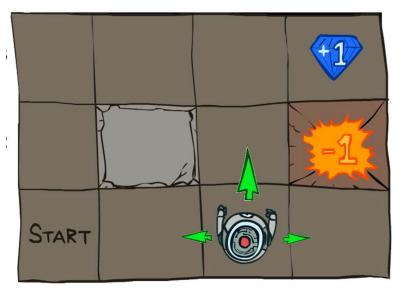
CS440/ECE448 Lecture 29: Markov Decision Processes

Mark Hasegawa-Johnson, 4/2020

Including slides by Svetlana Lazebnik, 11/2016

Including many figures by Peter Abbeel and Dan Klein, UC Berkeley CS 188



Grid World

Invented and drawn by Peter Abbeel and Dan Klein, UC Berkeley CS 188

Markov Decision Processes

- In HMMs, we see a sequence of observations and try to reason about the underlying state sequence
 - There are no actions involved
- But what if we have to take an action at each step that, in turn, will affect the state of the world?

Markov Decision Processes

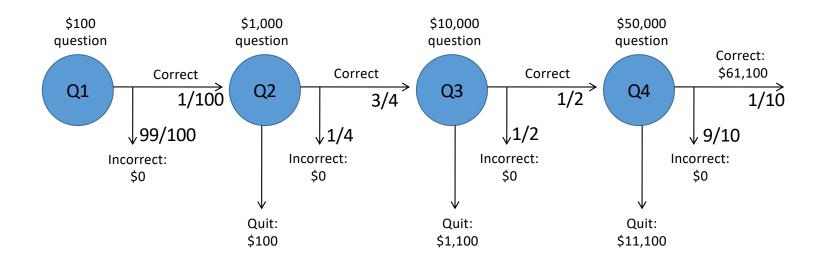
- Components that define the MDP. Depending on the problem statement, you either know these, or you learn them from data:
 - States s, beginning with initial state s₀
 - Actions a
 - Each state s has actions A(s) available from it
 - Transition model P(s' | s, a)
 - *Markov assumption*: the probability of going to s' from s depends only on s and a and not on any other past actions or states
 - Reward function R(s)
- Policy the "solution" to the MDP:
 - $\pi(s) \in A(s)$: the action that an agent takes in any given state

Overview

- First, we will look at how to "solve" MDPs, or find the optimal policy when the transition model and the reward function are known
- Second, we will consider reinforcement learning, where we don't know the rules of the environment or the consequences of our actions

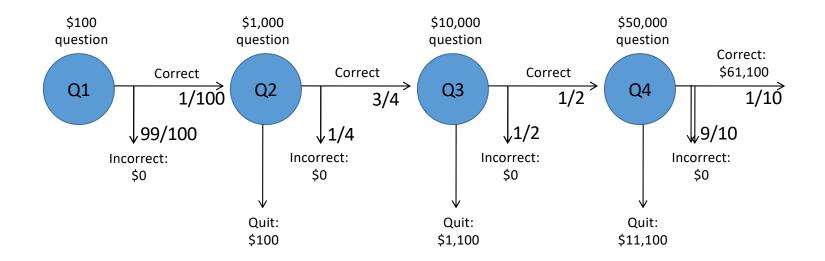
Game show

- A series of questions with increasing level of difficulty and increasing payoff
- Decision: at each step, take your earnings and quit, or go for the next question
 - If you answer wrong, you lose everything



