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Reinforcement learning
• Solving a known MDP
• Given:

• Transition model 𝑃(𝑠’| 𝑠, 𝑎)
• Reward function 𝑅(𝑠)

• Find:
• Policy p(𝑠)

• Reinforcement learning
• Transition model and reward function initially unknown
• Still need to find the right policy
• “Learn by doing”



Reinforcement learning: 
Basic scheme
In each time step:
• Take some action
• Observe the outcome of the action: successor state and reward
• Update some internal representation of the environment and policy
• If you reach a terminal state, just start over (each pass through the 

environment is called a trial)



Theseus the Mouse

• The study of reinforcement learning by 
machines goes back at least to 1950, 
when Claude Shannon built a robot 
mouse named “Theseus.”
• Like his classical namesake, Theseus 

had to learn how to navigate a maze.
• He learned by trial and error.
• His reinforcement learning strategy 

permitted him to adapt to changes in 
the maze.

Found at Bell Labs website, The photo was part of a 
press release, widely circulated in the public domain 

through news articles appearing in national 
newspapers and books. Its use in Wikipedia is 

therefore claimed under the Fair use guidelines., 
https://en.wikipedia.org/w/index.php?curid=4289542

For more information about Theseus, and for a great 
introduction to the goals of reinforcement learning in 

general (and the problem of exploration versus 
exploitation), I recommend this video.

http://www.micromouseonline.com/2014/05/17/claude-shannon-made-micromouse-first/


Outline
• Types of reinforcement learning
• Model-free: keep track of the quality of each action in each state.
• Model-based: try to learn P(s’|s,a) explicitly.

• Model-based reinforcement learning
• The observation -> model -> policy loop

• Exploration versus Exploitation
• Epsilon-greedy learning versus Epsilon-first learning



Model-based reinforcement learning

Model-based reinforcement learning uses what’s sometimes called the 
observation -> model -> policy loop.
• Test a few actions, and observe the results
• Based on those results, estimate a model: a lookup table (or neural 

network estimate) of the transition probabilities 𝑃(𝑠’|𝑠, 𝑎), and of the 
reward function 𝑅(𝑠).
• Based on the model, use value iteration or policy iteration to find an 

optimal policy.
• … and repeat this loop, as often as you can.



Example of model-based reinforcement 
learning: Playing classic Atari video games

Model-Based Reinforcement Learning 
for Atari (Kaiser, Babaeizadeh, Milos, Osinski, Campbell, 
Czechowski, Erhan, Finn, Kozakowski, Levine, Mohiuddin, 
Sepassi, Tucker, and Michalewski)

• Blog and videos: 
https://sites.google.com/view/model
basedrlatari/home

• Article: 
https://arxiv.org/abs/1903.00374

Screenshot of the video game “Freeway,” copyright 
Activision.  Reproduced here under the terms of fair use 
enumerated at 
https://en.wikipedia.org/w/index.php?curid=56419703

https://sites.google.com/view/modelbasedrlatari/home
https://arxiv.org/abs/1903.00374


Model-free reinforcement learning

• In model-free reinforcement learning, we never try to explicitly learn 
what the world is like (𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠)).
• Instead, we keep track of a simple lookup table:
• In state 𝑠, if I perform action 𝑎, what will be my expected utility?
• This is called the “quality” of action 𝑎 in state 𝑠, 𝑄(𝑠, 𝑎).

• If the states and actions are discrete, 𝑄(𝑠, 𝑎) can be a lookup table.  If 
not, 𝑄(𝑠, 𝑎) can be a function learned by a neural network.



Example of model-free reinforcement 
learning: Playing classic Atari video games

Playing Atari with Deep Reinforcement 
Learning (Mnih, Kavukcuoglu, Silver, Graves, 
Antonoglou, Wierstra, and Riedmiller)

• Video: 
https://www.youtube.com/watch?v=
cjpEIotvwFY&feature=youtu.be

• Article: 
https://arxiv.org/abs/1312.5602

Screenshot of the video game “Breakout,” copyright 
Activision.  Reproduced here under the terms of fair use 
enumerated at 
https://en.wikipedia.org/w/index.php?curid=52132637

https://www.youtube.com/watch%3Fv=cjpEIotvwFY&feature=youtu.be
https://arxiv.org/abs/1312.5602


Reinforcement learning strategies

• Model-based
• Learn the model of the MDP (transition probabilities and rewards) and try to 

solve the MDP concurrently

• Model-free
• Learn how to act without explicitly learning the transition probabilities P(s’ | 

s, a)
• Q-learning: learn an action-utility function Q(s,a) that tells us the value of 

doing action a in state s



Outline
• Types of reinforcement learning
• Model-free: keep track of the quality of each action in each state.
• Model-based: try to learn P(s’|s,a) explicitly.

• Model-based reinforcement learning
• The observation -> model -> policy loop

• Exploration versus Exploitation
• Epsilon-greedy learning versus Epsilon-first learning



Model-based reinforcement learning
Basic idea: 
1. Follow some initial policy, to guide your actions.
2. Try to learn P(s’|s,a) and R(s).
3. Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and repeat.



