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Last lecture: Q-learning for discrete s, a

• So far, we’ve assumed a lookup table representation for utility 
function U(s) or action-utility function Q(s,a)

• This does not work if the state space is really large or continuous



This time: Function approximation

• Approximate 𝑄 𝑠, 𝑎 by a parameterized function, that is, by a 
function %𝑄(𝑠, 𝑎;𝑊) that depends on some matrix of trainable 
parameters, W.

• Learn W by playing the game.



Outline

• Deep Q-learning: learn an MMSE estimate of Q(s,a)
– Off-policy vs. On-policy
– Batch learning (experience replay)

• Policy learning: learn the policy with the maximum value
– Estimating the value: actor-critic network
– Estimating the relative value: advantage actor-critic 

• Imitation learning: MMSE imitation of a human expert
– A good way to initialize Q-learning or policy learning



Deep Q learning
Instead of discrete 𝑠, suppose 𝑠
is a vector of real numbers, e.g., 
the image from the robot’s eye 
camera:

𝑠 = 𝑠! , … , 𝑠" =
Instead of discrete 𝑎, suppose 𝑎⃗
is a vector, e.g., cannon angle 
and velocity,

𝑎⃗ = 𝑎! , … , 𝑎#
Deep Q-learning uses a neural 
network to compute an estimate 
𝑄∗ (𝑠, 𝑎⃗) which is as close as 
possible to 𝑄(𝑠, 𝑎⃗). 𝑎! … 𝑎# 1

𝑄∗ (𝑠, 𝑎⃗)
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Copyright Taito. 



MMSE Deep Q learning
Suppose we train the neural network 
weights in order to minimize the mean-
squared error (MMSE):

ℒ =
1
2
𝐸 𝑄∗ 𝑠, 𝑎⃗ − 𝑄(𝑠, 𝑎⃗) %

(where I’m using 𝐸 / as a lazy way to 
write “average over all training runs of 
the game).  
Then, for each weight 𝑤, we update as 

𝑤 ← 𝑤 − 𝜂
𝑑ℒ
𝑑𝑤

𝑎! … 𝑎# 1

𝑄∗ 𝑠, 𝑎⃗
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1



What makes deep Q learning harder than 
normal neural network training

• We don’t know the true value of 
𝑄(𝑠, 𝑎⃗) for any of the training runs!

• 𝑄 𝑠, 𝑎⃗ is defined to be the expected 
value of performing action 𝑎⃗.  We 
never know its true expected value: all 
we know is whether we won or lost 
that particular game.

• So we can’t compute ℒ, and we can’t 
compute &ℒ

&(
, and we can’t update 𝑤! 𝑎! … 𝑎# 1

𝑄∗ 𝑠, 𝑎⃗
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The solution: 𝑄!"#$!
Remember that Q learning was defined as

𝑄!"# 𝑠, 𝑎 = 𝑄! 𝑠, 𝑎 + 𝛼 𝑄$%&'$ 𝑠, 𝑎 − 𝑄! 𝑠, 𝑎

where 𝑄$%&'$ 𝑠, 𝑎 is defined, e.g., in TD as

𝑄$%&'$ 𝑠, 𝑎 = 𝑅!(𝑠) + 𝛾 max
'(

𝑄!(𝑠′, 𝑎′)

…for 𝑠′ equal to the next state we reach after 
action 𝑎 on this particular game. 



The solution: 𝑄!"#$!
Let’s define deep Q learning using the same 
𝑄$%&'$: 

ℒ =
1
2
𝐸 𝑄∗ 𝑠, 𝑎⃗ − 𝑄$%&'$(𝑠, 𝑎⃗) *

where 𝑄$%&'$(𝑠, 𝑎⃗) is:
𝑄$%&'$(𝑠, 𝑎⃗) = 𝑅!(𝑠) + 𝛾 max

'(
𝑄∗ 𝑠′, 𝑎⃗′

Now we have an L that depends only on things 
we know (𝑄∗ 𝑠, 𝑎⃗ , 𝑅!(𝑠), and 𝑄∗ 𝑠′, 𝑎⃗′ ), so it 
can be calculated, differentiated, and used to 
update the neural network.
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Convergence of neural networks

• A general neural net (e.g., a 
classifier) is trained to minimize 
the training corpus error.

• Test corpus error might be very 
different!

