
Lecture 28: Back-
Propagation

Mark Hasegawa-Johnson
April 6, 2020

License: CC-BY 4.0. You may remix or redistribute 
if you cite the source.

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗

1

1



How to make a neural network

• Training Data
• Forward propagation
• Loss Function
• Back propagation



Training Data A training database is a set of n 
feature vectors �⃗�! (1 ≤ 𝑖 ≤ 𝑛), each 
with its reference label �⃗�!:

𝒟 = �⃗�", �⃗�" , �⃗�#, �⃗�# , … , �⃗�$ , �⃗�$

Thus far, we’ve seen two general types 
of reference labels:
• Scalars: 𝑦!
• Vectors: �⃗�!

  

Validation classification�⃗�" �⃗�# �⃗�% �⃗�&

𝑦
" =

0,1,0,0

Class Index Class Name

1 abacus

2 camera

3 chickens

4 slug

𝑦
# =

1,0,0,0
𝑦
% =

0,0,0,1
𝑦
& =

0,0,1,0



Scalar Labels 𝒟 = �⃗�", 𝑦" , �⃗�#, 𝑦# , … , �⃗�$ , 𝑦$

Scalar labels: 
• Signed binary (+1 or -1)
• Example, -1=negative sentiment, 

+1=positive sentiment

• Unsigned binary (0 or 1) 
• Example: 1=animal, 0=non-animal.

• Any real number, −∞ < 𝑦! < ∞
• For example, the estimated value (for 

the black player) of a particular board 
position in chess

𝑦& = 0𝑦# = 0𝑦" = 1 𝑦% = 1

I’m warning you, it’s pretty pathetic.
𝑦" = −1

This is a beautiful movie, you’ll love it.
𝑦# = +1

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009

𝑦 = 97

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


Vector Labels
𝒟 = �⃗�", �⃗�" , �⃗�#, �⃗�# , … , �⃗�$ , �⃗�$

Vector labels:
• A one-hot vector, in which the 

correct class has a “1”, and all other 
classes have a “0”.
• Example: object recognition
• Example: part of speech tagging

• A real vector
• Example: input is a noisy image, desired 

output is the clean image.

  

Validation classification

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒

�⃗�" =
0,1,0,0

�⃗�# =
1,0,0,0

�⃗�% =
0,0,0,1

�⃗�& =
0,0,1,0

�⃗�"

�⃗�#

�⃗�%

�⃗�&

�⃗�"

�⃗�#

�⃗�%

�⃗�&
“Semantic Image Inpainting with Deep Generative Models,” Raymond Yeh, Chen Chen, Teck 
Yian Lim, Alexander G. Schwing, Mark Hasegawa-Johnson and Minh Do



How to make a neural network

• Training Data
• Forward propagation
• Loss Function
• Back propagation



Forward propagation
Remember that a training database is a 
set of feature vectors, each with a 
reference label: 𝒟 =
�⃗�", �⃗�" , … , �⃗�$ , �⃗�$

“Forward propagation” means computing 
the neural network output, �⃗�!∗, from its 
input, �⃗�!.  Our goal is going to be to train 
the neural network so that

�⃗�!∗ ≈ �⃗�!
For each of the training tokens (for 1 ≤
𝑖 ≤ 𝑛).

Neural Network

�⃗�"

�⃗�"∗ ≈ �⃗�"



Forward propagation

“Forward propagation” means:
• Computing the neural network 

output, �⃗�!∗ = 𝑦"!∗ , … , 𝑦,!∗ , 
• from its input, �⃗�! = 𝑥"! , … , 𝑥-! . Neural Network

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗



Forward propagation
Tokens 𝒙𝒊, 𝒚𝒊 :
• 𝑖 = training token index, 1 ≤ 𝑖 ≤ 𝑛.	
• 𝑛 is the number of training tokens.

Classes 𝒚𝒄𝒊∗ :
• 𝑐 is the class index, 1 ≤ 𝑐 ≤ 𝑉 (this terminology 

makes sense if �⃗�$ is a one-hot vector, i.e., 𝑦%$ =1 for the correct class, 𝑦%$ = 0 otherwise). 
• 𝑉 is the vocabulary size (the number of distinct 

classes).

