈((!)
𝑄(𝑠, 𝑎)

= MIN node.   𝑈 𝑠 = min
'∈((!)

𝑄(𝑠, 𝑎)

= Chance node.   𝑄 𝑠, 𝑎 = ∑!"𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")



Expectiminimax example
• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.

Emojis by Twitter, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=59974366

H
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• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.
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Expectiminimax example
• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

Emojis by Twitter, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=59974366

By ICMA Photos - Coin 
Toss, CC BY-SA 2.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

71147286



Expectiminimax example
• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

Emojis by Twitter, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=59974366

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918



Expectiminimax example
• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

• MAX: Max decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

Emojis by Twitter, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=59974366

H

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918



Expectiminimax example

Emojis by Twitter, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=59974366

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

• MIN: Min decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

• MAX: Max decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

• Chance: he flips a coin and moves his 
game piece in the direction indicated.

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918



Expectiminimax example

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366.
$2 By Bureau of Engraving and Printing: U.S. Department of the Treasury - own scanned, Public 

Domain, https://commons.wikimedia.org/w/index.php?curid=56299470

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

By NJR ZA - Own work, CC 
BY-SA 3.0, 

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

• MIN: Min decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

• MAX: Max decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

• Chance: he flips a coin and moves his 
game piece in the direction indicated.

Reward: $2 to the winner, $0 for a draw.



Expectiminimax example
• MIN: Min decides whether to count 

heads (action H) or tails (action T) as a 
forward movement.

• Chance: she flips a coin and moves her 
game piece in the direction indicated.

• MAX: Max decides whether to count 
heads (action H) or tails (action T) as a 
forward movement.

• Chance: he flips a coin and moves his 
game piece in the direction indicated.

Reward: $2 to the winner, $0 for a draw. 0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2
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Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2
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Chance node:

𝑄 𝑠, 𝑎 = ∑!"𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

H



Expectiminimax example
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Expectiminimax example
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Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2
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Min node:

𝑈 𝑠 = min
#∈%(!)

𝑄(𝑠, 𝑎)
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Expectiminimax example #2

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366.

By Kolby Kirk, CC BY 3.0, 
https://commons.wikimedia.or
g/w/index.php?curid=3037476

• MIN: Min decides whether  she’s going 
to move 𝐷 − 3 or 3 − 𝐷 steps forward, 
where 𝐷 is the roll of the dice.

• Chance: she rolls the dice and moves 
her game piece in the direction 
indicated.

• MAX: Max decides whether  he’s going 
to move 𝐷 − 3 or 3 − 𝐷 steps forward, 
where 𝐷 is the roll of the dice.

• Chance: he rolls the dice and moves his 
game piece in the direction indicated.

Reward: loser pays the winner a number 
of dollars equal to the number of spaces 
difference.



Expectiminimax example #2
• MIN: Min decides whether  she’s going 

to move 𝐷 − 3 or 3 − 𝐷 steps forward, 
where 𝐷 is the roll of the dice.

• Chance: she rolls the dice and moves 
her game piece in the direction 
indicated.

• MAX: Max decides whether  he’s going 
to move 𝐷 − 3 or 3 − 𝐷 steps forward, 
where 𝐷 is the roll of the dice.

• Chance: he rolls the dice and moves his 
game piece in the direction indicated.

Reward: loser pays the winner a number 
of dollars equal to the number of spaces 
difference.

3 − 𝐷

…2

𝐷 − 3

1 1
…… …… ……

3 4 5 6 …
…

…



Expectiminimax summary

• All of the same methods are useful:
• Alpha-Beta pruning
• Evaluation function
• Quiescence search, Singular move

• Computational complexity is pretty bad
• Branching factor of the random choice can be high
• Twice as many “levels” in the tree



Content of today’s lecture

• Stochastic games: the Expectiminimax algorithm
• Imperfect information: belief states



Imperfect information example

• Min chooses a coin.
• I say the name of a U.S. President.

• If I guessed right, she gives me the coin.
• If I guessed wrong, I have to give her a 

coin to match the one she has.

1 -5 5-1



Imperfect information example

• The problem: I don’t know which 
state I’m in.  I only know it’s one of 
these two.

1 -5 5-1



Imperfect information example

The equivalent of the minimax question, in 
this environment, is:

1. Is there any strategy I can use that 
will guarantee that I win a positive 
reward? (Minimax strategy)

2. If I assume a probability distribution 
over the set of possible states, what is 
the strategy that maximizes my 
expected reward? (Expectiminimax
strategy)

1 -5 5-1



Belief states

If the environment is only partially observable, then an agent’s “belief 
state,” 𝑏, is the set of all states, 𝑠, that are currently possible, given the 
agent’s past and current actions, 𝑎, and observations, 𝑜.



Example: Maze War
Orange robot and blue robot can see one 
another if there is no wall in the way.  They 
can’t see around corners.

A complete description of the current game 
state specifies the locations of both robots, 
e.g., 𝑠 = [𝑂: 2,1 , 𝐵: 4,2 ].
The loser is the robot who moves to a 
position from which it can be seen by the 
other robot.



