
Deep
Reinforcement

Learning

CS440/ECE448
Lecture 32

Mark Hasegawa-Johnson, 4/2020,
including slides by Svetlana Lazebnik,
11/2017
CC-BY 4.0: you may remix or redistribute if
you cite the source

Image: Megajuice, CC0,
https://commons.wikimedia.org/

w/index.php?curid=57895741

https://commons.wikimedia.org/

Last lecture: Q-learning for discrete s, a

• So far, we’ve assumed a lookup table representation for utility
function U(s) or action-utility function Q(s,a)

• This does not work if the state space is really large or continuous

This time: Function approximation

• Approximate 𝑄 𝑠, 𝑎 by a parameterized function, that is, by a
function %𝑄(𝑠, 𝑎;𝑊) that depends on some matrix of trainable
parameters, W.

• Learn W by playing the game.

Outline

• Deep Q-learning: learn an MMSE estimate of Q(s,a)
– Off-policy vs. On-policy
– Batch learning (experience replay)

• Policy learning: learn the policy with the maximum value
– Estimating the value: actor-critic network
– Estimating the relative value: advantage actor-critic

• Imitation learning: MMSE imitation of a human expert
– A good way to initialize Q-learning or policy learning

Deep Q learning
Instead of discrete 𝑠, suppose 𝑠
is a vector of real numbers, e.g.,
the image from the robot’s eye
camera:

𝑠 = 𝑠! , … , 𝑠" =
Instead of discrete 𝑎, suppose 𝑎⃗
is a vector, e.g., cannon angle
and velocity,

𝑎⃗ = 𝑎! , … , 𝑎#
Deep Q-learning uses a neural
network to compute an estimate
𝑄∗ (𝑠, 𝑎⃗) which is as close as
possible to 𝑄(𝑠, 𝑎⃗). 𝑎! … 𝑎# 1

𝑄∗ (𝑠, 𝑎⃗)

1

1

𝑠! … 𝑠"

1

1
Copyright Taito.

MMSE Deep Q learning
Suppose we train the neural network
weights in order to minimize the mean-
squared error (MMSE):

ℒ =
1
2
𝐸 𝑄∗ 𝑠, 𝑎⃗ − 𝑄(𝑠, 𝑎⃗) %

(where I’m using 𝐸 / as a lazy way to
write “average over all training runs of
the game).
Then, for each weight 𝑤, we update as

𝑤 ← 𝑤 − 𝜂
𝑑ℒ
𝑑𝑤

𝑎! … 𝑎# 1

𝑄∗ 𝑠, 𝑎⃗

1

1

𝑠! … 𝑠"

1

1

What makes deep Q learning harder than
normal neural network training

• We don’t know the true value of
𝑄(𝑠, 𝑎⃗) for any of the training runs!

• 𝑄 𝑠, 𝑎⃗ is defined to be the expected
value of performing action 𝑎⃗. We
never know its true expected value: all
we know is whether we won or lost
that particular game.

• So we can’t compute ℒ, and we can’t
compute &ℒ

&(
, and we can’t update 𝑤! 𝑎! … 𝑎# 1

𝑄∗ 𝑠, 𝑎⃗

1

1

𝑠! … 𝑠"

1

1

The solution: 𝑄!"#$!
Remember that Q learning was defined as

𝑄!"# 𝑠, 𝑎 = 𝑄! 𝑠, 𝑎 + 𝛼 𝑄$%&'$ 𝑠, 𝑎 − 𝑄! 𝑠, 𝑎

where 𝑄$%&'$ 𝑠, 𝑎 is defined, e.g., in TD as

𝑄$%&'$ 𝑠, 𝑎 = 𝑅!(𝑠) + 𝛾 max
'(

𝑄!(𝑠′, 𝑎′)

…for 𝑠′ equal to the next state we reach after
action 𝑎 on this particular game.