Feature dimensions 𝒙𝒅𝒊:
• 𝑑 is the input feature dimension, 1 ≤ 𝑑 ≤ 𝐷.
• 𝐷 is the number of input features per training 

token.

Neural Network

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗



Forward propagation

Forward propagation is done by way 
of a series of layers.

Each layer is composed of edges 
(shown as arrows), that terminate on 
nodes (shown as circles).

There are three types of nodes:
• Input nodes = features 𝑥!"
• Output nodes = outputs 𝑦#"∗
• Hidden nodes = the nodes in 

between.

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗

1

1



Forward propagation
Let’s use this notation:

• 𝛽!"
($) is the excitation of the kth node in the 

lth layer in response to the ith training token.

• ℎ!"
($) is the hidden node activation of the kth

node in the lth layer in response to the ith

training token.

Where: 

• 1 ≤ 𝑖 ≤ 𝑛, 𝑛 =# of training tokens

• 1 ≤ 𝑘 ≤ 𝑁, 𝑁 =# of nodes per layer

• 1 ≤ 𝑙 ≤ 𝐿, 𝐿 =# of layers

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗

1

1



How forward propagation works
• Each excitation is a linear combination of the previous 

node’s activations:

𝛽'$
()) = 3

+,-

./-

𝑤'+
())ℎ+$

()0-)

…where 𝑤'+
()) is called a “network weight,” and will be 

learned using back-propagation.

• Each activation is a scalar nonlinearity applied to the 
excitation:

ℎ'$
()) = 𝑔 𝛽'$

())

…where 𝑔 7 is called the “activation function;” it needs 
to be chosen in advance by the network designer.

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗

1

1



How forward propagation 
starts…

Forward propagation starts by setting 
the 0th layer activations equal to the 
input features:

ℎ.!
(0) = 𝑥.! , 1 ≤ 𝑘 ≤ 𝐷

ℎ.!
(0) = 1, 𝑘 = 𝐷 + 1

𝑥!" 𝑥$" 𝑥%" 1…



How forward propagation 
continues…

Then we calculate the first layer 
excitations as:

𝛽.!
(") = 9

23"

-4"

𝑤.2
(")ℎ2!

(0) , 1 ≤ 𝑘 ≤ 𝑁

𝑥!" 𝑥$" 𝑥%" 1…



How forward propagation 
continues…

Then we calculate the first-layer 
activations as:

ℎ.!
(") = 𝑔 𝛽.!

(") , 1 ≤ 𝑘 ≤ 𝑁

𝑥!" 𝑥$" 𝑥%" 1…



How forward propagation
continues…

…and so on, repeating the following 
two equations, layer after layer, until 
we get to the Lth layer:

𝛽.!
(5) = 9

23"

64"

𝑤.2
(5)ℎ2!

(57")

ℎ.!
(5) = 𝑔 𝛽.!

(5)

𝑥!" 𝑥$" 𝑥%" 1…

1

1



How forward propagation 
ends.

…and then we set the neural net 
output equal to the activation of the 
last layer:

𝑦8!∗ = ℎ8!
(9), 1 ≤ 𝑐 ≤ 𝑉

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗

1

1



Activation functions
What is that “activation function?”  Here are some that 
you should know about:
Logistic Sigmoid:

𝜎 𝛽 =
1

1 + 𝑒&'
, 𝜎( 𝛽 = 𝜎 𝛽 1 − 𝜎 𝛽

Tanh:

tanh 𝛽 =
𝑒' − 𝑒&'

𝑒' + 𝑒&'
, tanh( 𝛽 = 1 − tanh) 𝛽

And here’s one you haven’t seen before, called the 
rectified linear unit:

ReLU 𝛽 = max 0, 𝛽 , ReLU( 𝛽 = u 𝛽



Activation functions
The last activation function you need to know is the softmax.  Softmax
is almost never used anywhere except the output layer.  It’s basically a 
sigmoid, but normalized so that ∑83", 𝑦8!∗ = 1, so that you can interpret 
𝑦8!∗ as a probability:

softmax 𝛽2 =
𝑒:!

