
Lecture 27: Neural Networks
and Deep Learning

Mark Hasegawa-Johnson
April 6, 2020

License: CC-BY 4.0. You may remix or redistribute if you cite the source.

Outline

• Why use more than one layer?
• Biological inspiration
• Representational power: the XOR function

• Two-layer neural networks
• The Fundamental Theorem of Calculus
• Feature learning for linear classifiers

• Deep networks
• Biological inspiration: features computed from features
• Flexibility: convolutional, recurrent, and gated architectures

Biological Inspiration: McCulloch-Pitts
Artificial Neuron, 1943

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: u(w×x)

• In 1943, McCulloch & Pitts
proposed that biological neurons
have a nonlinear activation
function (a step function) whose
input is a weighted linear
combination of the currents
generated by other neurons.
• They showed lots of examples of

mathematical and logical
functions that could be computed
using networks of simple neurons
like this.

Biological Inspiration:
Hodgkin & Huxley

Hodgkin & Huxley won the Nobel prize
for their model of cell membranes,
which provided lots more detail about
how the McCulloch-Pitts model works
in nature. Their nonlinear model has
two step functions:
• 𝐼 < threshold1: V= −75𝑚𝑉
• threshold1 < 𝐼 < threshold2: V has a

spike, then returns to rest.
• threshold 2 < 𝐼: V spikes periodically

Hodgkin & Huxley Circuit Model of a
Neuron Membrane

By Krishnavedala - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=21725464

Membrane voltage versus time. As current
passes 0mA, spike appears. As current

passes 10mA, spike train appears.
By Alexander J. White - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=30310965

Biological Inspiration: Neuronal Circuits

• Even the simplest actions
involve more than one neuron,
acting in sequence in a neuronal
circuit.
• One of the simplest neuronal

circuits is a reflex arc, which may
contain just two neurons:
• The sensor neuron detects a

stimulus, and communicates an
electrical signal to …
• The motor neuron, which

activates the muscle.
Illustration of a reflex arc: sensor neuron sends a voltage spike to the
spinal column, where the resulting current causes a spike in a motor

neuron, whose spike activates the muscle.
By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552

Biological Inspiration: Neuronal Circuits
• A circuit composed of many

neurons can compute the
autocorrelation function of an
input sound, and from the
autocorrelation, can estimate
the pitch frequency.
• The circuit depends on

output neurons, C, that each
compute a step function in
response to the sum of two
different input neurons, A
and B.

J.C.R. Licklider, “A Duplex Theory of Pitch Perception,” Experientia
VII(4):128-134, 1951

Perceptron • Rosenblatt was granted a
patent for the “perceptron,”
an electrical circuit model of
a neuron.
• The perceptron is basically a

network of McCulloch-Pitts
neurons.
• Rosenblatt’s key innovation

was the perceptron learning
algorithm.

A McCulloch-Pitts Neuron can compute some logical functions…
When the features are binary (𝑥! ∈
{0,1}), many (but not all!) binary
functions can be re-written as linear
functions. For example, the function

𝑌∗ = (𝑥# ∨ 𝑥$)
can be re-written as

𝑌∗ = 1 if: 𝑥# + 𝑥$ − 0.5 > 0

𝑥!

𝑥"

Similarly, the function
𝑌∗ = (𝑥# ∧ 𝑥$)

can be re-written as
𝑌∗ = 1 if: 𝑥# + 𝑥$ − 1.5 > 0

𝑥!

𝑥"

… but not all.
• Not all logical functions can be written as

linear classifiers!
• Minsky and Papert wrote a book called
Perceptrons in 1969. Although the book
said many other things, the only thing
most people remembered about the book
was that:
“A linear classifier cannot learn an

XOR function.”
• Because of that statement, most people

gave up working on neural networks from
about 1969 to about 2006.
• Minsky and Papert also proved that a

two-layer neural net can compute an XOR
function. But most people didn’t notice.

𝑥!

