CS 440/ECE448 Lecture 30:
Reinforcement Learning

Mark Hasegawa-Johnson, 4/2020

Including slides by Svetlana Lazebnik, 11/2016

By Nicolas P. Rougier - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29327040

Reinforcement learning

* Solving a known MDP
* Given:
* Transition model P(s’| s,a)
* Reward function R(s)

* Find:
* Policy nt(s)

* Reinforcement learning
* Transition model and reward function initially unknown
* Still need to find the right policy
* “Learn by doing”

Reinforcement learning:
Basic scheme

In each time step:

e Take some action
* Observe the outcome of the action: successor state and reward

* Update some internal representation of the environment and policy

* If you reach a terminal state, just start over (each pass through the
environment is called a trial)

Theseus the Mouse

* The study of reinforcement learning by
machines goes back at least to 1950,
when Claude Shannon built a robot
mouse named “Theseus.”

* Like his classical namesake, Theseus
had to learn how to navigate a maze.

* He learned by trial and error.

* His reinforcement learning strategy
permitted him to adapt to changes in
the maze.

Found at Bell Labs website, The photo was part of a
press release, widely circulated in the public domain
through news articles appearing in national
newspapers and books. Its use in Wikipedia is
therefore claimed under the Fair use guidelines.,
https://en.wikipedia.org/w/index.php?curid=4289542

For more information about Theseus, and for a great
introduction to the goals of reinforcement learning in
general (and the problem of exploration versus
exploitation), | recommend this video.

http://www.micromouseonline.com/2014/05/17/claude-shannon-made-micromouse-first/

Outline

e Types of reinforcement learning
* Model-free: keep track of the quality of each action in each state.
* Model-based: try to learn P(s’|s,a) explicitly.

* Model-based reinforcement learning
* The observation -> model -> policy loop

* Exploration versus Exploitation
* Epsilon-greedy learning versus Epsilon-first learning

Model-based reinforcement learning

Model-based reinforcement learning uses what’s sometimes called the
observation -> model -> policy loop.

* Test a few actions, and observe the results

* Based on those results, estimate a model: a lookup table (or neural
network estimate) of the transition probabilities P(s’|s, a), and of the

reward function R(s).

* Based on the model, use value iteration or policy iteration to find an
optimal policy.

e ... and repeat this loop, as often as you can.

Example of model-based reinforcement
learning: Playing classic Atari video games

Model-Based Reinforcement Learning

for Atari (Kaiser, Babaeizadeh, Milos, Osinski, Campbell,

Czechowski, Erhan, Finn, Kozakowski, Levine, Mohiuddin,
Sepassi, Tucker, and Michalewski)

 Blog and videos:
https://sites.gsoogle.com/view/model
basedrlatari/home

Screenshot of the video game “Freeway,” copyright .
Activision. Reproduced here under the terms of fair use e Article:

enumerated at .
https://en.wikipedia.org/w/index.php?curid=56419703 httpS//a rXIV'Org/abS/1903'OO374

https://sites.google.com/view/modelbasedrlatari/home
https://arxiv.org/abs/1903.00374

Model-free reinforcement learning

* In model-free reinforcement learning, we never try to explicitly learn
what the world is like (P(s’|s,a) and R(s)).

* Instead, we keep track of a simple lookup table:
* |n state s, if | perform action a, what will be my expected utility?
* This is called the “quality” of action a in state s, Q(s, a).

* If the states and actions are discrete, Q (s, a) can be a lookup table. If
not, Q (s, a) can be a function learned by a neural network.

Example of model-free reinforcement
learning: Playing classic Atari video games

Playing Atari with Deep Reinforcement

Lea rning (Mnih, Kavukcuoglu, Silver, Graves,

e Video:
https://www.youtube.com/watch?v=
cipElotvwFY&feature=youtu.be

Screenshot of the video game “Breakout,” copyright ° ArtICIGZ
Activision. Reproduced here under the terms of fair use . .
orUmerated at https://arxiv.org/abs/1312.5602

https://en.wikipedia.org/w/index.php?curid=52132637

https://www.youtube.com/watch%3Fv=cjpEIotvwFY&feature=youtu.be
https://arxiv.org/abs/1312.5602

Reinforcement learning strategies

* Model-based

e Learn the model of the MDP (transition probabilities and rewards) and try to
solve the MIDP concurrently

e Model-free

e Learn how to act without explicitly learning the transition probabilities P(s’ |
s, a)

* Q-learning: learn an action-utility function Q(s,a) that tells us the value of
doing action a in state s

Outline

* Model-based reinforcement learning
* The observation -> model -> policy loop

* Exploration versus Exploitation
* Epsilon-greedy learning versus Epsilon-first learning

Model-based reinforcement learning

Basic idea:
1. Follow some initial policy, to guide your actions.
2. Trytolearn P(s’|s,a) and R(s).

3. Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and repeat.

1. Follow some initial policy, to guide your actions

Enter the maze...

A view from [/
inside a corn &
maze near
Christchurch,
New Zealand §&

By Hugho226 - g
Own work, CCO, B
https://commons.
wikimedia.org/w/
index.php?curid=
30724285

2. Try to learn P(s’|s,a) and R(s)

..update your map as you go...

