
Lecture 33 –
Reinforcement Learning
for Two-Player Games

Mark Hasegawa-Johnson, 4/2020
CC-BY 4.0: you may remix or redistribute if you

cite the source

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/

Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network

• Exact training: endgames
• Stochastic training: Monte Carlo tree search

• Case study: alphago

Minimax games

Let 𝑠 be the state of the game: complete
specification of the board, and a
statement about whose turn it is.

• If it’s the turn of the MAX player, and if
𝐶(𝑠) are the children of 𝑠 (the set of
states reachable in one move), then
the value of the board is

𝑈 𝑠 = max
!"∈$(!)

𝑈(𝑠")

• If it’s MIN’s turn, then
𝑈 𝑠 = min

!"∈$(!)
𝑈(𝑠")

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

Minimax games

Let 𝑠 be the state of the game: complete
specification of the board, and a
statement about whose turn it is.

• If it’s the turn of the MAX player, and if
𝐶(𝑠) are the children of 𝑠 (the set of
states reachable in one move), then
the value of the board is

𝑈 𝑠 = max
!"∈$(!)

𝑈(𝑠")

• If it’s MIN’s turn, then
𝑈 𝑠 = min

!"∈$(!)
𝑈(𝑠")

75 9 53 786 9

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

Minimax games

Let 𝑠 be the state of the game: complete
specification of the board, and a
statement about whose turn it is.

• If it’s the turn of the MAX player, and if
𝐶(𝑠) are the children of 𝑠 (the set of
states reachable in one move), then
the value of the board is

𝑈 𝑠 = max
!"∈$(!)

𝑈(𝑠")

• If it’s MIN’s turn, then
𝑈 𝑠 = min

!"∈$(!)
𝑈(𝑠")

75 9 53 786 9

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

Minimax games

Let 𝑠 be the state of the game: complete
specification of the board, and a
statement about whose turn it is.

• If it’s the turn of the MAX player, and if
𝐶(𝑠) are the children of 𝑠 (the set of
states reachable in one move), then
the value of the board is

𝑈 𝑠 = max
!"∈$(!)

𝑈(𝑠")

• If it’s MIN’s turn, then
𝑈 𝑠 = min

!"∈$(!)
𝑈(𝑠")

6

75 9 53 786 9

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

Minimax complexity

𝑏 =branching factor

𝑑 =search depth

Complexity = 𝑂{𝑏!}

6

75 9 53 786 9

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

Alpha-Beta Pruning

Each node has two internal
meta-parameters, initialized
from its parent:
• 𝛼 = highest value that MAX

knows how to force MIN to
accept

• 𝛽 = lowest value that MIN
knows how to force MAX to
accept

• 𝛼 ≤ 𝛽
• Initial values: 𝛼 = −∞, 𝛽 =
∞

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = −∞
𝛽 = ∞

Alpha-Beta Pruning

Each node has two internal
meta-parameters, initialized
from its parent:
• 𝛼 = highest value that MAX

knows how to force MIN to
accept

• 𝛽 = lowest value that MIN
knows how to force MAX to
accept

• 𝛼 ≤ 𝛽
• Initial values: 𝛼 = −∞, 𝛽 =
∞

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = −∞
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞

Alpha-Beta Pruning

If 𝑠 is a MAX node, then:
• For each child 𝑠’ ∈ 𝐶(𝑠):

• If you realize that 𝑈 𝑠’ >
𝛽 𝑠 then prune all
remaining children of 𝑠:
MIN will never let us reach
this node.

• Otherwise, if 𝑈(𝑠’) >
𝛼 𝑠 , then set 𝛼 𝑠 =
𝑈(𝑠’). MIN might still
choose 𝑠 (because 𝑈 𝑠’ ≤
𝛽 𝑠), then MAX can
choose 𝑠’.

6

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = −∞
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞

Alpha-Beta Pruning

If 𝑠 is a MAX node, then:
• For each child 𝑠’ ∈ 𝐶(𝑠):

• If you realize that 𝑈 𝑠’ >
𝛽 𝑠 then prune all
remaining children of 𝑠:
MIN will never let us reach
this node.