∑.3", 𝑒:"

Because of the normalization, softmax is the only commonly used 
nonlinearity that depends on excitations other than its own:

𝜕 softmax 𝛽2
𝜕𝛽.

= I
𝑦2∗(1 − 𝑦2∗) 𝑗 = 𝑘
−𝑦2∗𝑦.∗ 𝑗 ≠ 𝑘



How to make a neural network

• Training Data
• Forward propagation
• Loss Function
• Back propagation



Loss Function

• Now that the neural net has computed �⃗�!∗ for each of the training 
tokens �⃗�!…
• How badly did it do?



Loss Function

The “loss function” is a function that measures how badly the neural 
network did by comparing its hypothesis output, �⃗�"∗, to a reference label �⃗�":

ℓ �⃗�" , �⃗�"∗ = a “badness” score for the NN output �⃗�"∗

The average of ℓ �⃗�" , �⃗�"∗ , over the entire training corpus, tells you how badly 
the neural net is doing on the whole training corpus.

ℒ =
1
𝑛;
"%&

'

ℓ �⃗�" , �⃗�"∗ = “badness” score for the whole training corpus



Loss Function

How do we choose the loss function?
We want it to measure how badly we’re doing.
• For an image de-noising task, or something like that: we want it to 

measure the difference between the target images, and the neural 
net outputs.
• For a classification task: we want it to measure something like the 

percentage error rate on the training corpus.



Image de-noising, and other regression tasks

A neural network that computes a real-
valued output, �⃗�!∗ ≈ �⃗�!, from a real-valued 
input, �⃗�!, is called a “nonlinear regression.”
• For example, �⃗�! might be an image with 

some distortion (a bunch of pixels missing, 
or something ).   
• �⃗�! is the corresponding clean image.
• Our goal is to compute a cleaned-up 

image, �⃗�!∗ ≈ �⃗�!

�⃗�"

�⃗�#

�⃗�%

�⃗�&

�⃗�"

�⃗�#

�⃗�%

�⃗�&

“Semantic Image Inpainting with Deep Generative Models,” 
Raymond Yeh, Chen Chen, Teck Yian Lim, Alexander G. Schwing, 
Mark Hasegawa-Johnson and Minh Do



Mean-Squared Error

• �⃗�" = 𝑦&" , … , 𝑦(" is a vector of real numbers that 
the neural net is supposed to produce. 

• �⃗�"∗ = 𝑦&"∗ , … , 𝑦("∗ is what the neural net actually 
produces.
• Mean Squared Error (MSE) measures how badly 

you did:

ℓ)*+ �⃗�" , �⃗�"∗ =
1
𝐾;
#%&

(

𝑦#" − 𝑦#"∗ ,

ℒ)*+ =
1
𝑛;
"%&

'

ℓ)*+ �⃗�" , �⃗�"∗
𝑦8!∗𝑦8!

ℓ;<= �⃗�! , �⃗�!∗



Object recognition, and other multi-class 
classification tasks
A neural network is called a multi-class 
classifier if it computes a probability 
distribution over a set of class labels:

0 ≤ 𝑦8!∗ ≤ 1, 9
83"

,

𝑦8!∗ = 1

Usually, we train such a network using a one-
hot label vector:

𝑦8! = O1 𝑐 is correct class for token 𝑖
0 otherwise

  

Validation classification�⃗�" �⃗�# �⃗�% �⃗�&

𝑦
" =

0,1,0,0

Class Index Class Name

1 abacus

2 camera

3 chickens

4 slug

𝑦
# =

1,0,0,0
𝑦
% =

0,0,0,1
𝑦
& =

0,0,1,0



Zero-One Loss

The simplest loss function is called the zero-one loss.  
It’s equal to zero if there is no error, and it’s equal to 
one if there is an error:

ℓ12 �⃗�$ , �⃗�$∗ = 90 �⃗�$ = �⃗�$∗

1 otherwise
The average of the zero-one loss, over the training 
database, is equal to the training corpus error rate:

ℒ12 =
1
𝑛3
$,-

3

ℓ12 �⃗�$ , �⃗�$∗

The problem with the zero-one loss is that it’s not 
differentiable. 𝑦8!∗𝑦8!

