
CS440/ECE448 Lecture 29:
Markov Decision Processes

Mark Hasegawa-Johnson, 4/2020
Including slides by Svetlana Lazebnik, 11/2016
Including many figures by Peter Abbeel and Dan
Klein, UC Berkeley CS 188

Grid World
Invented and drawn by Peter Abbeel and Dan

Klein, UC Berkeley CS 188

Markov Decision Processes
• In HMMs, we see a sequence of observations and try to

reason about the underlying state sequence
• There are no actions involved

• But what if we have to take an action at each step that,
in turn, will affect the state of the world?

Markov Decision Processes
• Components that define the MDP. Depending on the problem

statement, you either know these, or you learn them from data:
• States s, beginning with initial state s0
• Actions a

• Each state s has actions A(s) available from it
• Transition model P(s’ | s, a)

• Markov assumption: the probability of going to s’ from s depends only
on s and a and not on any other past actions or states

• Reward function R(s)
• Policy – the “solution” to the MDP:

• p(s) ∈ A(s): the action that an agent takes in any given state

Overview

• First, we will look at how to “solve” MDPs, or find the optimal policy
when the transition model and the reward function are known
• Second, we will consider reinforcement learning, where we don’t

know the rules of the environment or the consequences of our
actions

Game show
• A series of questions with increasing level of difficulty

and increasing payoff
• Decision: at each step, take your earnings and quit, or

go for the next question
• If you answer wrong, you lose everything

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

1/10

9/10

1/2

1/2

3/4

1/4

1/100

99/100

Game show
• Consider $50,000 question

• Probability of guessing correctly: 1/10
• Quit or go for the question?

• What is the expected payoff for continuing?
0.1 * 61,100 + 0.9 * 0 = 6,110

• What is the optimal decision?

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

1/10

9/10

1/100

99/100

3/4

1/4

1/2

1/2

Game show
• What should we do in Q3?

• Payoff for quitting: $1,100
• Payoff for continuing: 0.5 * $11,100 = $5,550

• What about Q2?
• $100 for quitting vs. $4,162 for continuing

• What about Q1?

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

U = $11,100U = $5,550U = $4,163U = $42

1/10

9/10

1/100

99/100

3/4

1/4

1/2

1/2

Grid world

R(s) = -0.04 for every
non-terminal state

Transition model:

0.8 0.10.1

Source: P. Abbeel and D. Klein

Goal: Policy

Source: P. Abbeel and D. Klein

Grid world

R(s) = -0.04 for every
non-terminal state

Transition model:

Grid world

Optimal policy when
R(s) = -0.04 for every
non-terminal state

Grid world
• Optimal policies for other values of R(s):

Solving MDPs
• MDP components:

• States s
• Actions a
• Transition model P(s’ | s, a)
• Reward function R(s)

• The solution:
• Policy p(s): mapping from states to actions
• How to find the optimal policy?

Maximizing expected utility
• The optimal policy p(s) should maximize the expected

utility over all possible state sequences produced by
following that policy:

!
!"#"$!$%&$'($!
!"#)"*'+ ,)-. !!

𝑃 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒|𝑠/, 𝑎 = 𝜋 𝑠/ 𝑈 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

• How to define the utility of a state sequence?
• Sum of rewards of individual states
• Problem: infinite state sequences

Utilities of state sequences
• Normally, we would define the utility of a state sequence as the

sum of the rewards of the individual states
• Problem: infinite state sequences
• Solution: discount the individual state rewards by a factor g

between 0 and 1:

• Sooner rewards count more than later rewards
• Makes sure the total utility stays bounded
• Helps algorithms converge

)10(
1

)(

)()()(]),,,([

max

0

2
2

10210

<<
-

£=

+++=

å
¥

=

g
g

g

gg
RsR

sRsRsRsssU

t
t

t

!!