• Otherwise, if 𝑈(𝑠’) >
𝛼 𝑠 , then set 𝛼 𝑠 =
𝑈(𝑠’). MIN might still
choose 𝑠 (because 𝑈 𝑠’ ≤
𝛽 𝑠), then MAX can
choose 𝑠’.

6

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = 6
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞

Alpha-Beta Pruning

If 𝑠 is a MIN node, then:
• For each child 𝑠’ ∈ 𝐶(𝑠):

• If you realize that 𝑈 𝑠’ <
𝛼 𝑠 then prune all
remaining children of 𝑠:
MIN will never let us reach
this node.

• Otherwise, if 𝑈 𝑠’ <
𝛽 𝑠 , then set 𝛽 𝑠 =
𝑈(𝑠’). MAX might still
choose 𝑠 (because 𝑈 𝑠’ ≥
𝛼 𝑠), then MIN can
choose 𝑠’.

6

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = −∞
𝛽 = 6

𝛼 = −∞
𝛽 = ∞

Alpha-Beta Pruning

If 𝑠 is a MAX node, then:
• For each child 𝑠’ ∈ 𝐶(𝑠):

• If you realize that 𝑈 𝑠’ >
𝛽 𝑠 then prune all
remaining children of 𝑠:
MIN will never let us reach
this node.

• Otherwise, if 𝑈(𝑠’) >
𝛼 𝑠 , then set 𝛼 𝑠 =
𝑈(𝑠’). MIN might still
choose 𝑠 (because 𝑈 𝑠’ ≤
𝛽 𝑠), then MAX can
choose 𝑠’.

≥ 𝟖6

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = −∞
𝛽 = 6

𝛼 = −∞
𝛽 = ∞

𝛼 = −∞
𝛽 = 6

XX

Alpha-Beta Pruning

If 𝑠 is a MAX node, then:
• For each child 𝑠’ ∈ 𝐶(𝑠):

• If you realize that 𝑈 𝑠’ >
𝛽 𝑠 then prune all
remaining children of 𝑠:
MIN will never let us reach
this node.

• Otherwise, if 𝑈(𝑠’) >
𝛼 𝑠 , then set 𝛼 𝑠 =
𝑈(𝑠’). MIN might still
choose 𝑠 (because 𝑈 𝑠’ ≤
𝛽 𝑠), then MAX can
choose 𝑠’.

≥ 𝟖6 ≥ 𝟗

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = −∞
𝛽 = 6

𝛼 = −∞
𝛽 = ∞

𝛼 = −∞
𝛽 = 6

XX XX

Alpha-Beta Pruning

If 𝑠 is a MAX node, then:
• For each child 𝑠’ ∈ 𝐶(𝑠):

• If you realize that 𝑈 𝑠’ >
𝛽 𝑠 then prune all
remaining children of 𝑠:
MIN will never let us reach
this node.

• Otherwise, if 𝑈(𝑠’) >
𝛼 𝑠 , then set 𝛼 𝑠 =
𝑈(𝑠’). MIN might still
choose 𝑠 (because 𝑈 𝑠’ ≤
𝛽 𝑠), then MAX can
choose 𝑠’.

≥ 𝟖6 ≥ 𝟗

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = 6
𝛽 = ∞

XX XX

Alpha-Beta Pruning

If 𝑠 is a MIN node, then:
• For each child 𝑠’ ∈ 𝐶(𝑠):

• If you realize that 𝑈 𝑠’ <
𝛼 𝑠 then prune all
remaining children of 𝑠:
MAX will never let us reach
this node.

• Otherwise, if 𝑈 𝑠’ <
𝛽 𝑠 , then set 𝛽 𝑠 =
𝑈(𝑠’). MAX might still
choose 𝑠 (because 𝑈 𝑠’ ≥
𝛼 𝑠), then MIN can
choose 𝑠’.

6

5 3≥ 𝟖6 ≥ 𝟗

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = 6
𝛽 = ∞

𝛼 = 6
𝛽 = ∞

XX XX

X X

𝛼 = 6
𝛽 = ∞

X X

Optimum node ordering

Imagine you had an oracle, who
could tell you which node to
evaluate first. Which one should you
evaluate first?

• Children of MAX nodes: evaluate
the highest-value child first.

• Children of MIN nodes: evaluate
the lowest-value child first.

