Lecture 33 —
Reinforcement Learning
for Two-Player Games

Mark Hasegawa-Johnson, 4/2020

CC-BY 4.0: you may remix or redistribute if you
cite the source

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/

Outline

* Review: minimax and alpha-beta
* Move ordering: policy network
* Evaluation function: value network

* Training the value network
e Exact training: endgames
* Stochastic training: Monte Carlo tree search

* Case study: alphago

Minimax games

Let s be the state of the game: complete
specification of the board, and a
statement about whose turn it is.

* If it’s the turn of the MAX player, and if
C(s) are the children of s (the set of
states reachable in one move), then
the value of the board is

U(s) = Spqué) U(s")

 Ifit’s MIN’s turn, then

U(s) = S,Iélclg) U(s")

643864972532766981331544741

Minimax games

Let s be the state of the game: complete
specification of the board, and a
statement about whose turn it is.

* If it’s the turn of the MAX player, and if
C(s) are the children of s (the set of
states reachable in one move), then

U(s) = Spqué) U(s")

 Ifit’s MIN’s turn, then

U(s) = S,Iélclg) U(s")

643864972532766981331544741

Minimax games

Let s be the state of the game: complete
specification of the board, and a
statement about whose turn it is.

* If it’s the turn of the MAX player, and if
C(s) are the children of s (the set of
states reachable in one move), then 6VEVIVWVOHV/VYI 3 ¥ 5
the value of the board is

U(s) = Spqué) U(s")

Minimax games

6
Let s be the state of the game: complete
specification of the board, and a
statement about whose turn it is. 6] 3
* If it’s the turn of the MAX player, and if
C(s) are the children of s (the set of
states reachable in one move), then 6VEVIVSV/VYI 3 V5

643864972532766981331544741

U(s) = Spqué) U(s")

 Ifit’s MIN’s turn, then

U(s) = S,Iélclg) U(s")

Minimax complexity

b =branching factor
d =search depth
Complexity = 0{b%}

643864972532766981331544741

Alpha-Beta Pruning

Each node has two internal
meta-parameters, initialized
from its parent:

& = highest value that MAX
knows how to force MIN to
accept

* [/ = lowest value that MIN
knows how to force MAX to
accept

ca<f

e Initial values: ¢ = —o0, B =
(0.0)

643864972532766981331544741

Alpha-Beta Pruning

meta-parameters, initialized
from its parent:

a = —oo
p =
& = highest value that MAX
knows how to force MIN to
accept “ﬂz__oz"

* [= lowest value that MIN
knows how to force MAX to
accept

ca<p

e Initial values: @ = —o0, B =
(0.0)

643864972532766981331544741

Alpha-Beta Pruning

If s is a MAX node, then:

* For each child s’ € C(s):

a
* |f you realize that U(s’) > B
B (s) then prune all
remaining children of s:
MIN will never let us reach ¢ =__°°
this node. p=
* Otherwise, if U(s") >
a(s), then set a(s) = 643864972532766981331544741
U(s"). MIN might still
choose s (because U(s") <
B(s)), then MAX can
choose s’.

Alpha-Beta Pruning

If s is a MAX node, then:

* For each child s’ € C(s):

a
* |f you realize that U(s’) > B
B (s) then prune all
remaining children of s:

MIN will never let us reach MA

this node.

Otherwise, if U(s") >
a(s), then set a(s) = 643864972532766981331544741

U(s’). MIN might still

choose s (because U(s’) <
B(s)), then MAX can
choose s’.

Alpha-Beta Pruning

If sis a node, then:
* For each child s’ € C(s):

a = —0g
* If you realize that U(s’) < v
a(s) then prune all
remaining children of s:
MIN will never let us reach
this node.

Otherwise, if U(s") <
B(s), then set B(s) = 643864972532766981331544741

U(s’). MAX might still

choose s (because U(s’) >
a(s)), then MIN can
choose s’.

Alpha-Beta Pruning

If s is a MAX node, then:

e For each child s’ € C(s):

* If you realize that U(s’) > B =
B (s) then prune all
remaining children of s:

MIN will never let us reach
this node.

a(s), then set a(s) = 643864972532766981331544741

U(s"). MIN might still
choose s (because U(s") <
B(s)), then MAX can
choose s'.

Alpha-Beta Pruning

If s is a MAX node, then:

e For each child s’ € C(s):

* If you realize that U(s’) > B =
B (s) then prune all
remaining children of s:

MIN will never let us reach
this node.

a(s), then set a(s) = 643864972532766981331544741

U(s"). MIN might still
choose s (because U(s") <
B(s)), then MAX can
choose s'.

Alpha-Beta Pruning

If s is a MAX node, then:

* For each child s’ € C(s):

* If you realize that U(s’) >
B (s) then prune all
remaining children of s:
MIN will never let us reach A A4 2
this node. \
O

Otherwise, if U(s") >
a(s), then set a(s) = 643864972532766981331544741

U(s’). MIN might still

choose s (because U(s’) <
B(s)), then MAX can
choose s’.

