
CS 440/ECE448 Lecture 30:
Reinforcement Learning

Mark Hasegawa-Johnson, 4/2020

Including slides by Svetlana Lazebnik, 11/2016

By Nicolas P. Rougier - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29327040

Reinforcement learning
• Solving a known MDP
• Given:

• Transition model 𝑃(𝑠’| 𝑠, 𝑎)
• Reward function 𝑅(𝑠)

• Find:
• Policy p(𝑠)

• Reinforcement learning
• Transition model and reward function initially unknown
• Still need to find the right policy
• “Learn by doing”

Reinforcement learning:
Basic scheme
In each time step:
• Take some action
• Observe the outcome of the action: successor state and reward
• Update some internal representation of the environment and policy
• If you reach a terminal state, just start over (each pass through the

environment is called a trial)

Theseus the Mouse

• The study of reinforcement learning by
machines goes back at least to 1950,
when Claude Shannon built a robot
mouse named “Theseus.”
• Like his classical namesake, Theseus

had to learn how to navigate a maze.
• He learned by trial and error.
• His reinforcement learning strategy

permitted him to adapt to changes in
the maze.

Found at Bell Labs website, The photo was part of a
press release, widely circulated in the public domain

through news articles appearing in national
newspapers and books. Its use in Wikipedia is

therefore claimed under the Fair use guidelines.,
https://en.wikipedia.org/w/index.php?curid=4289542

For more information about Theseus, and for a great
introduction to the goals of reinforcement learning in

general (and the problem of exploration versus
exploitation), I recommend this video.

http://www.micromouseonline.com/2014/05/17/claude-shannon-made-micromouse-first/

Outline
• Types of reinforcement learning
• Model-free: keep track of the quality of each action in each state.
• Model-based: try to learn P(s’|s,a) explicitly.

• Model-based reinforcement learning
• The observation -> model -> policy loop

• Exploration versus Exploitation
• Epsilon-greedy learning versus Epsilon-first learning

Model-based reinforcement learning

Model-based reinforcement learning uses what’s sometimes called the
observation -> model -> policy loop.
• Test a few actions, and observe the results
• Based on those results, estimate a model: a lookup table (or neural

network estimate) of the transition probabilities 𝑃(𝑠’|𝑠, 𝑎), and of the
reward function 𝑅(𝑠).
• Based on the model, use value iteration or policy iteration to find an

optimal policy.
• … and repeat this loop, as often as you can.

Example of model-based reinforcement
learning: Playing classic Atari video games

Model-Based Reinforcement Learning
for Atari (Kaiser, Babaeizadeh, Milos, Osinski, Campbell,
Czechowski, Erhan, Finn, Kozakowski, Levine, Mohiuddin,
Sepassi, Tucker, and Michalewski)

• Blog and videos:
https://sites.google.com/view/model
basedrlatari/home

• Article:
https://arxiv.org/abs/1903.00374

Screenshot of the video game “Freeway,” copyright
Activision. Reproduced here under the terms of fair use
enumerated at
https://en.wikipedia.org/w/index.php?curid=56419703

https://sites.google.com/view/modelbasedrlatari/home
https://arxiv.org/abs/1903.00374

Model-free reinforcement learning

• In model-free reinforcement learning, we never try to explicitly learn
what the world is like (𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠)).
• Instead, we keep track of a simple lookup table:
• In state 𝑠, if I perform action 𝑎, what will be my expected utility?
• This is called the “quality” of action 𝑎 in state 𝑠, 𝑄(𝑠, 𝑎).

• If the states and actions are discrete, 𝑄(𝑠, 𝑎) can be a lookup table. If
not, 𝑄(𝑠, 𝑎) can be a function learned by a neural network.

Example of model-free reinforcement
learning: Playing classic Atari video games

Playing Atari with Deep Reinforcement
Learning (Mnih, Kavukcuoglu, Silver, Graves,
Antonoglou, Wierstra, and Riedmiller)

• Video:
https://www.youtube.com/watch?v=
cjpEIotvwFY&feature=youtu.be

• Article:
https://arxiv.org/abs/1312.5602

Screenshot of the video game “Breakout,” copyright
Activision. Reproduced here under the terms of fair use
enumerated at
https://en.wikipedia.org/w/index.php?curid=52132637

https://www.youtube.com/watch%3Fv=cjpEIotvwFY&feature=youtu.be
https://arxiv.org/abs/1312.5602

Reinforcement learning strategies

• Model-based
• Learn the model of the MDP (transition probabilities and rewards) and try to

solve the MDP concurrently

• Model-free
• Learn how to act without explicitly learning the transition probabilities P(s’ |

s, a)
• Q-learning: learn an action-utility function Q(s,a) that tells us the value of

doing action a in state s

Outline
• Types of reinforcement learning
• Model-free: keep track of the quality of each action in each state.
• Model-based: try to learn P(s’|s,a) explicitly.

• Model-based reinforcement learning
• The observation -> model -> policy loop

• Exploration versus Exploitation
• Epsilon-greedy learning versus Epsilon-first learning

Model-based reinforcement learning
Basic idea:
1. Follow some initial policy, to guide your actions.
2. Try to learn P(s’|s,a) and R(s).
3. Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and repeat.