• Barron showed: generalization 
error is 𝐺 <(#hidden 
nodes/#training tokens)

• As #training tokens→ ∞, 𝐺 → 0

Training 
Corpus Error

Test 
Corpus 
Error

𝐺

𝐿

𝑊
Training the neural net finds this set of weights by 

minimizing the training corpus error.



Does Q-learning Converge?

• No!
• Because:

𝑎⃗ = argmax𝑄 𝑠, 𝑎⃗
• If we always choose the action that is best, according to 

our current estimate of the Q-function, then we can never 
learn anything about any of the other actions!



Epsilon-greedy exploration
• At each time step:

– With probability 𝜖, choose an action at random
– With probability 1 − 𝜖, choose 𝑎⃗ = argmax 𝑄 𝑠, 𝑎⃗
– (Decaying epsilon version): As n → ∞,𝜖 → 0, for example, 𝜖 = 1/𝑛

• Result:
– As you play the game infinite times, each action is sampled an 

infinite number of samples, so Q converges, but also,
– As you play the game infinite times, you start to exploit your 

knowledge more and more frequently, so that you converge to the 
best possible policy.

– … actually, it doesn’t always work in practice.  To guarantee success, you 
need a few more tweaks, e.g., Re-Trace algorithm, Munos et al., 2016.
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Dealing with training instability

• Challenges
– Target values are not fixed
– Successive experiences are correlated and dependent on the policy
– Policy may change rapidly with slight changes to parameters, leading to 

drastic change in data distribution
• Solutions

– Freeze target Q network
– Use experience replay



Experience replay
• At each time step:

– Take action 𝑎⃗! according to epsilon-greedy policy
– Store experience (𝑠! , 𝑎⃗! , 𝑟!"#, 𝑠!"#) in replay memory buffer

(𝑠! , 𝑎⃗! , 𝑟% , 𝑠%)
(𝑠% , 𝑎⃗% , 𝑟) , 𝑠))

…
(𝑠* , 𝑎⃗* , 𝑟*+! , 𝑠*+!)

• Learning:
– Randomly sample a 

minibatch, 𝒟, from the 
replay buffer.

𝒟 =randomly 
sampled set of 

tuples



Deep Q learning in Atari

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Deep Q learning in Atari
• End-to-end learning of Q(s,a) from pixels s
• Output is Q(s,a) for 18 joystick/button configurations
• Reward is change in score for that step

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

Q(s,a1)
Q(s,a2)
Q(s,a3)
.
.
.
.
.
.
.
.
.
.
.
Q(s,a18)

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Deep Q learning in Atari

• Input state s is stack of raw pixels from last 4 frames
• Network architecture and hyperparameters fixed for all games

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf
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Policy learning methods

• Suppose that 𝑠 is continuous, but 𝑎⃗ is discrete (e.g., a 
one-hot vector).

• Then learning the policy directly can be much faster than 
learning Q values.

• We can train a neural network for a stochastic policy---a 
policy that chooses an action at random, using the 
probability distribution:

𝜋∗ 𝑠, 𝑎⃗ =
𝑒<(=⃗,>)

∑>? 𝑒<(=⃗,>?)



How do we train 𝜋∗ 𝑠, 𝑎⃗ ?

• MMSE loss doesn’t work very well, b/c the true optimum 
policy is a one-hot vector (choose the best action 
w/probability=1.0).

• Cross-entropy (− log𝜋∗ of the best action) is possible, if 
we know what the best action is.  Usually, we don’t.

• Let’s propose a new learning criterion: learn the 𝜋∗ that 
maximizes your expected total reward.



How do we train 𝜋∗ 𝑠, 𝑎⃗ ?

• Expected total reward = Bellman’s utility, 𝑈 𝑠 .
• If we always choose the best action, then

𝑈 𝑠 = max
,

𝑄 𝑠, 𝑎⃗

• With a stochastic policy, the utility of state 𝑠 is suboptimal, given by:

𝑈- 𝑠 = D
,

𝜋∗ 𝑠, 𝑎⃗ 𝑄 𝑠, 𝑎⃗

• If we knew 𝑄 𝑠, 𝑎⃗ , then we’d learn 𝜋∗ 𝑠, 𝑎⃗ to maximize 𝑈- 𝑠 .  
Unfortunately, we don’t…
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Actor-critic 
algorithm

So let’s train two neural nets!
• 𝑄∗ 𝑠, 𝑎⃗ is the critic, and is 

trained according to the 
deep Q-learning algorithm 
(MMSE). 

• 𝜋∗ 𝑠, 𝑎⃗ is the actor, and is 
trained to satisfy the critic:

The Critic, by Lajos Tihanyi.  
Oil on canvas, 1916.

