Lecture 33 – Reinforcement Learning for Two-Player Games

Mark Hasegawa-Johnson, 4/2020

CC-BY 4.0: you may remix or redistribute if you cite the source

Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network
 • Exact training: endgames
 • Stochastic training: Monte Carlo tree search
• Case study: alphago
Minimax games

Let s be the state of the game: complete specification of the board, and a statement about whose turn it is.

- If it’s the turn of the MAX player, and if $C(s)$ are the children of s (the set of states reachable in one move), then the value of the board is
 \[U(s) = \max_{s' \in C(s)} U(s') \]

- If it’s MIN’s turn, then
 \[U(s) = \min_{s' \in C(s)} U(s') \]
Minimax games

Let s be the state of the game: complete specification of the board, and a statement about whose turn it is.

- If it’s the turn of the MAX player, and if $C(s)$ are the children of s (the set of states reachable in one move), then the value of the board is
 \[U(s) = \max_{s' \in C(s)} U(s') \]

- If it’s MIN’s turn, then
 \[U(s) = \min_{s' \in C(s)} U(s') \]
Minimax games

Let s be the state of the game: complete specification of the board, and a statement about whose turn it is.

- If it’s the turn of the MAX player, and if $C(s)$ are the children of s (the set of states reachable in one move), then the value of the board is
 \[U(s) = \max_{s' \in C(s)} U(s') \]

- If it’s MIN’s turn, then
 \[U(s) = \min_{s' \in C(s)} U(s') \]
Minimax games

Let s be the state of the game: complete specification of the board, and a statement about whose turn it is.

- If it’s the turn of the MAX player, and if $C(s)$ are the children of s (the set of states reachable in one move), then the value of the board is
 \[U(s) = \max_{s' \in C(s)} U(s') \]

- If it’s MIN’s turn, then
 \[U(s) = \min_{s' \in C(s)} U(s') \]
Minimax complexity

\[b = \text{branching factor} \]

\[d = \text{search depth} \]

Complexity = \(O\{b^d\} \)
Alpha-Beta Pruning

Each node has two internal meta-parameters, initialized from its parent:

- $\alpha = \text{highest value that MAX knows how to force MIN to accept}$
- $\beta = \text{lowest value that MIN knows how to force MAX to accept}$
- $\alpha \leq \beta$
- Initial values: $\alpha = -\infty$, $\beta = \infty$
Alpha-Beta Pruning

Each node has two internal meta-parameters, initialized from its parent:

- $\alpha = \text{highest value that MAX knows how to force MIN to accept}$
- $\beta = \text{lowest value that MIN knows how to force MAX to accept}$
- $\alpha \leq \beta$
- Initial values: $\alpha = -\infty$, $\beta = \infty$
Alpha-Beta Pruning

If s is a \textbf{MAX} node, then:

- For each child $s' \in C(s)$:
 - If you realize that $U(s') > \beta(s)$ then prune all remaining children of s: MIN will never let us reach this node.
 - Otherwise, if $U(s') > \alpha(s)$, then set $\alpha(s) = U(s')$. MIN might still choose s (because $U(s') \leq \beta(s)$), then MAX can choose s'.

\[\alpha = -\infty \]
\[\beta = \infty \]
Alpha-Beta Pruning

If \(s \) is a **MAX** node, then:

- For each child \(s' \in C(s) \):
 - If you realize that \(U(s') > \beta(s) \) then prune all remaining children of \(s \): MIN will never let us reach this node.
 - Otherwise, if \(U(s') > \alpha(s) \), then set \(\alpha(s) = U(s') \). MIN might still choose \(s \) (because \(U(s') \leq \beta(s) \)), then MAX can choose \(s' \).
Alpha-Beta Pruning

If s is a MIN node, then:

• For each child $s' \in C(s)$:
 • If you realize that $U(s') < \alpha(s)$ then prune all remaining children of s: MIN will never let us reach this node.
 • Otherwise, if $U(s') < \beta(s)$, then set $\beta(s) = U(s')$. MAX might still choose s (because $U(s') \geq \alpha(s)$), then MIN can choose s'.

\[\alpha = -\infty, \quad \beta = \infty\]
Alpha-Beta Pruning

If s is a **MAX** node, then:

- For each child $s' \in C(s)$:
 - If you realize that $U(s') > \beta(s)$ then prune all remaining children of s: MIN will never let us reach this node.
 - Otherwise, if $U(s') > \alpha(s)$, then set $\alpha(s) = U(s')$. MIN might still choose s (because $U(s') \leq \beta(s)$), then MAX can choose s'.
Alpha-Beta Pruning