2 B ? s

Enter the maze...

A view from
inside a corn

Christchurch, @&
New Zealand }

By Hugho226 -
Own work, CCO,
https://commons.
wikimedia.org/w/
index.php?curid=
30724285

By Philip Mitchell -
http://www.dwarvenforge.com/dwarvenforums/viewtopic.php?pid=15595#p15595, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1913429

3. Update your policy

...update vour map

~

By Edward Burne-Jones - IgFxdQtUgyzs7Q at Google Cultural Institute, By Philip Mitchell -

zoom level maximum, Public Domain, http://www.dwarvenforge.com/dwarvenforums/viewtopic.php?pid=15595#p15595, CC
https://commons.wikimedia.org/w/index.php?curid=29661124 BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1913429

1. Follow some initial policy, to guide your actions

For t = 1 to n (for some sufficiently large value of n):
* Observe: find out what is your current state (s).

* Act: use your current policy to choose an action (a).
- e Observe: see what state you move to (s’).

swighozs omwerk o Ohserve: see what reward you receive (R).

CCo,

https://commons.wikimedi

sorg/index.phprourid=3 If you finish the game within this many steps, start over,
until you reach your desired n.

Keep a record of your (s,a,s’,R) tuples. These are now your
training database:

D = {(Sl; ai, Si' Rl)) (SZJ dy, Sé; RZ)’ " (Sn’ Un, S7’”U Rn)}

2. Try to learn P(s"|s,a) and R(s)

Just like Bayesian networks! Use maximum likelihood Ll
parameter learning, possibly also with Laplace smoothing. e

http://www.dwarvenforge.com/dwa
rvenforums/viewtopic.php?pid=1559
5#p15595, CC BY-SA 3.0

, # times that action a in state s led to state s’
P(s'|s,a) =

times action a was performed in state s

R(s) = R that was received when you were in state s

If s or a are continuous-valued, you’ll have to estimate

these using a neural network or some other parametric
model.

3. Update your policy

U(s) = R(s) + ymc?xz: P(s'|s,a)U(s")

As you know from last lecture, you’ll have to use value

y Edward Burne-Jones -

lghlQtUgyzs7Q at Google iteration or policy iteration to solve for 7 (s) given
Cultural Institute, zoom level)
maximum, Public Domain, P (S |S’ a) and R (S) .

https://commons.wikimedia.org
/w/index.php?curid=29661124

Model-based reinforcement learning

Basic idea:
1. Follow some initial policy, to guide your actions.
2. Trytolearn P(s’|s,a) and R(s).

3. Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and repeat.

Why does this fail?

Model-based reinforcement learning

Basic idea:
1. Follow some initial policy, to guide your actions.
2. Trytolearn P(s’|s,a) and R(s).

3. Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and repeat.

Why does this fail?
times that action a in state s led to state s’

P(s'|s,a) = . . .
(s"ls, @) # times action a was performed in state s

1. If your current policy is m(s) = a4, then you will never perform action a, in state s.

2. Therefore, your estimate of P(s’|s, a,) will be completely uninformed. You'll
probably think that P(s’|s, a,) is uniform (every s’ is equally likely).

3. If a; leads to a good state more than half the time, then you will conclude that a, is
better than a,. So when you revise your policy in step 3, you will still choose (s) =
a,. ...and the trap snaps shut behind you...

Outline

* Exploration versus Exploitation
* Epsilon-greedy learning versus Epsilon-first learning

Exploration vs. Exploitation

» Exploration: take a new action with unknown consequences

* Pros:
* Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

* Cons:
* When you’re exploring, you're not maximizing your utility
* Something bad might happen

» Exploitation: go with the best strategy found so far

* Pros:

* Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

* Cons:
* Might also prevent you from discovering the true optimal strategy

“Search represents a core feature of cognition:”
Exploration versus exploitation in space, mind, and society.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410143/

How to trade off exploration vs. exploitation

Epsilon-first strategy: when you reach state s, check how many times
you’ve tested each of its available actions.

* Explore for the first €N trials: If the least-explored action has been tested
fewer than eN times, then perform that action.

» Exploit thereafter: Once you’ve finished exploring, start exploiting (work to
maximize your personal utility).

Epsilon-greedy strategy: in every state, every time, forever,
* Explore with probability €: choose any action, uniformly at random.

* Exploit with probability (1 — €): choose the action with the highest expected
utility, according to your current estimates.

How to trade off exploration vs. exploitation

Epsilon-first strategy:

* Advantages:
* €N can be chosen to guarantee that your model is correct w/pre-specified level of confidence.

» After the first €N trials, you are always getting best possible reward.

* Disadvantages:
» After the first €N trials, your model stops improving.
e If the world changes, you won’t know.

Epsilon-greedy strategy:

* Advantages:
e If the world is static, epsilon-greedy converges to the correct model.
* If the world changes, you'll find out.

* Disadvantages:

* Never, at any time, will you focus solely on maximizing your utility (exploiting). You are always “wasting” €
of your time exploring.

There are dozens of other ways you can balance exploration versus exploitation.

https://en.wikipedia.org/wiki/Multi-armed_bandit