𝑥"

Outline

• Why use more than one layer?
• Biological inspiration
• Representational power: the XOR function

• Two-layer neural networks
• The Fundamental Theorem of Calculus
• Feature learning for linear classifiers

• Deep networks
• Biological inspiration: features computed from features
• Flexibility: convolutional, recurrent, and gated architectures

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus
(proved by Isaac Newton) says that

𝑓 𝑥 = lim
%→'

𝐴 𝑥 + Δ − 𝐴(𝑥)
Δ

Illustration of the Fundamental Theorem of Calculus: any
smooth function is the derivative of its own integral. The

integral can be approximated as the sum of rectangles, with
error going to zero as the width goes to zero.

By Kabel - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=11034713

The Fundamental Theorem of Calculus

Imagine the following neural network.
Each neuron computes

ℎ(𝑥 = 𝑢(𝑥 − 𝑘Δ)

Where u(x) is the unit step function.
Define

𝑤(= 𝐴 𝑘Δ − 𝐴((𝑘 − 1)Δ)
Then, for any smooth function A(x),

𝐴 𝑥 = lim
%→'

D
()*+

+

𝑤(ℎ(𝑥
x 1

+
A(x)

𝑤# 𝑤$ 𝑤, 𝑤- 𝑤. 𝑤/…

By Kabel - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/i

ndex.php?curid=11034713

The Fundamental Theorem of Calculus

Imagine the following neural network.
Each neuron computes

ℎ(𝑥 = 𝑢(𝑥 − 𝑘Δ)

Where u(x) is the unit step function.
Define

𝑤(= 𝑓 𝑘Δ − 𝑓((𝑘 − 1)Δ)
Then, for any smooth function f(x),

𝑓 𝑥 = lim
%→'

D
()*+

+

𝑤(ℎ(𝑥
x 1

+
f(x)

𝑤# 𝑤$ 𝑤, 𝑤- 𝑤. 𝑤/…

By Kabel - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/i

ndex.php?curid=11034713

The Neural Network Representer Theorem
(Barron, 1993, “Universal Approximation Bounds for Superpositions of a Sigmoidal Function”)

For any vector function 𝑓(𝑥⃗) that is
sufficiently smooth, and whose limit as
𝑥⃗ → ∞ decays sufficiently, there is a two-
layer neural network with N sigmoidal
hidden nodes ℎ(𝑥⃗ and second-layer
weights 𝑤(such that

𝑓 𝑥⃗ = lim
/→+

D
()#

/

𝑤(ℎ(𝑥⃗

𝑥⃗ 1

+
𝑓 𝑥⃗

𝑤# 𝑤$ 𝑤, 𝑤- 𝑤. 𝑤/…

By Kabel - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/i

ndex.php?curid=11034713

Outline

• Why use more than one layer?
• Biological inspiration
• Representational power: the XOR function

• Two-layer neural networks
• The Fundamental Theorem of Calculus
• Feature learning for linear classifiers

• Deep networks
• Biological inspiration: features computed from features
• Flexibility: convolutional, recurrent, and gated architectures

Classifiers example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #3:
𝑥! = tameness (# times the animal comes when called, out of 40).
𝑥" = weight of the animal, in pounds.
If 0.5𝑥! + 0. 5𝑥" > 20, call it a dog.
Otherwise, call it a cat.

This is called a “linear classifier” because 0.5𝑥! + 0. 5𝑥" = 20 is
the equation for a line.

The feature selection
problem

• The biggest problem people had with linear
classifiers, until back-propagation came
along, was: Which features should I observe?
• (TAMENESS? Really? What is that, and how do

you measure it?)

• Example: linear discriminant analysis was
invented by Ronald Fisher (1936) using 4
measurements of irises:
• Sepal width & length
• Petal width & length

• How did he come up with those
measurements? Why are they good
measurements?