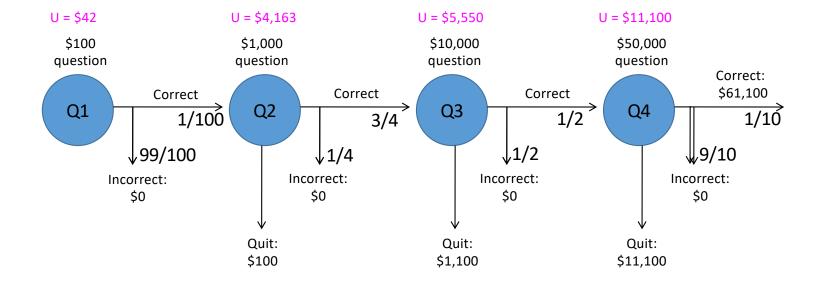
Game show

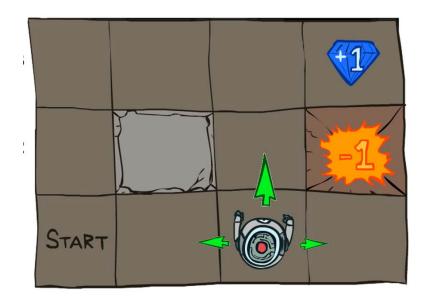
- Consider \$50,000 question
 - Probability of guessing correctly: 1/10
 - Quit or go for the question?
- What is the expected payoff for continuing?
 - 0.1 * 61,100 + 0.9 * 0 = 6,110
- What is the optimal decision?



Game show

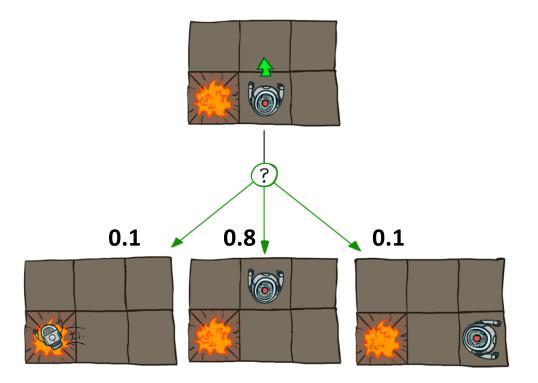
- What should we do in Q3?
 - Payoff for quitting: \$1,100
 - Payoff for continuing: 0.5 * \$11,100 = \$5,550
- What about Q2?
 - \$100 for quitting vs. \$4,162 for continuing
- What about Q1?





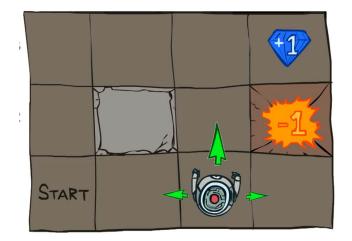
R(s) = -0.04 for every non-terminal state

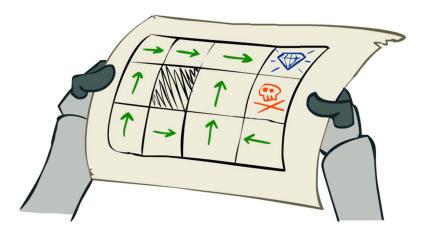
Transition model:



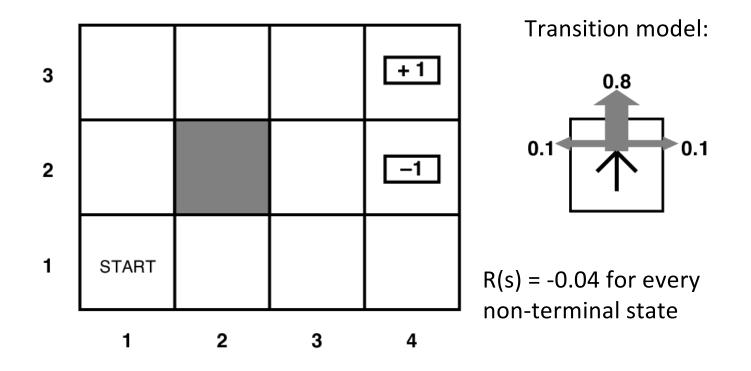
Source: P. Abbeel and D. Klein

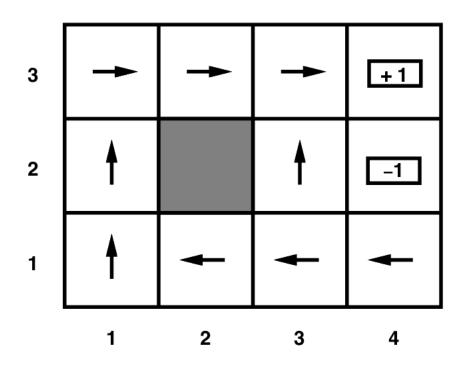
Goal: Policy





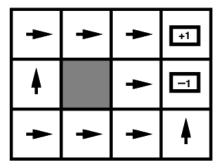
Source: P. Abbeel and D. Klein

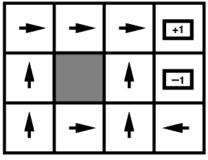




Optimal policy when R(s) = -0.04 for every non-terminal state

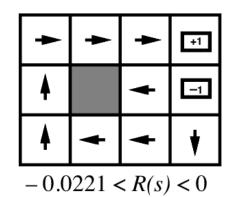
• Optimal policies for other values of R(s):