The solution: 𝑄!"#$!
Let’s define deep Q learning using the same
𝑄$%&'$:

ℒ =
1
2
𝐸 𝑄∗ 𝑠, 𝑎⃗ − 𝑄$%&'$(𝑠, 𝑎⃗) *

where 𝑄$%&'$(𝑠, 𝑎⃗) is:
𝑄$%&'$(𝑠, 𝑎⃗) = 𝑅!(𝑠) + 𝛾 max

'(
𝑄∗ 𝑠′, 𝑎⃗′

Now we have an L that depends only on things
we know (𝑄∗ 𝑠, 𝑎⃗ , 𝑅!(𝑠), and 𝑄∗ 𝑠′, 𝑎⃗′), so it
can be calculated, differentiated, and used to
update the neural network.

Outline

• Deep Q-learning: learn an MMSE estimate of Q(s,a)
– Off-policy vs. On-policy
– Batch learning (experience replay)

• Policy learning: learn the policy with the maximum value
– Estimating the value: actor-critic network
– Estimating the relative value: advantage actor-critic

• Imitation learning: MMSE imitation of a human expert
– A good way to initialize Q-learning or policy learning

Convergence of neural networks

• A general neural net (e.g., a
classifier) is trained to minimize
the training corpus error.

• Test corpus error might be very
different!

• Barron showed: generalization
error is 𝐺 <(#hidden
nodes/#training tokens)

• As #training tokens→ ∞, 𝐺 → 0

Training
Corpus Error

Test
Corpus
Error

𝐺

𝐿

𝑊
Training the neural net finds this set of weights by

minimizing the training corpus error.

Does Q-learning Converge?

• No!
• Because:

𝑎⃗ = argmax𝑄 𝑠, 𝑎⃗
• If we always choose the action that is best, according to

our current estimate of the Q-function, then we can never
learn anything about any of the other actions!

Epsilon-greedy exploration
• At each time step:

– With probability 𝜖, choose an action at random
– With probability 1 − 𝜖, choose 𝑎⃗ = argmax 𝑄 𝑠, 𝑎⃗
– (Decaying epsilon version): As n → ∞,𝜖 → 0, for example, 𝜖 = 1/𝑛

• Result:
– As you play the game infinite times, each action is sampled an

infinite number of samples, so Q converges, but also,
– As you play the game infinite times, you start to exploit your

knowledge more and more frequently, so that you converge to the
best possible policy.

– … actually, it doesn’t always work in practice. To guarantee success, you
need a few more tweaks, e.g., Re-Trace algorithm, Munos et al., 2016.

Outline

• Deep Q-learning: learn an MMSE estimate of Q(s,a)
– Off-policy vs. On-policy
– Batch learning (experience replay)

• Policy learning: learn the policy with the maximum value
– Estimating the value: actor-critic network
– Estimating the relative value: advantage actor-critic

• Imitation learning: MMSE imitation of a human expert
– A good way to initialize Q-learning or policy learning

Dealing with training instability

• Challenges
– Target values are not fixed
– Successive experiences are correlated and dependent on the policy
– Policy may change rapidly with slight changes to parameters, leading to

drastic change in data distribution
• Solutions

– Freeze target Q network
– Use experience replay

Experience replay
• At each time step:

– Take action 𝑎⃗! according to epsilon-greedy policy
– Store experience (𝑠! , 𝑎⃗! , 𝑟!"#, 𝑠!"#) in replay memory buffer

(𝑠! , 𝑎⃗! , 𝑟% , 𝑠%)
(𝑠% , 𝑎⃗% , 𝑟) , 𝑠))

…
(𝑠* , 𝑎⃗* , 𝑟*+! , 𝑠*+!)

• Learning:
– Randomly sample a

minibatch, 𝒟, from the
replay buffer.