1. Follow some initial policy, to guide your actions
Enter the maze…

A view from
inside a corn

maze near
Christchurch,
New Zealand

By Hugho226 -
Own work, CC0,

https://commons.
wikimedia.org/w/
index.php?curid=

30724285

2. Try to learn P(s’|s,a) and R(s)
Enter the maze…

A view from
inside a corn

maze near
Christchurch,
New Zealand

By Hugho226 -
Own work, CC0,

https://commons.
wikimedia.org/w/
index.php?curid=

30724285

…update your map as you go…

By Philip Mitchell -
http://www.dwarvenforge.com/dwarvenforums/viewtopic.php?pid=15595#p15595, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1913429

3. Update your policy
…and be ready to act.

By Edward Burne-Jones - lgFxdQtUgyzs7Q at Google Cultural Institute,
zoom level maximum, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=29661124

…update your map as you go…

By Philip Mitchell -
http://www.dwarvenforge.com/dwarvenforums/viewtopic.php?pid=15595#p15595, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1913429

1. Follow some initial policy, to guide your actions

By Hugho226 - Own work,
CC0,

https://commons.wikimedi
a.org/w/index.php?curid=3

0724285

For 𝑡 = 1 to 𝑛 (for some sufficiently large value of 𝑛):
• Observe: find out what is your current state (s).
• Act: use your current policy to choose an action (a).
• Observe: see what state you move to (s’).
• Observe: see what reward you receive (R).
If you finish the game within this many steps, start over,
until you reach your desired 𝑛.
Keep a record of your (s,a,s’,R) tuples. These are now your
training database:

𝒟 = 𝑠*, 𝑎*, 𝑠*+ , 𝑅* , 𝑠,, 𝑎,, 𝑠,+ , 𝑅, , … , (𝑠- , 𝑎- , 𝑠-+ , 𝑅-)

2. Try to learn P(s’|s,a) and R(s)

By Philip Mitchell -
http://www.dwarvenforge.com/dwa
rvenforums/viewtopic.php?pid=1559

5#p15595, CC BY-SA 3.0

Just like Bayesian networks! Use maximum likelihood
parameter learning, possibly also with Laplace smoothing.

𝑃 𝑠+ 𝑠, 𝑎 =
times that action 𝑎 in state 𝑠 led to state 𝑠′
times action 𝑎 was performed in state 𝑠

𝑅 𝑠 = 𝑅 that was received when you were in state 𝑠

If 𝑠 or 𝑎 are continuous-valued, you’ll have to estimate
these using a neural network or some other parametric
model.

3. Update your policy

By Edward Burne-Jones -
lgFxdQtUgyzs7Q at Google

Cultural Institute, zoom level
maximum, Public Domain,

https://commons.wikimedia.org
/w/index.php?curid=29661124

𝑈 𝑠 = 𝑅 𝑠 + 𝛾max
.
J
/+

𝑃 𝑠+ 𝑠, 𝑎 𝑈(𝑠+)

As you know from last lecture, you’ll have to use value
iteration or policy iteration to solve for 𝜋(𝑠) given
𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠).

Model-based reinforcement learning
Basic idea:
1. Follow some initial policy, to guide your actions.
2. Try to learn P(s’|s,a) and R(s).
3. Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and repeat.

Why does this fail?

Model-based reinforcement learning
Basic idea:
1. Follow some initial policy, to guide your actions.
2. Try to learn P(s’|s,a) and R(s).
3. Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and repeat.

Why does this fail?

𝑃 𝑠! 𝑠, 𝑎 =
times that action 𝑎 in state 𝑠 led to state 𝑠′
times action 𝑎 was performed in state 𝑠

1. If your current policy is 𝜋 𝑠 = 𝑎", then you will never perform action 𝑎# in state 𝑠.

2. Therefore, your estimate of 𝑃 𝑠! 𝑠, 𝑎# will be completely uninformed. You’ll
probably think that 𝑃 𝑠! 𝑠, 𝑎# is uniform (every 𝑠! is equally likely).

3. If 𝑎" leads to a good state more than half the time, then you will conclude that 𝑎" is
better than 𝑎#. So when you revise your policy in step 3, you will still choose 𝜋(𝑠) =
𝑎". …and the trap snaps shut behind you…

Outline
• Types of reinforcement learning
• Model-free: keep track of the quality of each action in each state.
• Model-based: try to learn P(s’|s,a) explicitly.

• Model-based reinforcement learning
• The observation -> model -> policy loop

• Exploration versus Exploitation
• Epsilon-greedy learning versus Epsilon-first learning

Exploration vs. Exploitation
• Exploration: take a new action with unknown consequences

• Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

• Cons:
• When you’re exploring, you’re not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
• Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

• Cons:
• Might also prevent you from discovering the true optimal strategy

“Search represents a core feature of cognition:”
Exploration versus exploitation in space, mind, and society.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410143/

How to trade off exploration vs. exploitation
Epsilon-first strategy: when you reach state s, check how many times
you’ve tested each of its available actions.
• Explore for the first 𝝐𝑵 trials: If the least-explored action has been tested

fewer than ϵ𝑁 times, then perform that action.
• Exploit thereafter: Once you’ve finished exploring, start exploiting (work to

maximize your personal utility).

Epsilon-greedy strategy: in every state, every time, forever,
• Explore with probability 𝝐: choose any action, uniformly at random.
• Exploit with probability (𝟏 − 𝝐): choose the action with the highest expected

utility, according to your current estimates.

How to trade off exploration vs. exploitation
Epsilon-first strategy:

• Advantages:
• 𝜖𝑁 can be chosen to guarantee that your model is correct w/pre-specified level of confidence.
• After the first 𝜖𝑁 trials, you are always getting best possible reward.

• Disadvantages:
• After the first 𝜖𝑁 trials, your model stops improving.
• If the world changes, you won’t know.

Epsilon-greedy strategy:
• Advantages:

• If the world is static, epsilon-greedy converges to the correct model.
• If the world changes, you’ll find out.

• Disadvantages:
• Never, at any time, will you focus solely on maximizing your utility (exploiting). You are always “wasting” 𝜖

of your time exploring.

There are dozens of other ways you can balance exploration versus exploitation.

https://en.wikipedia.org/wiki/Multi-armed_bandit