By Nicoguaro - Own
work, CC BY 4.0,

https://commons.wiki
media.org/w/index.p

hp?curid=46257808

Extracted from
Mature_flower_diagr
am.svg
By Mariana Ruiz
LadyofHats - Own
work, Public Domain,
https://commons.wiki
media.org/w/index.p
hp?curid=2273307

Feature Learning: A way to think about neural nets
The solution to the “feature selection” problem
turns out to be, in many cases, totally easy: if
you don’t know the features, then learn them!

Define a two-layer neural network. The first-
layer weights are 𝑤#$

(!). The first layer computes

ℎ# 𝑥⃗ = 𝜎 -
$'!

()!

𝑤#$
(!)𝑥$

The second-layer weights are 𝑤#
("). It computes

𝑓 𝑥⃗ = -
#'!

*

𝑤#
(")ℎ# 𝑥⃗

𝑥!

+
𝑓 𝑥⃗

𝑤#
($) 𝑤$

($) 𝑤,
($) 𝑤/

($)…

𝑥" … 𝑥# 1

𝑤##
(#)

𝑤#$
(#)

𝑤#,34#
(#)

𝑤/,34#
(#)

𝑤/,3
(#)

𝑤/,#
(#)

Feature Learning: A way to think about neural nets

For example, consider the XOR problem.

Suppose we create two hidden nodes:

ℎ# 𝑥⃗ = 𝑢 0.5 − 𝑥# − 𝑥$
ℎ$ 𝑥⃗ = 𝑢 𝑥# + 𝑥$ − 1.5

Then the XOR function 𝑌∗ = (𝑥#⊕𝑥$)

is given by

𝑌∗ = ℎ# 𝑥⃗ + ℎ$ 𝑥⃗ − 1

𝑥!

𝑥"

ℎ! 𝑥⃗

ℎ" 𝑥⃗

ℎ! 𝑥⃗ = 1 up
in this region

ℎ" 𝑥⃗ = 1 down
in this region

Here in the middle,
both ℎ" 𝑥⃗ and ℎ! 𝑥⃗
are zero.

Feature Learning: A way to think about neural nets

In general, this is one of the most useful

ways to think about neural nets:

• The first layer learns a set of features.

• The second layer learns a linear

classifier, using those features as its

input.

𝑥!

𝑥"

ℎ! 𝑥⃗

ℎ" 𝑥⃗

Outline

• Why use more than one layer?
• Biological inspiration
• Representational power: the XOR function

• Two-layer neural networks
• The Fundamental Theorem of Calculus
• Feature learning for linear classifiers

• Deep networks
• Biological inspiration: features computed from features
• Flexibility: convolutional, recurrent, and gated architectures

Biological Inspiration: Simple, Complex, and
Hypercomplex Cells in the Visual Cortex

D. Hubel and T. Wiesel (1959, 1962,
Nobel Prize 1981) found that the
human visual cortex consists of a
hierarchy of simple, complex, and
hypercomplex cells.
• Simple cells (in visual area 1, called

V1) fire when you see a simple
pattern of colors in a particular
orientation (figure (b), at right)

By Chavez01 at English Wikipedia -
Transferred from en.wikipedia to
Commons by ×�×ª× ×�×� using

CommonsHelper., Public Domain,
https://commons.wikimedia.org/w/in

dex.php?curid=4431766

Gabor filter-type receptive field typical for a simple
cell. Blue regions indicate inhibition, red facilitation.

By English Wikipedia user Joe pharos, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=7437457

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

https://en.wikipedia.org/wiki/Gabor_filter

D. Hubel and T. Wiesel (1959, 1962,
Nobel Prize 1981) found that the
human visual cortex consists of a
hierarchy of simple, complex, and
hypercomplex cells.
• Complex cells are sensitive to moving

stimuli of a particular orientation
traveling in a particular direction
(figure (d) at right).
• Complex cells can be modeled as

linear combinations of simple cells!