𝒟 =randomly
sampled set of

tuples

Deep Q learning in Atari

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari
• End-to-end learning of Q(s,a) from pixels s
• Output is Q(s,a) for 18 joystick/button configurations
• Reward is change in score for that step

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

Q(s,a1)
Q(s,a2)
Q(s,a3)
.
.
.
.
.
.
.
.
.
.
.
Q(s,a18)

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

• Input state s is stack of raw pixels from last 4 frames
• Network architecture and hyperparameters fixed for all games

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Outline

• Deep Q-learning: learn an MMSE estimate of Q(s,a)
– Off-policy vs. On-policy
– Batch learning (experience replay)

• Policy learning: learn the policy with the maximum value
– Estimating the value: actor-critic network
– Estimating the relative value: advantage actor-critic

• Imitation learning: MMSE imitation of a human expert
– A good way to initialize Q-learning or policy learning

Policy learning methods

• Suppose that 𝑠 is continuous, but 𝑎⃗ is discrete (e.g., a
one-hot vector).

• Then learning the policy directly can be much faster than
learning Q values.

• We can train a neural network for a stochastic policy---a
policy that chooses an action at random, using the
probability distribution:

𝜋∗ 𝑠, 𝑎⃗ =
𝑒<(=⃗,>)

∑>? 𝑒<(=⃗,>?)

How do we train 𝜋∗ 𝑠, 𝑎⃗ ?

• MMSE loss doesn’t work very well, b/c the true optimum
policy is a one-hot vector (choose the best action
w/probability=1.0).

• Cross-entropy (− log𝜋∗ of the best action) is possible, if
we know what the best action is. Usually, we don’t.

• Let’s propose a new learning criterion: learn the 𝜋∗ that
maximizes your expected total reward.

How do we train 𝜋∗ 𝑠, 𝑎⃗ ?

• Expected total reward = Bellman’s utility, 𝑈 𝑠 .
• If we always choose the best action, then

𝑈 𝑠 = max
,

𝑄 𝑠, 𝑎⃗

• With a stochastic policy, the utility of state 𝑠 is suboptimal, given by:

𝑈- 𝑠 = D
,

𝜋∗ 𝑠, 𝑎⃗ 𝑄 𝑠, 𝑎⃗

• If we knew 𝑄 𝑠, 𝑎⃗ , then we’d learn 𝜋∗ 𝑠, 𝑎⃗ to maximize 𝑈- 𝑠 .
Unfortunately, we don’t…

Outline

• Deep Q-learning: learn an MMSE estimate of Q(s,a)
– Off-policy vs. On-policy
– Batch learning (experience replay)

• Policy learning: learn the policy with the maximum value
– Estimating the value: actor-critic network
– Estimating the relative value: advantage actor-critic

• Imitation learning: MMSE imitation of a human expert
– A good way to initialize Q-learning or policy learning

Actor-critic
algorithm

So let’s train two neural nets!
• 𝑄∗ 𝑠, 𝑎⃗ is the critic, and is

trained according to the
deep Q-learning algorithm
(MMSE).

• 𝜋∗ 𝑠, 𝑎⃗ is the actor, and is
trained to satisfy the critic:

The Critic, by Lajos Tihanyi.
Oil on canvas, 1916.

Public Domain,
https://commons.wikimedia.o
rg/w/index.php?curid=17837

438

Actors from the Comédie Française, by Antoine
Watteau, 1720. Public Domain,

https://commons.wikimedia.org/w/index.php?curi
d=15418670

𝑈∗ 𝑠 =8
>

𝜋∗ 𝑠, 𝑎⃗ 𝑄∗ 𝑠, 𝑎⃗

Actor-Critic Algorithm

• Benefits of the actor-critic algorithm
– It usually converges faster and more reliably than deep Q-

learning, because the softmax probability 𝜋∗ 𝑠, 𝑎⃗ is usually
easier to learn than the real-valued function 𝑄∗ 𝑠, 𝑎⃗

• Disadvantages of the actor-critic algorithm
– …but sometimes, it doesn’t. If 𝑄∗ 𝑠, 𝑎⃗ is estimated badly

enough, then it will give wrong information to 𝜋∗ 𝑠, 𝑎⃗ , and so
𝜋∗ 𝑠, 𝑎⃗ will learn a bad policy.

