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Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network

• Exact training: endgames
• Stochastic training: Monte Carlo tree search

• Case study: alphago



Minimax games

Let 𝑠 be the state of the game: complete 
specification of the board, and a 
statement about whose turn it is.

• If it’s the turn of the MAX player, and if 
𝐶(𝑠) are the children of 𝑠 (the set of 
states reachable in one move), then 
the value of the board is

𝑈 𝑠 = max
!"∈$(!)

𝑈(𝑠")

• If it’s MIN’s turn, then
𝑈 𝑠 = min

!"∈$(!)
𝑈(𝑠")
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Minimax complexity

𝑏 =branching factor

𝑑 =search depth

Complexity = 𝑂{𝑏!}
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Alpha-Beta Pruning

Each node has two internal 
meta-parameters, initialized 
from its parent:
• 𝛼 = highest value that MAX 

knows how to force MIN to 
accept

• 𝛽 = lowest value that MIN
knows how to force MAX to
accept

• 𝛼 ≤ 𝛽
• Initial values: 𝛼 = −∞, 𝛽 =
∞
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Alpha-Beta Pruning

If 𝑠 is a MAX node, then:
• For each child 𝑠’ ∈ 𝐶(𝑠):

• If you realize that 𝑈 𝑠’ >
𝛽 𝑠 then prune all 
remaining children of 𝑠: 
MIN will never let us reach 
this node.

• Otherwise, if 𝑈(𝑠’) >
𝛼 𝑠 , then set 𝛼 𝑠 =
𝑈(𝑠’).  MIN might still 
choose 𝑠 (because 𝑈 𝑠’ ≤
𝛽 𝑠 ), then MAX can 
choose 𝑠’.

6

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = −∞
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞



Alpha-Beta Pruning

If 𝑠 is a MAX node, then:
• For each child 𝑠’ ∈ 𝐶(𝑠):

• If you realize that 𝑈 𝑠’ >
𝛽 𝑠 then prune all 
remaining children of 𝑠: 
MIN will never let us reach 
this node.

• Otherwise, if 𝑈(𝑠’) >
𝛼 𝑠 , then set 𝛼 𝑠 =
𝑈(𝑠’).  MIN might still 
choose 𝑠 (because 𝑈 𝑠’ ≤
𝛽 𝑠 ), then MAX can 
choose 𝑠’.

6

6 3 8 4 9 2 5 2 7 6 9 1 3 1 5 4 7 14 6 7 3 6 8 3 4 4

𝛼 = 6
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞

𝛼 = −∞
𝛽 = ∞



Alpha-Beta Pruning

If 𝑠 is a MIN node, then:
• For each child 𝑠’ ∈ 𝐶(𝑠):

• If you realize that 𝑈 𝑠’ <
𝛼 𝑠 then prune all 
remaining children of 𝑠: 
MIN will never let us reach 
this node.

• Otherwise, if 𝑈 𝑠’ <
𝛽 𝑠 , then set 𝛽 𝑠 =
𝑈(𝑠’).  MAX might still 
choose 𝑠 (because 𝑈 𝑠’ ≥
𝛼 𝑠 ), then MIN can 
choose 𝑠’.
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Alpha-Beta Pruning

If 𝑠 is a MIN node, then:
• For each child 𝑠’ ∈ 𝐶(𝑠):
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𝛼 𝑠 then prune all 
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Optimum node ordering

Imagine you had an oracle, who 
could tell you which node to 
evaluate first.  Which one should you 
evaluate first?

• Children of MAX nodes: evaluate 
the highest-value child first.

• Children of MIN nodes: evaluate
the lowest-value child first.
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Complexity of alpha-beta

If nodes are optimally ordered, then 
for each node 𝑠, we evaluate

• The 𝑏 children of its first child.

• The first child of each of its other
𝑏 − 1 children.

Total complexity: 2𝑏 − 1 = 𝑂{𝑏} per
two levels.  

• With 𝑑 levels, total complexity = 
(2𝑏 − 1)!/#= 𝑂{𝑏!/#}.
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Optimal node ordering???!!!

How on Earth can we decide which 
child to evaluate first?

• “Children of MAX nodes: evaluate 
the highest-value child first.”

But if we knew which one had the 
highest value, we wouldn’t need to 
search the tree!  We would already 
know the optimal move!
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Optimal node ordering???!!!

• If we knew which child had the highest value, we wouldn’t need to search 
the tree!  We would already know the optimal move!

• Solution: train a policy network, 𝜋 𝑠, 𝑎



Policy networks for two-player games 
For example, the game of Go:
• 𝑠 (state) is a vector of 19×19 = 361

positions, each of which is 1 =black (MAX), 
− 1 =white (MIN), or 0 =empty.
• 𝑎 (action) is the next move = position on the 

board to place the next stone.

• Neural net estimates 𝜋'() 𝑠, 𝑎 and 
𝜋'*+ 𝑠, 𝑎 , probability that action 𝑎 is the 
best move for MAX/MIN,

𝜋'() 𝑠, 𝑎 =
𝑒,$%&(!,.)

∑." 𝑒,$%&(!,.
')

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/



Optimal node ordering using a policy network

How on Earth can we decide which 
child to evaluate first?

• Children of MIN nodes: child with 
highest value of 𝜋'*+ 𝑠, 𝑎
(=probability that this node will be 
evaluated to have the highest value).