View of the brain from behind. Brodman
area 17=Red; 18=orange; 19=yellow. By
Washington irving at English Wikipedia,

CC BY-SA 3.0,
https://commons.wikimedia.org/w/inde

x.php?curid=1643737

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Biological Inspiration: Simple, Complex, and
Hypercomplex Cells in the Visual Cortex

Biological Inspiration: Simple, Complex, and
Hypercomplex Cells in the Visual Cortex

D. Hubel and T. Wiesel (1959, 1962,
Nobel Prize 1981) found that the
human visual cortex consists of a
hierarchy of simple, complex, and
hypercomplex cells.
• Hypercomplex cells are sensitive to

moving stimuli of a particular
orientation traveling in a particular
direction, and they also stop firing if
the stimulus gets too long.
• Hypercomplex cells can be modeled

as linear combinations of complex
cells!

View of the brain from behind. Brodman
area 17=Red; 18=orange; 19=yellow. By
Washington irving at English Wikipedia,

CC BY-SA 3.0,
https://commons.wikimedia.org/w/inde

x.php?curid=1643737

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Biological Inspiration: Simple, Complex, and
Hypercomplex Cells in the Visual Cortex

Hubel & Wiesel’s simple, complex, and
hypercomplex cells have been
modeled as a hierarchy, in which each
type of cell computes a linear
combination of the type below it,
followed by a nonlinear activation
function.

Simple
Cells

Complex
Cells

Hypercomplex
Cells

Outline

• Why use more than one layer?
• Biological inspiration
• Representational power: the XOR function

• Two-layer neural networks
• The Fundamental Theorem of Calculus
• Feature learning for linear classifiers

• Deep networks
• Biological inspiration: features computed from features
• Flexibility: convolutional, recurrent, and gated architectures

Flexibility: many types of deep networks

The other reason to use deep neural networks is that, with a deep
enough network, many types of learning algorithms are possible, far
beyond simple classifiers.
• Convolutional neural networks: output depends on the shape of the

input, regardless of where it occurs in the image.
• Recurrent neural network: output depends on past values of the

output.
• Gated neural network: one set of cells is capable of turning another

set of cells on or off.

Convolutional Neural Network
In a convolutional neural network, the multiplicative first layer is
replaced by a convolutional first layer:

ℎ(𝑥⃗ = 𝜎 D
5)*3

3

𝑤5𝑥(*5

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374

Recurrent Neural Network
In a recurrent neural network, the hidden nodes at time t depend on
the hidden nodes at time t-1:

ℎ(6 = 𝜎 D
5)#

3

𝑢(5𝑥56 +D
!)#

/

𝑣(!ℎ!,6*#

By fdeloche - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=60109157

Gated Neural Network
In a gated neural network (like the
“long-short-term memory” network
shown here), the output of some
hidden nodes are called ”gates:”

𝑔 = 𝜎 𝑢#𝑥 + 𝑏# ∈ [0,1]

The gates are then multiplied by the
outputs of other hidden nodes,
effectively turning them on or off:

𝑐 = 𝑢$𝑥 + 𝑏$
𝑓(𝑥) = 𝑔×𝑐

+
𝑥 1

×

𝑓(𝑥)

What are these architectures for?

• Convolutional neural networks: output depends on the shape of the
input, regardless of where it occurs in the image.
• Recurrent neural network: output depends on past values of the

output.
• Gated neural network: one set of cells is capable of turning another

set of cells on or off.

Conclusions
• Why use more than one layer?

• Biological inspiration: the simplest neuronal network in the human body, the reflex
arc, still uses at least two neurons

• Representational power: the XOR function can’t be computed with a one-layer
network (a perceptron), but it can be computed with two layers

• Two-layer neural networks
• The Fundamental Theorem of Calculus means that a two-layer network can

approximate any function f(x) arbitrarily well, as the number of hidden nodes goes to
infinity

• A useful way to think about neural nets: the last layer is a linear classifier; all of the
other layers compute features for the last layer to use

• Deep networks
• Biological inspiration: human vision (and hearing) compute complex and

hypercomplex features from simpler features
• Flexibility: convolutional=independent of where it occurs in space, recurrent=has

internal memory, gated=one hidden node can turn another node on or off