Example: Maze War
Orange robot knows:

• Orange robot is in (2,1)

• Blue robot might be in (1,2), (1,3), (2,3), …

we can say that

Orange robot’s current belief state is

𝑏 = 𝑂: 2,1 , 𝐵 ∈ 1,2 , 1,3 , 2,3 , 3,2 , 3,3 , 4,2 , (4,3)



Belief state update equations
When the robot in belief state 𝑏 performs action 𝑎 and then sees 
observation 𝑜, it can then update its belief state using a two-part 
algorithm:
• 𝑃𝑅𝐸𝐷𝐼𝐶𝑇(𝑏, 𝑎) is the set of all states 𝑠’ that could be reached by 

performing action 𝑎 in any state 𝑠 in the current belief state:
𝑃𝑅𝐸𝐷𝐼𝐶𝑇 𝑏, 𝑎 = 𝑠": 𝑠 ∈ 𝑏, 𝑠′ = 𝑅𝐸𝑆𝑈𝐿𝑇(𝑠, 𝑎)

• 𝑈𝑃𝐷𝐴𝑇𝐸(𝑏, 𝑜) is the set of states in 𝑏 from which it is possible to 
perceive 𝑜:

𝑈𝑃𝐷𝐴𝑇𝐸 𝑏, 𝑜 = 𝑠: 𝑠 ∈ 𝑏, 𝑜 = 𝑃𝐸𝑅𝐶𝐸𝑃𝑇(𝑠)



Example: Maze War
Orange robot moves as shown.

Blue robot is not observed.

𝑃𝑅𝐸𝐷𝐼𝐶𝑇(𝑏, 𝑎) = 𝑂: 1,1 , 𝐵 ∈ 1,2 , 1,3 , 2,3 , 3,2 , 3,3 , 4,2 , (4,3)



Example: Maze War
Orange robot moves as shown.

Blue robot is not observed.

𝑃𝑅𝐸𝐷𝐼𝐶𝑇 𝑏, 𝑎 = 𝑂: 1,1 , 𝐵 ∈ 1,2 , 1,3 , 2,3 , 3,2 , 3,3 , 4,2 , 4,3

𝑈𝑃𝐷𝐴𝑇𝐸(𝑃𝑅𝐸𝐷𝐼𝐶𝑇 𝑏, 𝑎 , 𝑜) = 𝑂: 1,1 , 𝐵 ∈ 2,3 , 3,2 , 3,3 , 4,2 , (4,3)



Stochastic games of imperfect information

Source

States are grouped into 
information sets for 

each player

http://www.sciencemag.org/content/347/6218/145.abstract


Game AI: Origins

• Minimax algorithm: Ernst Zermelo, 1912
• Chess playing with evaluation function, quiescence 

search, selective search: 
Claude Shannon, 1949 (paper)
• Alpha-beta search: John McCarthy, 1956 
• Checkers program that learns its own evaluation 

function by playing against itself: Arthur Samuel,  
1956 (Rodney Brooks blog post)

http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%2520and%25202-1.Programming_a_computer_for_playing_chess.shannon/2-0%2520and%25202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
https://rodneybrooks.com/forai-machine-learning-explained/


Game AI: State of the art
• Observable & Deterministic:

• Checkers: solved in 2007
• Chess: Deep learning machine teaches itself chess in 72 hours, 

plays at International Master Level (arXiv, September 2015)
• Go: AlphaGo beats Lee Sedol, 2015

• Observable & Stochastic:
• Backgammon: TD-Gammon system (1992) used reinforcement 

learning to learn a good evaluation function
• Partially Observable and Stochastic:

• Poker 
• Heads-up limit hold’em poker is solved (2015) 

• Simplest variant played competitively by humans
• Smaller number of states than checkers, but partial observability makes it difficult
• Essentially weakly solved = cannot be beaten with statistical significance 

in a lifetime of playing
• CMU’s Libratus system beats four of the best human players at no-limit 

Texas Hold’em poker (2017)

https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/
http://www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/
https://en.wikipedia.org/wiki/TD-Gammon
http://www.sciencemag.org/content/347/6218/145.abstract
https://www.wired.com/2017/02/libratus/


Content of today’s lecture

• Stochastic games: the Expectiminimax algorithm

𝑈 𝑠 = max
#
A
!"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

𝑈 𝑠′ = min
#"

A
!""

𝑃 𝑠"" 𝑠′, 𝑎′ 𝑈(𝑠"")

• Imperfect information: belief states
𝑃𝑅𝐸𝐷𝐼𝐶𝑇 𝑏, 𝑎 = 𝑠": 𝑠 ∈ 𝑏, 𝑠′ = 𝑅𝐸𝑆𝑈𝐿𝑇(𝑠, 𝑎)
𝑈𝑃𝐷𝐴𝑇𝐸 𝑏, 𝑜 = 𝑠: 𝑠 ∈ 𝑏, 𝑜 = 𝑃𝐸𝑅𝐶𝐸𝑃𝑇(𝑠)