ℓ>? �⃗�! , �⃗�!∗

1



Cross Entropy

𝑦*" = >1 𝑐 is correct class for token 𝑖
0 otherwise

𝑦"*∗ = Estimated 𝑃 class of token 𝑖 is 𝑐 �⃗�")

Then: minimizing cross-entropy = maximizing likelihood:

ℓ,- �⃗�", �⃗�"∗ = − log Estimated 𝑃 correct class �⃗�")

= − log 𝑦* " ,"
∗ = −Q

*/0

1

𝑦*" log 𝑦*"∗

ℒ,- =
1
𝑛
Q
"/0

2

ℓ,- �⃗�", �⃗�"∗

𝑦8 ! ,!
∗

𝑦8 ! ,!
= 1

ℓA= �⃗�! , �⃗�!∗



Binary object recognition

Sometimes, a neural network computes a 
scalar output that is between 0 and 1:

0 ≤ 𝑦!∗ ≤ 1

Usually, we train such a network using a 
binary target label:

𝑦! = O1 token 𝑖 is of class + 1
0 otherwise 𝑦& = 0𝑦# = 0𝑦" = 1 𝑦% = 1

I’m warning you, it’s pretty pathetic.
𝑦" = −1

This is a beautiful movie, you’ll love it.
𝑦# = +1

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009

…or…

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


Binary Cross Entropy
𝑦! = 51 token 𝑖 is of class + 1

0 otherwise
𝑦!∗ = Estimated 𝑃 class of token 𝑖 is + 1 �⃗�!)

Then: minimizing binary cross-entropy = maximizing likelihood:

ℓ#$% �⃗�! , �⃗�!∗ = − log Estimated 𝑃 correct class �⃗�!)

= −𝑦! log 𝑦!∗ − 1 − 𝑦! log 1 − 𝑦!∗

= Q
− log 𝑦!∗ 𝑐 𝑖 = +1

− log 1 − 𝑦!∗ otherwise

ℒ#$% =
1
𝑛U
!&'

(

ℓ#$% �⃗�! , �⃗�!∗

𝑦! = 1

ℓA= �⃗�! , �⃗�!∗

𝑦!∗

𝑦! = 0

ℓA= �⃗�! , �⃗�!∗

𝑦!∗
1



Loss Function

How do we choose the loss function?
We want it to measure how badly we’re doing.
• For an image de-noising task, or something like that: MSE measures 

the average squared difference between the target images and the 
neural net outputs.
• For a classification task: 
• Zero-one loss counts the errors
• Cross entropy is the negative log probability of the correct answer



How to make a neural network

• Training Data
• Forward propagation
• Loss Function
• Back propagation



Back propagation

• OK, now we know how badly we did.
• How can we adjust the network weights, 𝑤.2

(5), in order to do better?
• General strategy: we will use some subset of the training data, 𝒟 =

�⃗�", �⃗�" , … , �⃗�$ , �⃗�$ , to compute an update step, 𝑑𝑤.2
(5), 

simultaneously for all of the network weights.  Then we will update 
them all simultaneously, as 

𝑤.2
(5) ← 𝑤.2

(5) − 𝑑𝑤.2
(5),

1 ≤ 𝑙 ≤ 𝐿
1 ≤ 𝑘 ≤ 𝑁

1 ≤ 𝑗 ≤ 𝑁 + 1



Newton’s method
Basically, we use gradient descent, which is 
similar to Newton’s method, but simpler: we 
only use the first derivative, not the second 
derivative.
For each 𝑤-.

(0), we compute !ℒ

!345
(6), and then we 

update all of the weights simultaneously as 

𝑤-.
(0) ← 𝑤-.