Alpha-Beta Pruning

If sis a node, then:

* For each child s’ € C(s): :
* |f you realize that U(s’) < A v o 5

a(s) then prune all

remaining children of s:
MAX will never let us reach

6 V=-8V=>9V 5 3
this node. \
* Otherwise, if U(s") <
B(s), then set B(s) = 643864972532766981331544741

U(s"). MAX might still
choose s (because U(s") >
a(s)), then MIN can
choose s'.

Optimum node ordering

Imagine you had an oracle, who
could tell you which node to
evaluate first. Which one should you

evaluate first?

e Children of MAX nodes: evaluate
the highest-value child first.

e Children of MIN nodes: evaluate
the lowest-value child first.

a==6
B = oo M
() <5 <3
6 V>8V=>9V 5 3
O

643864972532766981331544741

Complexity of alpha-beta

If nodes are optimally ordered, then
for each node s, we evaluate

* The b children of its first child.

e The first child of each of its other
b — 1 children.

Total complexity: 2b — 1 = O{b} per
two levels.

* With d levels, total complexity =
(2b — 1)%/2= 0{b?/?}.

a==6
B = oo M
() <5 <3
6 V=8W¥=9 5 3

643864972532766981331544741

1 A

Evaluéted

Optimal node ordering???!!]

a==6

B = oo A
How on Earth can we decide which
child to evaluate first?

6 <5 <3
e “Children of MAX nodes: evaluate
the highest-value child first.”
6 V=8V=9V 5 3

But if we knew which one had the
highest value, we wouldn’t need to 643864972532766981331544741

search the tree! We would already T T TT T T T T H T
know the optimal move! Evaluated

Outline

* Move ordering: policy network
* Evaluation function: value network

* Training the value network
e Exact training: endgames
* Stochastic training: Monte Carlo tree search

* Case study: alphago

Optimal node ordering???!!]

* If we knew which child had the highest value, we wouldn’t need to search
the tree! We would already know the optimal move!

* Solution: train a policy network, (s, a)

Policy networks for two-player games

For example, the game of Go:

s (state) is a vector of 19x19 = 361 w
positions, each of which is 1 =black (MAX), I
— 1 =white (MIN), or 0 =empty. v
* a (action) is the next move = position on the
board to place the next stone. 9 r +
* Neural net estimates m,;4x (s, a) and =)
Ty (S, @), probability that action a is the ® @
best move for MAX/MIN, r
efmax(s,a) ‘3-- ol -.--.
T[MAX(SI a) — |-|- 1

3., efmax(sa’)

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/

Optimal node ordering using a policy network

How on Earth can we decide which
child to evaluate first?

* Children of MIN nodes: child with/'

highest value of ;v (s, a)
(=probability that this node will be

evaluated to have the highest value)./v
e Children of MAX nodes: child with

643864972532766981331544741

highest value of my 4x (s, a) (=
probability that this node will be
evaluated to have the lowest value).

Hidden advantage: reduce the branching factor

* Policy network can be used to order the
moves, as on previous slide.

* Policy network can also be used to reduce

the branching factor, from b = 361 (the
complete branching factor in Go) to b = 4
or 5. Just choose the 4 or 5 moves with "
the highest (s, a). (?)

. Rgss,ell &”Nor\’/ig call this “heuristic o .__r“.
minimax.” It’s not guaranteed to work, 3—- +@
but it usually works. Ty

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/

Training the policy network

e But how can we train (s, a)?

* Answer: Actor-Critic reinforcement
learning!

U*(s) = z Tyax(s,a)Q*(s,a)
a
* Train Q*(s, a) using deep Q-learning (play
the game many times, gain reward each
time you win)

* Train Ty 4x (S, @) to maximize U*(s)

* Train Ty (S, @) to minimize U*(s).

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/

Outline

* Evaluation function: value network

* Training the value network
e Exact training: endgames
* Stochastic training: Monte Carlo tree search

* Case study: alphago

Complexity of alpha-beta

If nodes are optimally ordered, then,
with d levels, total complexity =
(2b — 1)%/2= 0{b4/?}.

...but wait...

A game of Go has up to 361 moves,
each of which takes any of the

available 361 points. 0{361361/2} is
very large...

a==6
B =oo A:
() <5 <3
6 V>8V=>9V 5 3
O

643864972532766981331544741

1 A

Evaluéted

Limited-horizon game search

Instead of searching to the end of
the game, we choose a depth (d)
that’s within our computational
resources.

Then, at depth d, call the value
network U*(s) to estimate the
probability that MAX wins from that
position.

