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Biological Inspiration: McCulloch-Pitts 
Artificial Neuron, 1943
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• In 1943, McCulloch & Pitts 
proposed that biological neurons 
have a nonlinear activation 
function (a step function) whose 
input is a weighted linear 
combination of the currents 
generated by other neurons.
• They showed lots of examples of 

mathematical and logical 
functions that could be computed 
using networks of simple neurons 
like this.



Biological Inspiration: 
Hodgkin & Huxley

Hodgkin & Huxley won the Nobel prize 
for their model of cell membranes, 
which provided lots more detail about 
how the McCulloch-Pitts model works 
in nature.  Their nonlinear model has 
two step functions:
• 𝐼 < threshold1: V= −75𝑚𝑉
• threshold1 < 𝐼 < threshold2: V has a 

spike, then returns to rest. 
• threshold 2 < 𝐼: V spikes periodically

Hodgkin & Huxley Circuit Model of a 
Neuron Membrane

By Krishnavedala - Own work, CC0, 
https://commons.wikimedia.org/w/index.php?curid=21725464

Membrane voltage versus time.  As current 
passes 0mA, spike appears.  As current 

passes 10mA, spike train appears.
By Alexander J. White - Own work, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=30310965



Biological Inspiration: Neuronal Circuits

• Even the simplest actions 
involve more than one neuron, 
acting in sequence in a neuronal 
circuit. 
• One of the simplest neuronal 

circuits is a reflex arc, which may 
contain just two neurons:
• The sensor neuron detects a 

stimulus, and communicates an 
electrical signal to …
• The motor neuron, which 

activates the muscle.
Illustration of a reflex arc: sensor neuron sends a voltage spike to the 
spinal column, where the resulting current causes a spike in a motor 

neuron, whose spike activates the muscle.
By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552



Biological Inspiration: Neuronal Circuits
• A circuit composed of many 

neurons can compute the 
autocorrelation function of an 
input sound, and from the 
autocorrelation, can estimate 
the pitch frequency.
• The circuit depends on 

output neurons, C, that each 
compute a step function in 
response to the sum of two 
different input neurons, A 
and B.

J.C.R. Licklider, “A Duplex Theory of Pitch Perception,” Experientia
VII(4):128-134, 1951



Perceptron • Rosenblatt was granted a 
patent for the “perceptron,” 
an electrical circuit model of 
a neuron.
• The perceptron is basically a 

network of McCulloch-Pitts 
neurons.
• Rosenblatt’s key innovation 

was the perceptron learning 
algorithm.



A McCulloch-Pitts Neuron can compute some logical functions…
When the features are binary (𝑥! ∈
{0,1}), many (but not all!) binary 
functions can be re-written as linear 
functions.  For example, the function

𝑌∗ = (𝑥# ∨ 𝑥$)
can be re-written as 

𝑌∗ = 1 if: 𝑥# + 𝑥$ − 0.5 > 0

𝑥!

𝑥"

Similarly, the function
𝑌∗ = (𝑥# ∧ 𝑥$)

can be re-written as 
𝑌∗ = 1 if: 𝑥# + 𝑥$ − 1.5 > 0

𝑥!

𝑥"



… but not all.
• Not all logical functions can be written as 

linear classifiers! 
• Minsky and Papert wrote a book called 
Perceptrons in 1969.  Although the book 
said many other things, the only thing 
most people remembered about the book 
was that:
“A linear classifier cannot learn an 

XOR function.”
• Because of that statement, most people 

gave up working on neural networks from 
about 1969 to about 2006.
• Minsky and Papert also proved that a 

two-layer neural net can compute an XOR 
function.  But most people didn’t notice.

𝑥!

𝑥"
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The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus 
(proved by Isaac Newton) says that

𝑓 𝑥 = lim
%→'

𝐴 𝑥 + Δ − 𝐴(𝑥)
Δ

Illustration of the Fundamental Theorem of Calculus: any 
smooth function is the derivative of its own integral.  The 

integral can be approximated as the sum of rectangles, with 
error going to zero as the width goes to zero.