Utilities of states

• Expected utility obtained by policy p starting in state s:

𝑈! 𝑠 = $
"#$#% "%&'%()%"
"#$*#+(, -*./ "

𝑃 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒|𝑠, 𝑎 = 𝜋 𝑠 𝑈 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

• The “true” utility of a state, denoted U(s), is the best possible
expected sum of discounted rewards
• if the agent executes the best possible policy starting in state s

• Reminiscent of minimax values of states…

Finding the utilities of states

å
'

)'(),|'(
s

sUassP

U(s’)

Max node

Chance node

å
Î

=
')(

*)'(),|'(maxarg)(
ssAa

sUassPsp

P(s’ | s, a)

• If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

• How do we choose the optimal
action?

• What is the recursive expression for U(s) in terms of the utilities
of its successor states?

å+=
'

)'(),|'(max)()(
s

a sUassPsRsU g

The Bellman equation
• Recursive relationship between the utilities of

successive states:

End up here with P(s’ | s, a)
Get utility U(s’)

(discounted by g)

Receive reward R(s)

Choose optimal action a

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

The Bellman equation
• Recursive relationship between the utilities of

successive states:

• For N states, we get N nonlinear equations in N
unknowns
• Known quantities: 𝑃(𝑠’|𝑠, 𝑎), 𝑅(𝑠), and 𝛾. Unknowns: 𝑈(𝑠).
• Solving these N equations solves the MDP.
• Nonlinear -> no closed-form solution.

• If it weren’t for the “max,” this would be N linear equations in N
unknowns. We could solve it by just inverting an NxN matrix.

• The “max” means that there is no closed-form solution. Need to use
an iterative solution method, which might not converge to the globally
optimum soluton.

• Two solution methods: value iteration and policy iteration

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

Method 1: Value iteration
• Start out with iteration 𝑖 = 0, every 𝑈+ (𝑠) = 0
• Iterate until convergence

• During the ith iteration, update the utility of each state
according to this rule:

• In the limit of infinitely many iterations, guaranteed to
find the correct utility values.
• Error decreases exponentially, so in practice, don’t need an

infinite number of iterations…

å
Î+ +¬

')(1)'(),|'(max)()(
s

isAai sUassPsRsU g

Value Iteration: Iteration 1

0 0 0

0 0

0 0 0 0

𝑈!(𝑠)

𝑈! 𝑠 = 𝑅 𝑠 + 𝛾max
"
*
#$

𝑃 𝑠$ 𝑠, 𝑎 𝑈% 𝑠′

−0.04 −0.04 −0.04

−0.04 −0.04

−0.04 −0.04 −0.04 −0.04

𝑈"(𝑠)
−0.04 −0.04 −0.04

−0.04 −0.04

−0.04 −0.04 −0.04 −0.04

𝑅(𝑠)

Value Iteration: Iteration 2

−0.04 −0.04 −0.04

−0.04 −0.04

−0.04 −0.04 −0.04 −0.04

𝑈"(𝑠)

Value Iteration: Iteration 2

−0.04 −0.04 −0.04

−0.04 −0.04

−0.04 −0.04 −0.04 −0.04

𝑈"(𝑠)
𝑈0 𝑠 = 𝑅 𝑠 + 𝛾max

$
$
"1

𝑃 𝑠1 𝑠, 𝑎 𝑈2 𝑠′

Transition model:

𝑃 𝑠! 𝑠, up = 3
0.8 𝑠! = up from 𝑠 (if no wall)
0.1 𝑠! = left from 𝑠 (if no wall)
0.1 𝑠! = right from 𝑠 (if no wall)

Value Iteration: Iteration 2 𝑈" 𝑠 = 𝑅 𝑠 + 𝛾max
#

E
$!

𝑃 𝑠! 𝑠, 𝑎 𝑈% 𝑠′

−0.04−0.04−0.04

−0.04 −0.04

−0.04−0.04−0.04−0.04

𝑈!(𝑠)

−0.04−0.04+0.06

−0.04 −0.14

−0.04−0.04−0.04−0.81

3
!"

𝑃 𝑠" 𝑠, up 𝑈# 𝑠

−0.04−0.04+0.79

−0.04 −0.81

−0.04−0.04−0.04−0.14

3
!"

𝑃 𝑠" 𝑠, right 𝑈# 𝑠

−0.04−0.04+0.06

−0.04 −0.14

−0.04−0.04−0.04−0.04

3
!"