Public Domain, 
https://commons.wikimedia.o
rg/w/index.php?curid=17837

438

Actors from the Comédie Française, by Antoine 
Watteau, 1720. Public Domain, 

https://commons.wikimedia.org/w/index.php?curi
d=15418670

𝑈∗ 𝑠 =8
>

𝜋∗ 𝑠, 𝑎⃗ 𝑄∗ 𝑠, 𝑎⃗



Actor-Critic Algorithm

• Benefits of the actor-critic algorithm
– It usually converges faster and more reliably than deep Q-

learning, because the softmax probability 𝜋∗ 𝑠, 𝑎⃗ is usually 
easier to learn than the real-valued function 𝑄∗ 𝑠, 𝑎⃗

• Disadvantages of the actor-critic algorithm
– …but sometimes, it doesn’t.  If 𝑄∗ 𝑠, 𝑎⃗ is estimated badly 

enough, then it will give wrong information to 𝜋∗ 𝑠, 𝑎⃗ , and so 
𝜋∗ 𝑠, 𝑎⃗ will learn a bad policy.
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Advantage actor-critic
• 𝑄∗ 𝑠, 𝑎⃗ is hard to learn, in part, because it has such a huge dynamic 

range.  Some states are really good, some are really bad.  We can reduce 
the dynamic range by just learning the relative advantage of one action 
over all of the others:

𝐴∗ 𝑠, 𝑎⃗ = 𝑄∗ 𝑠, 𝑎⃗ − 𝑈∗ 𝑠
• Now we can train the policy network in order to maximize the relative

utility, which converges faster, and is more accurate:

D
,

𝜋∗ 𝑠, 𝑎⃗ 𝐴∗ 𝑠, 𝑎⃗

• But there’s computational cost.  The only way to learn 𝐴∗ 𝑠, 𝑎⃗ is deep Q-
learning (MMSE), which uses 𝑄./0,. to update the weights of 𝐴∗ 𝑠, 𝑎⃗ +
𝑈∗ 𝑠 .  So we need to train three neural nets: 𝜋∗ 𝑠, 𝑎⃗ , 𝐴∗ 𝑠, 𝑎⃗ , and 𝑈∗ 𝑠 .



Asynchronous advantage 
actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement 
Learning. ICML 2016

U, π .
.
.

Agent 1

Agent 2

Agent n

Experience 1

Experience 2

Experience n

Local updates
Local updates

Local updates

Asynchronously update global parameters

https://arxiv.org/pdf/1602.01783.pdf


Asynchronous advantage 
actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement 
Learning. ICML 2016

TORCS car racing simulation video

https://arxiv.org/pdf/1602.01783.pdf
https://www.youtube.com/watch%3Fv=0xo1Ldx3L5Q
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Imitation learning

• In some applications, you cannot bootstrap 
yourself from random policies
– High-dimensional state and action spaces where 

most random trajectories fail miserably
– Expensive to evaluate policies in the physical world, 

especially in cases of failure
• Solution: learn to imitate sample trajectories or 

demonstrations
– This is also helpful when there is no natural reward 

formulation



Learning visuomotor policies
• Underlying state x: true object 

position, robot configuration
• Observations o: image pixels

• Two-part approach:
– Learn guiding policy π(a|x) 

using trajectory-centric RL 
and control techniques

– Learn visuomotor policy 
π(a|o) by imitating π(a|x)

S. Levine et al. End-to-end training of deep visuomotor policies. JMLR 2016

http://arxiv.org/pdf/1504.00702


Learning visuomotor policies

Overview video, training video

S. Levine et al. End-to-end training of deep visuomotor policies. JMLR 2016

https://www.youtube.com/watch%3Fv=Q4bMcUk6pcw
https://www.youtube.com/watch%3Fv=JCjTQfy0h8w
http://arxiv.org/pdf/1504.00702


Conclusions
1. What is deep Q-learning? 
2. How to make Q-learning 

converge to the best 
answer? 

3. How to make it converge 
more smoothly? 

4. What are policy learning 
and actor-critic networks? 

5. What is imitation learning? 

1. Estimate Q(s,a) using a 
neural net.

2. Epsilon-greedy usually 
works.

3. Experience replay.
4. Actor network: Pr(𝑎).  Critic 

network: 𝑄(𝑠, 𝑎), to train the 
actor.

5. Learn to imitate an expert 
player.