5 3

>9
A
643864972532766981331544741

IR AN IR RN AN

These are not the end of the game! These are
actually the outputs of the value network,
U*(s), at these game positions.

Training the value network

* But how can we train U*(s)?

* Answer: Actor-Critic reinforcement
learning!

U*(s) = z Tyax(s,a)Q*(s,a)
a
* Train Q*(s, a) using deep Q-learning (play
the game many times, gain reward each
time you win)

* Train Ty 4x (S, @) to maximize U*(s)

* Train Ty (S, @) to minimize U*(s).

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/

Outline

* Training the value network
e Exact training: endgames
* Stochastic training: Monte Carlo tree search

* Case study: alphago

Endgames

* U*(s) can be exact when the game is near
its end. This situation is called
“endgame.”

* For example, in chess, if there are only
three pieces left, then there are just under
643 = 218 possible board positions. With
two bytes to encode the value of each,
that’s half a megabyte.

* Thus we can bypass the neural net, in
favor of a lookup table.

Q

- M W A OO N ©
9.
()
H -

m. .D>)

o

(o

N W -

-l

(0]
«Q

o

- N W d OO0 O N ©

-

How to create an endgame table

a

b d f
* Of the 28 possible board positions, find . . .

h
all the terminal states (white checkmate, 7 . . . -.
black checkmate, or draw). 6

* Iterate minimax backward from the set of 5 - . - 5
terminal states until you know the result =
for each of the 218 board positions. 4 8 . . . 4
e Computation is limited not by the search ° °
depth, but by the limited number of 2 2
board positions in the table. 1 . . . - 1
a b c d e f g h

C e

g

N

Outline

* Stochastic training: Monte Carlo tree search

* Case study: alphago

Monte Carlo Tree Search

Suppose s is too complicated for an endgame search. We still need to
estimate its value and policy. How?

* Selection: Run minimax forward a few steps, then use value network
to estimate values of the nodes at the end of the tree. Select one of
those nodes (call it s).

* Expansion: Minimax one step further using action a.

* Simulation: Play a random game, starting with node (s, a). At each
step, choose a move at random from the current policy network.

* Backpropagate: Set ;¢4 (S, @) equal to the average win frequency
of the random games starting from (s, a).

After your training dataset gets large enough, re-train Q* (s, a) with
Q0cq1 (S, @) as its target.

Monte Carlo Tree Search

SELECTION EXPANSION SIMULATION BACKPROPAGATION

Steps in Monte Carlo Tree Search.
By Rmoss92 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=88889583

Exploration vs. Exploitation

* In order to gain information about the win probability of node (s,a),
you need to put some randomness into the game.

 Exploration strategies from reinforcement learning, like epsilon-
greedy, work well.

* AlphaGo used this strategy:

* From a large database of human-vs-human games, train the initial
“supervised learning” policy network, ms; (s, a).

* From the same database, train another policy network that’s the same, but
with too few trainable parameters, hence less accurate. Call this the “rollout
network,” Tpo110ut (S, @).

* Use Tro1out (S, a) to play games — its low accuracy adds randomness -- use
its results to improve g, (s, a).

Outline

* Case study: Alpha-Go

Alpha-Go Video by Nature Magazine

(8 minutes, 2016)

<—S| & WiFi | Panera Bread 3 99 The computerthat X 4 — X
é 9 O ﬁh E] bing.com] h I ! jﬁ{ ‘fg Z_ I_Q

Y% toolsbeckmanillin ¥ Skyward & Summary of Lorelei A JASA editor Y¢ LoReHLT Evaluations Y Informatics PhD| Y¢ UNCorpus Yy Kaldi:Kaldi Y kyoudaimae ¢ University of lllinois:

Alphago Transparent Ba...
Alphago Master

Lee Sedol Alphago

\?F"'i Alphago Lose

}. i | Alphago Terminator
| 1

~ © Alphago Live

The computer that mastered Go
» YouTube - 805,000 vs - 1/25/201¢

T — [#l save () View page

Related videos W Feedback

AlphaGo

Rollout policy SL policy network RL policy network Value network
z
pn pa pp Vo 8
™
3
o
X %ﬁ @ S
Policy gradient o
=
@)
QO
oy

Human expert positions Self-play positions

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

Conclusions

e Review: minimax and alpha-beta
* Complexity: (2b — 1)%/2= 0{b?/?} with depth d and branching factor b, if the
children of each node are ordered just right (MAX: largest first, MIN: smallest first)
* Move ordering: policy network
* Can be used to order the children, with no loss of accuracy; Can also limit the set of
moves evaluated, with some loss of accuracy

 Evaluation function: value network
* Estimates the value of each board position in limited-horizon search

* Exact value: endgames
* Minimax search backward from a set of known terminal positions

 Stochastic training: Monte Carlo tree search

* Choose a policy that includes exploration vs. exploitation, play games at random, use
the data to estimate win frequency