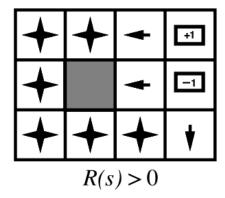




R(s) < -1.6284

-0.4278 < R(s) < -0.0850





Solving MDPs

- MDP components:
 - States s
 - Actions a
 - Transition model P(s' | s, a)
 - Reward function R(s)
- The solution:
 - **Policy** $\pi(s)$: mapping from states to actions
 - How to find the optimal policy?

Maximizing expected utility

 The optimal policy π(s) should maximize the *expected utility* over all possible state sequences produced by following that policy:

 $\sum_{\substack{\text{state sequences}\\\text{starting from } s_0}} P(\text{sequence}|s_0, a = \pi(s_0)) U(\text{sequence})$

- How to define the utility of a state sequence?
 - Sum of rewards of individual states
 - Problem: infinite state sequences

Utilities of state sequences

- Normally, we would define the utility of a state sequence as the sum of the rewards of the individual states
- **Problem:** infinite state sequences
- Solution: discount the individual state rewards by a factor γ between 0 and 1:

$$U([s_0, s_1, s_2, \ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots$$

$$=\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \leq \frac{R_{\max}}{1-\gamma} \qquad (0 < \gamma < 1)$$

- Sooner rewards count more than later rewards
- Makes sure the total utility stays bounded
- Helps algorithms converge

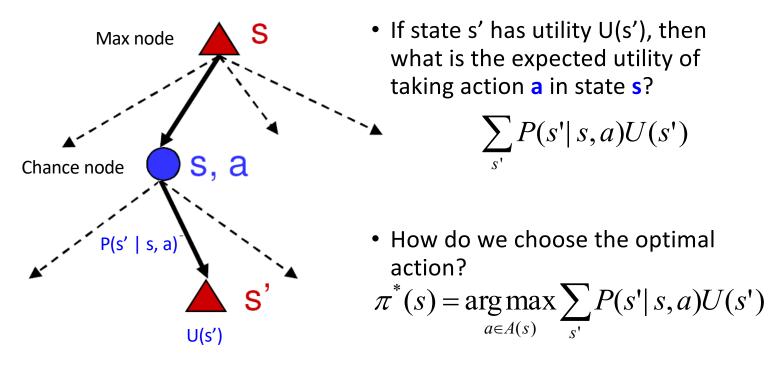
Utilities of states

• Expected utility obtained by policy π starting in state s:

$$U^{\pi}(s) = \sum_{\substack{\text{state sequences} \\ \text{starting from s}}} P(\text{sequence}|s, a = \pi(s)) U(\text{sequence})$$

- The "true" utility of a state, denoted U(s), is the *best possible* expected sum of discounted rewards
 - if the agent executes the *best possible* policy starting in state s
- Reminiscent of minimax values of states...

Finding the utilities of states

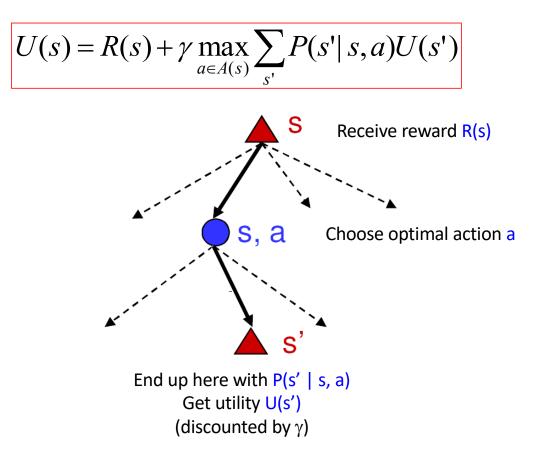


• What is the recursive expression for U(s) in terms of the utilities of its successor states?