𝑃 𝑠" 𝑠, down 𝑈# 𝑠

−0.04−0.04−0.04

−0.04 −0.04

−0.04−0.04−0.04−0.14

3
!"

𝑃 𝑠" 𝑠, left 𝑈# 𝑠

−0.08−0.08+0.75

−0.08 −0.08

−0.08−0.08−0.08−0.08

𝑈! 𝑠 (𝛾 = 1)

Value iteration

Utilities with discount factor 1 Final policy

Input (non-terminal R=-0.04)

Method 2: Policy Iteration

• Start with some initial policy p0 and alternate between the following steps:
• Policy Evaluation: calculate the utility of every state under the assumption that the

given policy is fixed and unchanging.
• Policy Improvement: calculate a new policy pi+1 based on the updated utilities.

• Notice it’s kind of like gradient descent in neural networks:
• Policy evaluation: Find ways in which the current policy is suboptimal
• Policy improvement: Fix those problems

• Unlike Value Iteration, this is guaranteed to converge in a finite number of
steps, as long as the state space and action set are both finite.

Method 2: Policy Iteration
• Policy Evaluation: Given a fixed policy p, calculate the policy-dependent

utility, Up(s), for every state s

å+=
'

)'())(,|'()()(
s

sUsssPsRsU pp pg

Policy Iteration: Iteration 1

→ → →

→ →

→ → → →

𝜋!(𝑠)

𝑈!&(𝑠) = 𝑅 𝑠 + 𝛾$
"1

𝑃 𝑠1 𝑠, 𝑎 𝑈!& 𝑠′

+0.50 +0.69 +0.74

−0.65 −0.90

−1.40 −1.44 −1.39 −1.40

𝑈#/(𝑠)

Policy Evaluation:

Why is Policy Evaluation easy, while Bellman
Equation is hard?
• Policy Evaluation: Given a fixed policy p, calculate the policy-dependent

utility, Up(s), for every state s

• p(s) is fixed, therefore 𝑃(𝑠1|𝑠, 𝜋 𝑠) is an 𝑁×𝑁 matrix, therefore we can just
invert the 𝑁×𝑁 matrix: 𝑈p(𝑠) = I − 𝛾𝑃 𝑠1|𝑠, 𝜋(𝑠) F2𝑅(𝑠)
• Why is this “Policy Evaluation” formula so much easier to solve than the

original Bellman equation?

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

å+=
'

)'())(,|'()()(
s

sUsssPsRsU pp pg

Method 2: Policy Iteration
• Policy Evaluation: Given a fixed policy p, calculate the policy-dependent

utility, Up(s), for every state s

• Policy Improvement: Given Up(s) for every state s, find an improved p(s)

å+=
'

)'())(,|'()()(
s

sUsssPsRsU pp pg

å
Î

+ =
')(

1)'(),|'(maxarg)(
ssAa

i sUassPs ipp

Policy Iteration: Iteration 1

→ → →

→ →

→ → → →

𝜋!(𝑠)

𝑈!&(𝑠) = 𝑅 𝑠 + 𝛾$
"1

𝑃 𝑠1 𝑠, 𝑎 𝑈!& 𝑠′

→ → →

↑ ↑

↑ ↑ ↑ ↑

𝜋"(𝑠)
+0.50 +0.69 +0.74

−0.65 −0.90

−1.40 −1.44 −1.39 −1.40

𝑈#/(𝑠)

𝜋2(𝑠) = argmax
$

$
"1

𝑃 𝑠1 𝑠, 𝑎 𝑈!& 𝑠′

Policy Evaluation:

Policy Improvement:

Summary
• MDP defined by states, actions, transition model, reward function
• The “solution” to an MDP is the policy: what do you do when you’re in any

given state
• The Bellman equation tells the utility of any given state, and incidentally, also

tells you the optimum policy. The Bellman equation is N nonlinear equations
in N unknowns (the policy), therefore it can’t be solved in closed form.
• Value iteration:

• At the beginning of the (i+1)’st iteration, each state’s value is based on looking ahead i
steps in time

• … so finding the best action = optimize based on (i+1)-step lookahead
• Policy iteration:

• Find the utilities that result from the current policy,
• Improve the current policy