If s is a **MAX** node, then:

- For each child $s' \in C(s)$:
 - If you realize that $U(s') > \beta(s)$ then prune all remaining children of s: MIN will never let us reach this node.
 - Otherwise, if $U(s') > \alpha(s)$, then set $\alpha(s) = U(s')$. MIN might still choose s (because $U(s') \leq \beta(s)$), then MAX can choose s'.
Alpha-Beta Pruning

If s is a **MAX** node, then:

- For each child $s' \in C(s)$:
 - If you realize that $U(s') > \beta(s)$ then prune all remaining children of s: MIN will never let us reach this node.
 - Otherwise, if $U(s') > \alpha(s)$, then set $\alpha(s) = U(s')$. MIN might still choose s (because $U(s') \leq \beta(s)$), then MAX can choose s'.
Alpha-Beta Pruning

If s is a MIN node, then:

- For each child $s' \in C(s)$:
 - If you realize that $U(s') < \alpha(s)$ then prune all remaining children of s: MAX will never let us reach this node.
 - Otherwise, if $U(s') < \beta(s)$, then set $\beta(s) = U(s')$. MAX might still choose s (because $U(s') \geq \alpha(s)$), then MIN can choose s'.
Optimum node ordering

Imagine you had an oracle, who could tell you which node to evaluate first. Which one should you evaluate first?

- Children of MAX nodes: evaluate the highest-value child first.
- Children of MIN nodes: evaluate the lowest-value child first.
Complexity of alpha-beta

If nodes are optimally ordered, then for each node s, we evaluate

- The b children of its first child.
- The first child of each of its other $b - 1$ children.

Total complexity: $2b - 1 = O\{b\}$ per two levels.

- With d levels, total complexity = $(2b - 1)^{d/2} = O\{b^{d/2}\}$.
Optimal node ordering??!!

How on Earth can we decide which child to evaluate first?

- “Children of MAX nodes: evaluate the highest-value child first.”

But if we knew which one had the highest value, we wouldn’t need to search the tree! We would already know the optimal move!
Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network
 • Exact training: endgames
 • Stochastic training: Monte Carlo tree search
• Case study: alphago
Optimal node ordering??!

- If we knew which child had the highest value, we wouldn’t need to search the tree! We would already know the optimal move!
- Solution: train a policy network, $\pi(s, a)$
Policy networks for two-player games

For example, the game of Go:

• s (state) is a vector of $19 \times 19 = 361$ positions, each of which is $1 = \text{black (MAX)}$, $-1 = \text{white (MIN)}$, or $0 = \text{empty}$.

• a (action) is the next move = position on the board to place the next stone.

• Neural net estimates $\pi_{MAX}(s, a)$ and $\pi_{MIN}(s, a)$, probability that action a is the best move for MAX/MIN,

$$\pi_{MAX}(s, a) = \frac{e^{f_{MAX}(s,a)}}{\sum_{a'} e^{f_{MAX}(s,a')}}$$
Optimal node ordering using a policy network

How on Earth can we decide which child to evaluate first?

- Children of MIN nodes: child with highest value of \(\pi_{MIN}(s, a) \) (=probability that this node will be evaluated to have the highest value).

- Children of MAX nodes: child with highest value of \(\pi_{MAX}(s, a) \) (=probability that this node will be evaluated to have the lowest value).
Hidden advantage: reduce the branching factor

• Policy network can be used to order the moves, as on previous slide.
• Policy network can also be used to reduce the branching factor, from $b = 361$ (the complete branching factor in Go) to $b \approx 4$ or 5. Just choose the 4 or 5 moves with the highest $\pi(s, a)$.
• Russell & Norvig call this “heuristic minimax.” It’s not guaranteed to work, but it usually works.

Training the policy network

• But how can we train $\pi(s, a)$?

• Answer: Actor-Critic reinforcement learning!

$$U^*(s) = \sum_a \pi_{\text{MAX}}(s, a)Q^*(s, a)$$

• Train $Q^*(s, a)$ using deep Q-learning (play the game many times, gain reward each time you win)

• Train $\pi_{\text{MAX}}(s, a)$ to maximize $U^*(s)$

• Train $\pi_{\text{MIN}}(s, a)$ to minimize $U^*(s)$.

Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network
 • Exact training: endgames
 • Stochastic training: Monte Carlo tree search
• Case study: alphago
Complexity of alpha-beta

If nodes are optimally ordered, then, with \(d \) levels, total complexity = \((2b - 1)^{d/2} = O\{b^{d/2}\}\).