Outline

• Deep Q-learning: learn an MMSE estimate of Q(s,a)
– Off-policy vs. On-policy
– Batch learning (experience replay)

• Policy learning: learn the policy with the maximum value
– Estimating the value: actor-critic network
– Estimating the relative value: advantage actor-critic

• Imitation learning: MMSE imitation of a human expert
– A good way to initialize Q-learning or policy learning

Advantage actor-critic
• 𝑄∗ 𝑠, 𝑎⃗ is hard to learn, in part, because it has such a huge dynamic

range. Some states are really good, some are really bad. We can reduce
the dynamic range by just learning the relative advantage of one action
over all of the others:

𝐴∗ 𝑠, 𝑎⃗ = 𝑄∗ 𝑠, 𝑎⃗ − 𝑈∗ 𝑠
• Now we can train the policy network in order to maximize the relative

utility, which converges faster, and is more accurate:

D
,

𝜋∗ 𝑠, 𝑎⃗ 𝐴∗ 𝑠, 𝑎⃗

• But there’s computational cost. The only way to learn 𝐴∗ 𝑠, 𝑎⃗ is deep Q-
learning (MMSE), which uses 𝑄./0,. to update the weights of 𝐴∗ 𝑠, 𝑎⃗ +
𝑈∗ 𝑠 . So we need to train three neural nets: 𝜋∗ 𝑠, 𝑎⃗ , 𝐴∗ 𝑠, 𝑎⃗ , and 𝑈∗ 𝑠 .

Asynchronous advantage
actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement
Learning. ICML 2016

U, π .
.
.

Agent 1

Agent 2

Agent n

Experience 1

Experience 2

Experience n

Local updates
Local updates

Local updates

Asynchronously update global parameters

https://arxiv.org/pdf/1602.01783.pdf

Asynchronous advantage
actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement
Learning. ICML 2016

TORCS car racing simulation video

https://arxiv.org/pdf/1602.01783.pdf
https://www.youtube.com/watch%3Fv=0xo1Ldx3L5Q

Outline

• Deep Q-learning: learn an MMSE estimate of Q(s,a)
– Off-policy vs. On-policy
– Batch learning (experience replay)

• Policy learning: learn the policy with the maximum value
– Estimating the value: actor-critic network
– Estimating the relative value: advantage actor-critic

• Imitation learning: MMSE imitation of a human expert
– A good way to initialize Q-learning or policy learning

Imitation learning

• In some applications, you cannot bootstrap
yourself from random policies
– High-dimensional state and action spaces where

most random trajectories fail miserably
– Expensive to evaluate policies in the physical world,

especially in cases of failure
• Solution: learn to imitate sample trajectories or

demonstrations
– This is also helpful when there is no natural reward

formulation

Learning visuomotor policies
• Underlying state x: true object

position, robot configuration
• Observations o: image pixels

• Two-part approach:
– Learn guiding policy π(a|x)

using trajectory-centric RL
and control techniques

– Learn visuomotor policy
π(a|o) by imitating π(a|x)

S. Levine et al. End-to-end training of deep visuomotor policies. JMLR 2016

http://arxiv.org/pdf/1504.00702

Learning visuomotor policies

Overview video, training video

S. Levine et al. End-to-end training of deep visuomotor policies. JMLR 2016

https://www.youtube.com/watch%3Fv=Q4bMcUk6pcw
https://www.youtube.com/watch%3Fv=JCjTQfy0h8w
http://arxiv.org/pdf/1504.00702

Conclusions
1. What is deep Q-learning?
2. How to make Q-learning

converge to the best
answer?

3. How to make it converge
more smoothly?

4. What are policy learning
and actor-critic networks?

5. What is imitation learning?

1. Estimate Q(s,a) using a
neural net.

2. Epsilon-greedy usually
works.

3. Experience replay.
4. Actor network: Pr(𝑎). Critic

network: 𝑄(𝑠, 𝑎), to train the
actor.

5. Learn to imitate an expert
player.