6

5 3≥ 𝟖6 ≥ 𝟗

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = 6
𝛽 = ∞

XX XX

X X X X

Complexity of alpha-beta

If nodes are optimally ordered, then
for each node 𝑠, we evaluate

• The 𝑏 children of its first child.

• The first child of each of its other
𝑏 − 1 children.

Total complexity: 2𝑏 − 1 = 𝑂{𝑏} per
two levels.

• With 𝑑 levels, total complexity =
(2𝑏 − 1)!/#= 𝑂{𝑏!/#}.

6

5 3≥ 𝟖6 ≥ 𝟗

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = 6
𝛽 = ∞

XX XX

X X X X

Evaluated

Optimal node ordering???!!!

How on Earth can we decide which
child to evaluate first?

• “Children of MAX nodes: evaluate
the highest-value child first.”

But if we knew which one had the
highest value, we wouldn’t need to
search the tree! We would already
know the optimal move!

6

5 3≥ 𝟖6 ≥ 𝟗

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = 6
𝛽 = ∞

XX XX

X X X X

Evaluated

Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network

• Exact training: endgames
• Stochastic training: Monte Carlo tree search

• Case study: alphago

Optimal node ordering???!!!

• If we knew which child had the highest value, we wouldn’t need to search
the tree! We would already know the optimal move!

• Solution: train a policy network, 𝜋 𝑠, 𝑎

Policy networks for two-player games
For example, the game of Go:
• 𝑠 (state) is a vector of 19×19 = 361

positions, each of which is 1 =black (MAX),
− 1 =white (MIN), or 0 =empty.
• 𝑎 (action) is the next move = position on the

board to place the next stone.

• Neural net estimates 𝜋'() 𝑠, 𝑎 and
𝜋'*+ 𝑠, 𝑎 , probability that action 𝑎 is the
best move for MAX/MIN,

𝜋'() 𝑠, 𝑎 =
𝑒,$%&(!,.)

∑." 𝑒,$%&(!,.
')

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/

Optimal node ordering using a policy network

How on Earth can we decide which
child to evaluate first?

• Children of MIN nodes: child with
highest value of 𝜋'*+ 𝑠, 𝑎
(=probability that this node will be
evaluated to have the highest value).

• Children of MAX nodes: child with
highest value of 𝜋'() 𝑠, 𝑎 (=
probability that this node will be
evaluated to have the lowest value).

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

Hidden advantage: reduce the branching factor
• Policy network can be used to order the

moves, as on previous slide.

• Policy network can also be used to reduce
the branching factor, from 𝑏 = 361 (the
complete branching factor in Go) to 𝑏 ≈ 4
or 5. Just choose the 4 or 5 moves with
the highest 𝜋 𝑠, 𝑎 .

• Russell & Norvig call this “heuristic
minimax.” It’s not guaranteed to work,
but it usually works.

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/

?
? ?

?

Training the policy network
• But how can we train 𝜋 𝑠, 𝑎 ?
• Answer: Actor-Critic reinforcement

learning!

𝑈∗ 𝑠 =9
%

𝜋&'(𝑠, 𝑎 𝑄∗ 𝑠, 𝑎

• Train 𝑄∗ 𝑠, 𝑎 using deep Q-learning (play
the game many times, gain reward each
time you win)
• Train 𝜋&'(𝑠, 𝑎 to maximize 𝑈∗ 𝑠
• Train 𝜋&)* 𝑠, 𝑎 to minimize 𝑈∗ 𝑠 .

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/

Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network

• Exact training: endgames
• Stochastic training: Monte Carlo tree search

• Case study: alphago

Complexity of alpha-beta

If nodes are optimally ordered, then,
with 𝑑 levels, total complexity =
(2𝑏 − 1)!/#= 𝑂{𝑏!/#}.

…but wait…

A game of Go has up to 361 moves,
each of which takes any of the
available 361 points. 𝑂{361+,-/#} is
very large…

6

5 3≥ 𝟖6 ≥ 𝟗

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = 6
𝛽 = ∞

XX XX

X X X X

Evaluated

Limited-horizon game search

Instead of searching to the end of
the game, we choose a depth (d)
that’s within our computational
resources.

Then, at depth d, call the value
network 𝑈∗ 𝑠 to estimate the
probability that MAX wins from that
position.