...but wait...

A game of Go has up to 361 moves, each of which takes any of the available 361 points. \(O\{361^{361/2}\} \) is very large...
Limited-horizon game search

Instead of searching to the end of the game, we choose a depth (d) that’s within our computational resources.

Then, at depth d, call the value network $U^*(s)$ to estimate the probability that MAX wins from that position.

These are not the end of the game! These are actually the outputs of the value network, $U^*(s)$, at these game positions.
Training the value network

• But how can we train $U^*(s)$?
• Answer: Actor-Critic reinforcement learning!

$$U^*(s) = \sum_a \pi_{MAX}(s, a)Q^*(s, a)$$

• Train $Q^*(s, a)$ using deep Q-learning (play the game many times, gain reward each time you win)
• Train $\pi_{MAX}(s, a)$ to maximize $U^*(s)$
• Train $\pi_{MIN}(s, a)$ to minimize $U^*(s)$.

Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network

• Training the value network
 • Exact training: endgames
 • Stochastic training: Monte Carlo tree search

• Case study: alphago
Endgames

• $U^*(s)$ can be exact when the game is near its end. This situation is called “endgame.”

• For example, in chess, if there are only three pieces left, then there are just under $64^3 = 2^{18}$ possible board positions. With two bytes to encode the value of each, that’s half a megabyte.

• Thus we can bypass the neural net, in favor of a lookup table.
How to create an endgame table

• Of the 2^{18} possible board positions, find all the terminal states (white checkmate, black checkmate, or draw).

• Iterate minimax *backward* from the set of terminal states until you know the result for each of the 2^{18} board positions.

• Computation is limited not by the search depth, but by the limited number of board positions in the table.
Outline

- Review: minimax and alpha-beta
- Move ordering: policy network
- Evaluation function: value network
- Training the value network
 - Exact training: endgames
 - Stochastic training: Monte Carlo tree search
- Case study: alphago
Monte Carlo Tree Search

Suppose s is too complicated for an endgame search. We still need to estimate its value and policy. How?

• **Selection:** Run minimax forward a few steps, then use value network to estimate values of the nodes at the end of the tree. Select one of those nodes (call it s).

• **Expansion:** Minimax one step further using action a.

• **Simulation:** Play a random game, starting with node (s, a). At each step, choose a move at random from the current policy network.

• **Backpropagate:** Set $Q_{local}(s, a)$ equal to the average win frequency of the random games starting from (s, a).

After your training dataset gets large enough, re-train $Q^*(s, a)$ with $Q_{local}(s, a)$ as its target.
Monte Carlo Tree Search

Steps in Monte Carlo Tree Search.
By Rmoss92 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=88889583
Exploration vs. Exploitation

• In order to gain information about the win probability of node (s, a), you need to put some randomness into the game.
• Exploration strategies from reinforcement learning, like epsilon-greedy, work well.
• AlphaGo used this strategy:
 • From a large database of human-vs-human games, train the initial “supervised learning” policy network, $\pi_{SL}(s, a)$.
 • From the same database, train another policy network that’s the same, but with too few trainable parameters, hence less accurate. Call this the “rollout network,” $\pi_{Rollout}(s, a)$.
 • Use $\pi_{Rollout}(s, a)$ to play games – its low accuracy adds randomness -- use its results to improve $\pi_{SL}(s, a)$.
Outline

• Review: minimax and alpha-beta
• Move ordering: policy network
• Evaluation function: value network
• Training the value network
 • Exact training: endgames
 • Stochastic training: Monte Carlo tree search
• Case study: Alpha-Go
Alpha-Go Video by Nature Magazine
(8 minutes, 2016)
AlphaGo

D. Silver et al., *Mastering the Game of Go with Deep Neural Networks and Tree Search*, Nature 529, January 2016
Conclusions

• Review: minimax and alpha-beta
 • Complexity: $(2b - 1)^{d/2} = O\{b^{d/2}\}$ with depth d and branching factor b, if the children of each node are ordered just right (MAX: largest first, MIN: smallest first)

• Move ordering: policy network
 • Can be used to order the children, with no loss of accuracy; Can also limit the set of moves evaluated, with some loss of accuracy

• Evaluation function: value network
 • Estimates the value of each board position in limited-horizon search

• Exact value: endgames
 • Minimax search backward from a set of known terminal positions

• Stochastic training: Monte Carlo tree search
 • Choose a policy that includes exploration vs. exploitation, play games at random, use the data to estimate win frequency