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) U(s')$$

The Bellman equation

• Recursive relationship between the utilities of successive states:



The Bellman equation

• Recursive relationship between the utilities of successive states:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

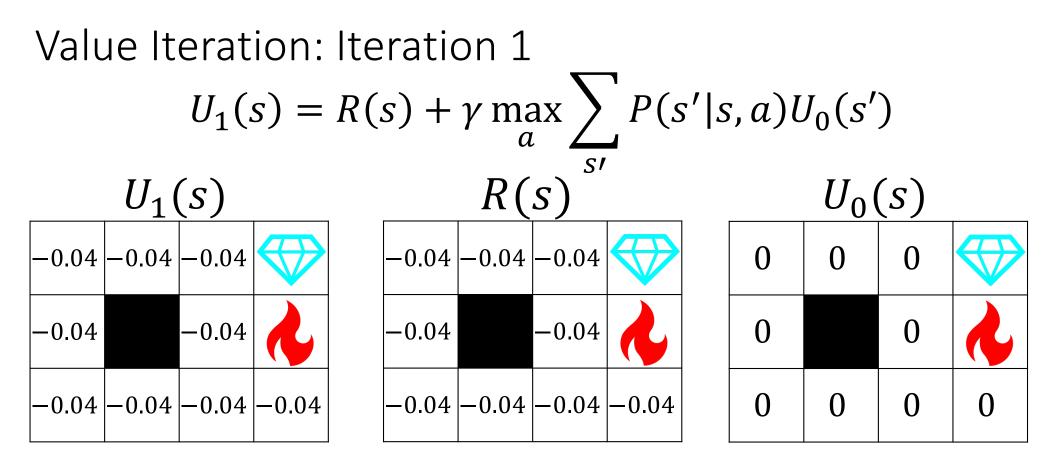
- For *N* states, we get *N* <u>nonlinear</u> equations in *N* unknowns
 - Known quantities: P(s'|s, a), R(s), and γ . Unknowns: U(s).
 - Solving these N equations solves the MDP.
 - Nonlinear -> no closed-form solution.
 - If it weren't for the "max," this would be N linear equations in N unknowns. We could solve it by just inverting an NxN matrix.
 - The "max" means that there is no closed-form solution. Need to use an iterative solution method, which might not converge to the globally optimum soluton.
 - Two solution methods: value iteration and policy iteration

Method 1: Value iteration

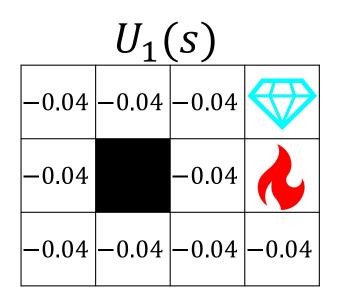
- Start out with iteration i = 0, every $U_i(s) = 0$
- Iterate until convergence
 - During the *i*th iteration, update the utility of each state according to this rule:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$

- In the limit of infinitely many iterations, guaranteed to find the correct utility values.
 - Error decreases exponentially, so in practice, don't need an infinite number of iterations...