6

5 3≥ 𝟖6 ≥ 𝟗

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = 6
𝛽 = ∞

XX XX

X X X X

These are not the end of the game! These are
actually the outputs of the value network,
𝑈∗ 𝑠 , at these game positions.

Training the value network
• But how can we train 𝑈∗ 𝑠 ?
• Answer: Actor-Critic reinforcement

learning!

𝑈∗ 𝑠 =9
%

𝜋&'(𝑠, 𝑎 𝑄∗ 𝑠, 𝑎

• Train 𝑄∗ 𝑠, 𝑎 using deep Q-learning (play
the game many times, gain reward each
time you win)
• Train 𝜋&'(𝑠, 𝑎 to maximize 𝑈∗ 𝑠
• Train 𝜋&)* 𝑠, 𝑎 to minimize 𝑈∗ 𝑠 .

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/

Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network

• Exact training: endgames
• Stochastic training: Monte Carlo tree search

• Case study: alphago

Endgames

• 𝑈∗ 𝑠 can be exact when the game is near
its end. This situation is called
“endgame.”
• For example, in chess, if there are only

three pieces left, then there are just under
64+ = 2-. possible board positions. With
two bytes to encode the value of each,
that’s half a megabyte.
• Thus we can bypass the neural net, in

favor of a lookup table.

How to create an endgame table

• Of the 2-. possible board positions, find
all the terminal states (white checkmate,
black checkmate, or draw).
• Iterate minimax backward from the set of

terminal states until you know the result
for each of the 2-. board positions.
• Computation is limited not by the search

depth, but by the limited number of
board positions in the table.

Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network

• Exact training: endgames
• Stochastic training: Monte Carlo tree search

• Case study: alphago

Monte Carlo Tree Search
Suppose s is too complicated for an endgame search. We still need to
estimate its value and policy. How?
• Selection: Run minimax forward a few steps, then use value network

to estimate values of the nodes at the end of the tree. Select one of
those nodes (call it 𝑠).
• Expansion: Minimax one step further using action 𝑎.
• Simulation: Play a random game, starting with node (𝑠, 𝑎). At each

step, choose a move at random from the current policy network.
• Backpropagate: Set 𝑄/01%/(𝑠, 𝑎) equal to the average win frequency

of the random games starting from (𝑠, 𝑎).
After your training dataset gets large enough, re-train 𝑄∗ 𝑠, 𝑎 with
𝑄/01%/(𝑠, 𝑎) as its target.

Monte Carlo Tree Search

Steps in Monte Carlo Tree Search.
By Rmoss92 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=88889583

Exploration vs. Exploitation

• In order to gain information about the win probability of node (s,a),
you need to put some randomness into the game.
• Exploration strategies from reinforcement learning, like epsilon-

greedy, work well.
• AlphaGo used this strategy:

• From a large database of human-vs-human games, train the initial
“supervised learning” policy network, 𝜋"# 𝑠, 𝑎 .

• From the same database, train another policy network that’s the same, but
with too few trainable parameters, hence less accurate. Call this the “rollout
network,” 𝜋$%&&%'(𝑠, 𝑎 .

• Use 𝜋$%&&%'(𝑠, 𝑎 to play games – its low accuracy adds randomness -- use
its results to improve 𝜋"# 𝑠, 𝑎 .

Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network

• Exact training: endgames
• Stochastic training: Monte Carlo tree search

• Case study: Alpha-Go

Alpha-Go Video by Nature Magazine
(8 minutes, 2016)

AlphaGo

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

Conclusions

• Review: minimax and alpha-beta
• Complexity: (2𝑏 − 1)(/*= 𝑂{𝑏(/*} with depth d and branching factor b, if the

children of each node are ordered just right (MAX: largest first, MIN: smallest first)
• Move ordering: policy network

• Can be used to order the children, with no loss of accuracy; Can also limit the set of
moves evaluated, with some loss of accuracy

• Evaluation function: value network
• Estimates the value of each board position in limited-horizon search

• Exact value: endgames
• Minimax search backward from a set of known terminal positions

• Stochastic training: Monte Carlo tree search
• Choose a policy that includes exploration vs. exploitation, play games at random, use

the data to estimate win frequency