• Children of MAX nodes: child with
highest value of 𝜋'() 𝑠, 𝑎 (= 
probability that this node will be 
evaluated to have the lowest value).
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Hidden advantage: reduce the branching factor
• Policy network can be used to order the 

moves, as on previous slide.

• Policy network can also be used to reduce
the branching factor, from 𝑏 = 361 (the 
complete branching factor in Go) to 𝑏 ≈ 4
or 5.  Just choose the 4 or 5 moves with 
the highest 𝜋 𝑠, 𝑎 .

• Russell & Norvig call this “heuristic 
minimax.”    It’s not guaranteed to work, 
but it usually works.

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/

?
? ?

?



Training the policy network
• But how can we train 𝜋 𝑠, 𝑎 ? 
• Answer: Actor-Critic reinforcement

learning!

𝑈∗ 𝑠 =9
%

𝜋&'( 𝑠, 𝑎 𝑄∗ 𝑠, 𝑎

• Train 𝑄∗ 𝑠, 𝑎 using deep Q-learning (play 
the game many times, gain reward each 
time you win)
• Train 𝜋&'( 𝑠, 𝑎 to maximize 𝑈∗ 𝑠
• Train 𝜋&)* 𝑠, 𝑎 to minimize 𝑈∗ 𝑠 .

Snapshot of a gnugo game,
http://www.gnu.org/software/gnugo/



Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network

• Exact training: endgames
• Stochastic training: Monte Carlo tree search

• Case study: alphago



Complexity of alpha-beta

If nodes are optimally ordered, then, 
with 𝑑 levels, total complexity = 
(2𝑏 − 1)!/#= 𝑂{𝑏!/#}.

…but wait…

A game of Go has up to 361 moves, 
each of which takes any of the 
available 361 points. 𝑂{361+,-/#} is 
very large… 
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Limited-horizon game search 

Instead of searching to the end of 
the game, we choose a depth (d) 
that’s within our computational 
resources.

Then, at depth d, call the value 
network 𝑈∗ 𝑠 to estimate the 
probability that MAX wins from that 
position.
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These are not the end of the game!  These are 
actually the outputs of the value network, 
𝑈∗ 𝑠 , at these game positions.



Training the value network
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Endgames

• 𝑈∗ 𝑠 can be exact when the game is near 
its end.  This situation is called 
“endgame.”  
• For example, in chess, if there are only

three pieces left, then there are just under 
64+ = 2-. possible board positions.  With 
two bytes to encode the value of each, 
that’s half a megabyte.
• Thus we can bypass the neural net, in

favor of a lookup table.



How to create an endgame table

• Of the 2-. possible board positions, find 
all the terminal states (white checkmate, 
black checkmate, or draw).
• Iterate minimax backward from the set of 

terminal states until you know the result 
for each of the 2-. board positions.
• Computation is limited not by the search

depth, but by the limited number of 
board positions in the table.
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Monte Carlo Tree Search
Suppose s is too complicated for an endgame search.  We still need to 
estimate its value and policy.  How?
• Selection: Run minimax forward a few steps, then use value network

to estimate values of the nodes at the end of the tree.  Select one of
those nodes (call it 𝑠).
• Expansion: Minimax one step further using action 𝑎.
• Simulation: Play a random game, starting with node (𝑠, 𝑎).  At each

step, choose a move at random from the current policy network.
• Backpropagate: Set 𝑄/01%/(𝑠, 𝑎) equal to the average win frequency 

of the random games starting from (𝑠, 𝑎).
After your training dataset gets large enough, re-train 𝑄∗ 𝑠, 𝑎 with 
𝑄/01%/(𝑠, 𝑎) as its target.



Monte Carlo Tree Search

Steps in Monte Carlo Tree Search.
By Rmoss92 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=88889583



Exploration vs. Exploitation

• In order to gain information about the win probability of node (s,a), 
you need to put some randomness into the game.  
• Exploration strategies from reinforcement learning, like epsilon-

greedy, work well.
• AlphaGo used this strategy: 

• From a large database of human-vs-human games, train the initial 
“supervised learning” policy network, 𝜋"# 𝑠, 𝑎 .

• From the same database, train another policy network that’s the same, but 
with too few trainable parameters, hence less accurate. Call this the “rollout 
network,” 𝜋$%&&%'( 𝑠, 𝑎 .

• Use 𝜋$%&&%'( 𝑠, 𝑎 to play games – its low accuracy adds randomness -- use 
its results to improve 𝜋"# 𝑠, 𝑎 . 
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Alpha-Go Video by Nature Magazine
(8 minutes, 2016)



AlphaGo

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, 
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


Conclusions

• Review: minimax and alpha-beta
• Complexity: (2𝑏 − 1)(/*= 𝑂{𝑏(/*} with depth d and branching factor b, if the 

children of each node are ordered just right (MAX: largest first, MIN: smallest first) 
• Move ordering: policy network

• Can be used to order the children, with no loss of accuracy;  Can also limit the set of 
moves evaluated, with some loss of accuracy

• Evaluation function: value network
• Estimates the value of each board position in limited-horizon search

• Exact value: endgames
• Minimax search backward from a set of known terminal positions

• Stochastic training: Monte Carlo tree search
• Choose a policy that includes exploration vs. exploitation, play games at random, use 

the data to estimate win frequency