Value Iteration: Iteration 2



Value Iteration: Iteration 2

$$U_{2}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) U_{1}(s')$$

Transition model:
$$U_{1}(s)$$

$$U_{1}(s)$$

$$-0.04 - 0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

$$-0.04 - 0.04$$

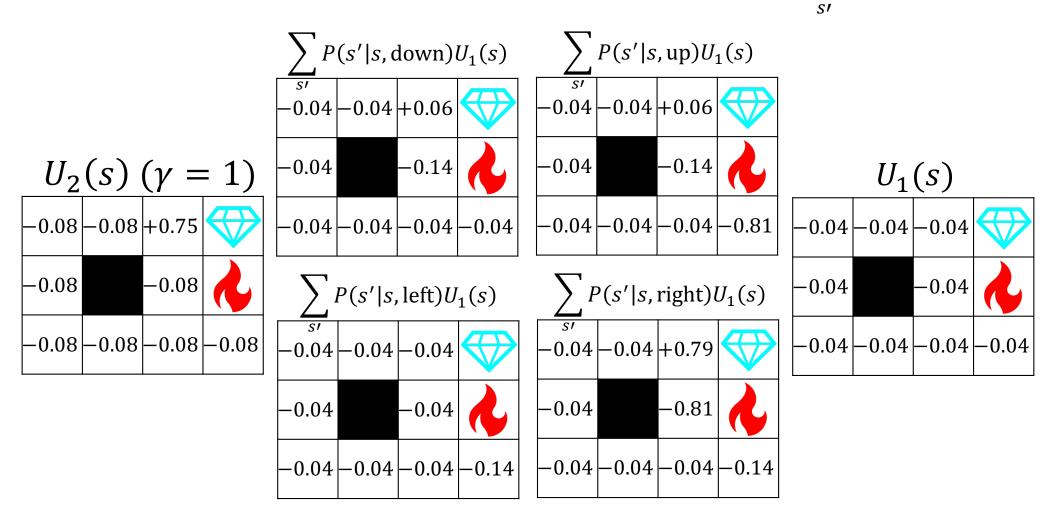
$$-0.04 - 0.04$$

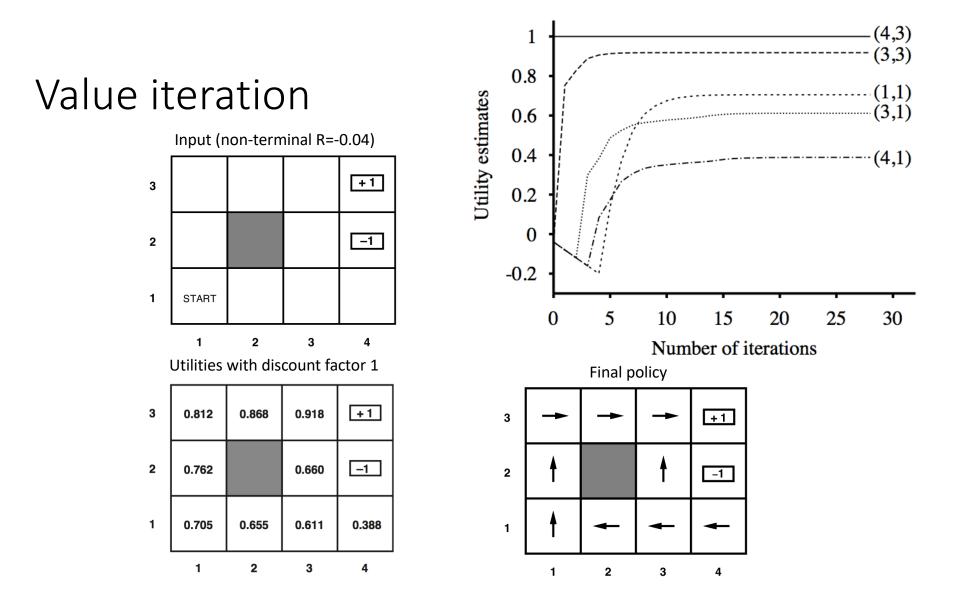
$$-0.04 - 0.04$$

$$-0.04$$

$$P(s'|s, up) = \begin{cases} 0.1 & s' = \text{left from } s \text{ (if no wall)} \\ 0.1 & s' = \text{right from } s \text{ (if no wall)} \end{cases}$$

Value Iteration: Iteration 2 $U_2(s) = R(s) + \gamma \max_a \sum P(s'|s,a)U_1(s')$





Method 2: Policy Iteration

- Start with some initial policy π_0 and alternate between the following steps:
 - **Policy Evaluation:** calculate the utility of every state under the assumption that the given policy is fixed and unchanging.
 - **Policy Improvement:** calculate a new policy π_{i+1} based on the updated utilities.
- Notice it's kind of like gradient descent in neural networks:
 - Policy evaluation: Find ways in which the current policy is suboptimal
 - Policy improvement: Fix those problems
- Unlike Value Iteration, this is guaranteed to converge in a finite number of steps, as long as the state space and action set are both finite.