(0) − 𝜂
𝑑ℒ

𝑑𝑤-.
(0) ,

1 ≤ 𝑙 ≤ 𝐿
1 ≤ 𝑘 ≤ 𝑁

1 ≤ 𝑗 ≤ 𝑁 + 1

where 𝜂 is a learning rate.

Animated illustration of Newton’s 
method for finding the zeros of the 

𝑓(𝑥) = 𝑑ℒ/𝑑𝑥.
By Ralf Pfeifer - de:Image:NewtonIteration Ani.gif, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=2268473



Finding the gradient

• How do we find Bℒ

BD"!
($)?

• The technique for doing that is called “back propagation.”



Back propagation

Remember that 

ℒ =
1
𝑛
Q
"/0

2

ℓ �⃗�", �⃗�"∗

so

𝑑ℒ

𝑑𝑤!V
($) =

1
𝑛
Q
"/0

2
𝑑ℓ �⃗�", �⃗�"∗

𝑑𝑤!V
($)

So we need to find Wℓ X!,X!
∗

WY#$
(&) for each of the training 

tokens individually, and then just average them.

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗

1

1



Back propagation

Remember that 

• ℓ �⃗�! , �⃗�!∗ depends on each 𝑦8!∗ , for 1 ≤ 𝑐 ≤ 𝑉

• Each 𝑦8!∗ depends on its corresponding 𝛽8!
(9)

• Each 𝛽8!
(9) depends on each ℎ.!

(97"), for 1 ≤
𝑘 ≤ 𝑁

• … and so on backward through the network…

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗

1

1



Back propagation

𝑑ℓ �⃗�! , �⃗�!∗

𝑑𝑤.2
(5) =9

83"

,
𝜕ℓ �⃗�! , �⃗�!∗

𝜕𝑦8!∗
𝑑𝑦8!∗

𝑑𝑤.2
(5)

𝑑𝑦8!∗

𝑑𝑤.2
(5) =

𝑑ℎ8!
9

𝑑𝑤.2
(5) =

𝜕ℎ8!
9

𝜕𝛽8!
9
𝑑𝛽8!

9

𝑑𝑤.2
(5)

𝑑𝛽8!
9

𝑑𝑤.2
(5) = 9

.3"

6
𝜕𝛽8!

9

𝜕ℎ.!
(97")

𝑑ℎ.!
(97")

𝑑𝑤.2
(5)

• … and so on backward through the network…

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗

1

1



Back propagation

In other words, “back propagation” just means 
that you apply the chain rule of differentiation, 
backward through the network, for each 
training token, in order to compute

𝑑ℓ �⃗�! , �⃗�!∗

𝑑𝑤.2
(5)

…and then you just average that quantity over 
the training tokens.

𝑦!"∗

𝑥!" 𝑥$" 𝑥%" 1…

𝑦$"∗ 𝑦&"∗

1

1



Back propagation

Back-propagation depends on two main types of derivatives:
• The derivative of an excitation with respect to the preceding layer’s 

activation, 
4547

6

4657
(689).

• The derivative of an activation with respect to its own excitation, 
4647

6

4547
6

These two quantities are both easy to compute, and interesting.   But I’m not 
going to tell you what they are, because you don’t need to know.  The reason 
you don’t need to know is that pytorch has lookup tables for each of them, 
and will compute these quantities for you during MP6.



How to make a neural network
• Training Data: 𝒟 = �⃗�-, �⃗�- , … , �⃗�3, �⃗�3
• Forward propagation: compute �⃗�$∗ ≈ �⃗�$ for each training token by alternating these two equations:

𝛽'$
()) = 3

+,-

./-

𝑤'+
())ℎ+$

()0-)

ℎ'$
()) = 𝑔 𝛽'$

())

• Loss Function: ℒ = -
3
∑$,-3 ℓ �⃗�$ , �⃗�$∗

• Back propagation: apply the chain rule backward through the network to compute :ℓ <),<)
∗

:>*+
(-) , then 

average over training data to compute :ℒ

:>*+
(-), then update the weights as 

𝑤'+
()) ← 𝑤'+

()) − 𝜂
𝑑ℒ

𝑑𝑤'+
())