1. Follow some initial policy, to guide your actions  
Enter the maze…

A view from 
inside a corn 

maze near 
Christchurch, 
New Zealand

By Hugho226 -
Own work, CC0, 

https://commons.
wikimedia.org/w/
index.php?curid=

30724285



2. Try to learn P(s’|s,a) and R(s)
Enter the maze…

A view from 
inside a corn 

maze near 
Christchurch, 
New Zealand

By Hugho226 -
Own work, CC0, 

https://commons.
wikimedia.org/w/
index.php?curid=

30724285

…update your map as you go…

By Philip Mitchell -
http://www.dwarvenforge.com/dwarvenforums/viewtopic.php?pid=15595#p15595, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1913429



3. Update your policy
…and be ready to act.

By Edward Burne-Jones - lgFxdQtUgyzs7Q at Google Cultural Institute, 
zoom level maximum, Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=29661124

…update your map as you go…

By Philip Mitchell -
http://www.dwarvenforge.com/dwarvenforums/viewtopic.php?pid=15595#p15595, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1913429



1. Follow some initial policy, to guide your actions  

By Hugho226 - Own work, 
CC0, 

https://commons.wikimedi
a.org/w/index.php?curid=3

0724285

For 𝑡 = 1 to 𝑛 (for some sufficiently large value of 𝑛):
• Observe: find out what is your current state (s).
• Act: use your current policy to choose an action (a).
• Observe: see what state you move to (s’).
• Observe: see what reward you receive (R).
If you finish the game within this many steps, start over, 
until you reach your desired 𝑛.
Keep a record of your (s,a,s’,R) tuples.  These are now your 
training database: 

𝒟 = 𝑠*, 𝑎*, 𝑠*+ , 𝑅* , 𝑠,, 𝑎,, 𝑠,+ , 𝑅, , … , (𝑠- , 𝑎- , 𝑠-+ , 𝑅-)



2. Try to learn P(s’|s,a) and R(s)

By Philip Mitchell -
http://www.dwarvenforge.com/dwa
rvenforums/viewtopic.php?pid=1559

5#p15595, CC BY-SA 3.0

Just like Bayesian networks!  Use maximum likelihood 
parameter learning, possibly also with Laplace smoothing.

𝑃 𝑠+ 𝑠, 𝑎 =
# times that action 𝑎 in state 𝑠 led to state 𝑠′
# times action 𝑎 was performed in state 𝑠

𝑅 𝑠 = 𝑅 that was received when you were in state 𝑠

If 𝑠 or 𝑎 are continuous-valued, you’ll have to estimate 
these using a neural network or some other parametric 
model.



3. Update your policy

By Edward Burne-Jones -
lgFxdQtUgyzs7Q at Google 

Cultural Institute, zoom level 
maximum, Public Domain, 

https://commons.wikimedia.org
/w/index.php?curid=29661124

𝑈 𝑠 = 𝑅 𝑠 + 𝛾max
.
J
/+

𝑃 𝑠+ 𝑠, 𝑎 𝑈(𝑠+)

As you know from last lecture, you’ll have to use value 
iteration or policy iteration to solve for 𝜋(𝑠) given 
𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠).



Model-based reinforcement learning
Basic idea: 
1. Follow some initial policy, to guide your actions.
2. Try to learn P(s’|s,a) and R(s).
3. Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and repeat.

Why does this fail?



Model-based reinforcement learning
Basic idea: 
1. Follow some initial policy, to guide your actions.
2. Try to learn P(s’|s,a) and R(s).
3. Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and repeat.

Why does this fail?

𝑃 𝑠! 𝑠, 𝑎 =
# times that action 𝑎 in state 𝑠 led to state 𝑠′
# times action 𝑎 was performed in state 𝑠

1. If your current policy is 𝜋 𝑠 = 𝑎", then you will never perform action 𝑎# in state 𝑠.

2. Therefore, your estimate of 𝑃 𝑠! 𝑠, 𝑎# will be completely uninformed.   You’ll 
probably think that 𝑃 𝑠! 𝑠, 𝑎# is uniform (every 𝑠! is equally likely). 

3. If 𝑎" leads to a good state more than half the time, then you will conclude that 𝑎" is 
better than 𝑎#.  So when you revise your policy in step 3, you will still choose 𝜋(𝑠) =
𝑎".  …and the trap snaps shut behind you…



Outline
• Types of reinforcement learning
• Model-free: keep track of the quality of each action in each state.
• Model-based: try to learn P(s’|s,a) explicitly.

• Model-based reinforcement learning
• The observation -> model -> policy loop

• Exploration versus Exploitation
• Epsilon-greedy learning versus Epsilon-first learning



Exploration vs. Exploitation
• Exploration: take a new action with unknown consequences

• Pros: 
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

• Cons: 
• When you’re exploring, you’re not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
• Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

• Cons: 
• Might also prevent you from discovering the true optimal strategy

“Search represents a core feature of cognition:” 
Exploration versus exploitation in space, mind, and society.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410143/


How to trade off exploration vs. exploitation
Epsilon-first strategy:  when you reach state s, check how many times 
you’ve tested each of its available actions.
• Explore for the first 𝝐𝑵 trials: If the least-explored action has been tested 

fewer than ϵ𝑁 times, then perform that action.
• Exploit thereafter: Once you’ve finished exploring, start exploiting (work to 

maximize your personal utility).

Epsilon-greedy strategy: in every state, every time, forever,
• Explore with probability 𝝐: choose any action, uniformly at random.
• Exploit with probability (𝟏 − 𝝐): choose the action with the highest expected 

utility, according to your current estimates.



How to trade off exploration vs. exploitation
Epsilon-first strategy:  

• Advantages: 
• 𝜖𝑁 can be chosen to guarantee that your model is correct w/pre-specified level of confidence. 
• After the first 𝜖𝑁 trials, you are always getting best possible reward.

• Disadvantages: 
• After the first 𝜖𝑁 trials, your model stops improving.  
• If the world changes, you won’t know.

Epsilon-greedy strategy:
• Advantages: 

• If the world is static, epsilon-greedy converges to the correct model.
• If the world changes, you’ll find out.

• Disadvantages:
• Never, at any time, will you focus solely on maximizing your utility (exploiting).  You are always “wasting” 𝜖

of your time exploring.

There are dozens of other ways you can balance exploration versus exploitation.

https://en.wikipedia.org/wiki/Multi-armed_bandit