Method 2: Policy Iteration

• Policy Evaluation: Given a fixed policy π , calculate the <u>policy-dependent</u> <u>utility</u>, $U^{\pi}(s)$, for every state s

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) U^{\pi}(s')$$

Policy Iteration: Iteration 1 **Policy Evaluation:** $U^{\pi^0}(s) = R(s) + \gamma \sum_{i=1}^{n} P(s'|s, a) U^{\pi^0}(s')$

 $--\pi 0$ $\pi^0(s)$ \rightarrow \rightarrow \rightarrow \rightarrow

	U^{n}	(S)	
+0.50	+0.69	+0.74	
-0.65		-0.90	
-1.40	-1.44	-1.39	-1.40

Why is Policy Evaluation easy, while Bellman Equation is hard?

• Policy Evaluation: Given a fixed policy π , calculate the <u>policy-dependent</u> <u>utility</u>, $U^{\pi}(s)$, for every state s

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) U^{\pi}(s')$$

- $\pi(s)$ is fixed, therefore $P(s'|s, \pi(s))$ is an $N \times N$ matrix, therefore we can just invert the $N \times N$ matrix: $U^{\pi}(s) = (I \gamma P(s'|s, \pi(s)))^{-1} R(s)$
- Why is this "Policy Evaluation" formula so much easier to solve than the original Bellman equation?

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' | s, a) U(s')$$

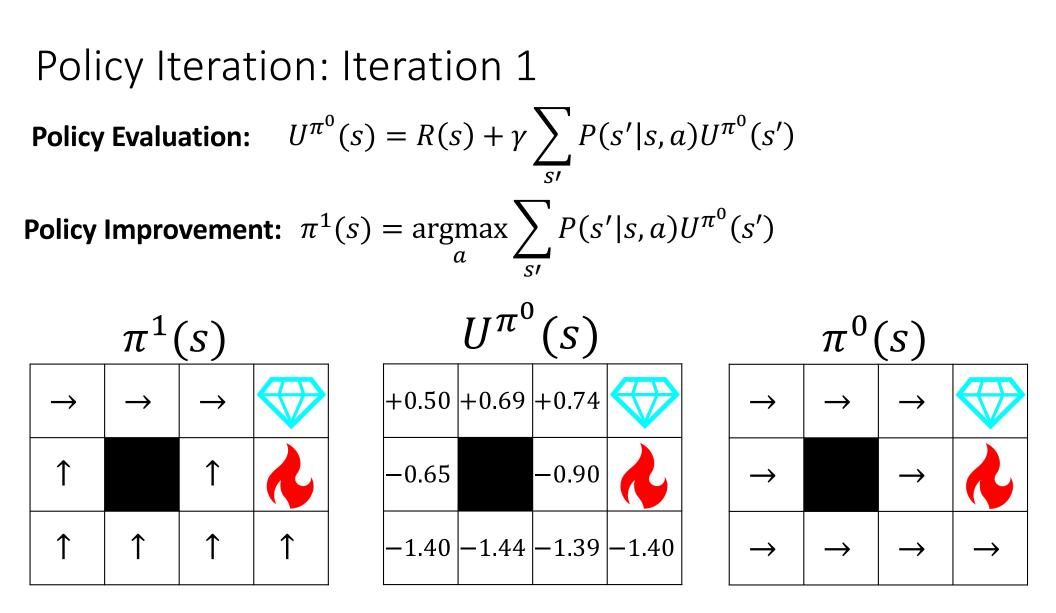
Method 2: Policy Iteration

• Policy Evaluation: Given a fixed policy π , calculate the <u>policy-dependent</u> <u>utility</u>, $U^{\pi}(s)$, for every state s

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) U^{\pi}(s')$$

• **Policy Improvement**: Given $U^{\pi}(s)$ for every state *s*, find an improved $\pi(s)$

$$\pi^{i+1}(s) = \underset{a \in A(s)}{\arg \max} \sum_{s'} P(s'|s, a) U^{\pi_i}(s')$$



Summary

- MDP defined by states, actions, transition model, reward function
- The "solution" to an MDP is the policy: what do you do when you're in any given state
- The Bellman equation tells the utility of any given state, and incidentally, also tells you the optimum policy. The Bellman equation is N nonlinear equations in N unknowns (the policy), therefore it can't be solved in closed form.
- Value iteration:
 - At the beginning of the (i+1)'st iteration, each state's value is based on looking ahead i steps in time
 - ... so finding the best action = optimize based on (i+1)-step lookahead
- Policy iteration:
 - Find the utilities that result from the current policy,
 - Improve the current policy