By Kabel - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=11034713



The Fundamental Theorem of Calculus

Imagine the following neural network.  
Each neuron computes 

ℎ( 𝑥 = 𝑢(𝑥 − 𝑘Δ)

Where u(x) is the unit step function.  
Define

𝑤( = 𝐴 𝑘Δ − 𝐴((𝑘 − 1)Δ)
Then, for any smooth function A(x),

𝐴 𝑥 = lim
%→'

D
()*+

+

𝑤(ℎ( 𝑥
x 1

+
A(x)

𝑤# 𝑤$ 𝑤, 𝑤- 𝑤. 𝑤/…

By Kabel - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/i

ndex.php?curid=11034713



The Fundamental Theorem of Calculus

Imagine the following neural network.  
Each neuron computes 

ℎ( 𝑥 = 𝑢(𝑥 − 𝑘Δ)

Where u(x) is the unit step function.  
Define

𝑤( = 𝑓 𝑘Δ − 𝑓((𝑘 − 1)Δ)
Then, for any smooth function f(x),

𝑓 𝑥 = lim
%→'

D
()*+

+

𝑤(ℎ( 𝑥
x 1

+
f(x)

𝑤# 𝑤$ 𝑤, 𝑤- 𝑤. 𝑤/…

By Kabel - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/i

ndex.php?curid=11034713



The Neural Network Representer Theorem
(Barron, 1993, “Universal Approximation Bounds for Superpositions of a Sigmoidal Function”)

For any vector function 𝑓(𝑥⃗) that is 
sufficiently smooth, and whose limit as 
𝑥⃗ → ∞ decays sufficiently, there is a two-
layer neural network with N sigmoidal 
hidden nodes ℎ( 𝑥⃗ and second-layer 
weights 𝑤( such that

𝑓 𝑥⃗ = lim
/→+

D
()#

/

𝑤(ℎ( 𝑥⃗

𝑥⃗ 1

+
𝑓 𝑥⃗

𝑤# 𝑤$ 𝑤, 𝑤- 𝑤. 𝑤/…

By Kabel - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/i

ndex.php?curid=11034713
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Classifiers example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #3:  
𝑥! = tameness (# times the animal comes when called, out of 40).
𝑥" = weight of the animal, in pounds.
If 0.5𝑥! + 0. 5𝑥" > 20, call it a dog.
Otherwise, call it a cat.

This is called a “linear classifier” because 0.5𝑥! + 0. 5𝑥" = 20 is 
the equation for a line.



The feature selection 
problem

• The biggest problem people had with linear 
classifiers, until back-propagation came 
along, was:  Which features should I observe?
• (TAMENESS?  Really?  What is that, and how do 

you measure it?)

• Example: linear discriminant analysis was 
invented by Ronald Fisher (1936) using 4 
measurements of irises:
• Sepal width & length
• Petal width & length

• How did he come up with those 
measurements?  Why are they good 
measurements?

By Nicoguaro - Own 
work, CC BY 4.0, 

https://commons.wiki
media.org/w/index.p

hp?curid=46257808

Extracted from 
Mature_flower_diagr
am.svg
By Mariana Ruiz 
LadyofHats - Own 
work, Public Domain, 
https://commons.wiki
media.org/w/index.p
hp?curid=2273307



Feature Learning: A way to think about neural nets
The solution to the “feature selection” problem 
turns out to be, in many cases, totally easy: if 
you don’t know the features, then learn them!  

Define a two-layer neural network.  The first-
layer weights are 𝑤#$

(!). The first layer computes

ℎ# 𝑥⃗ = 𝜎 -
$'!

()!

𝑤#$
(!)𝑥$

The second-layer weights are 𝑤#
("). It computes

𝑓 𝑥⃗ = -
#'!

*

𝑤#
(")ℎ# 𝑥⃗

𝑥!

+
𝑓 𝑥⃗

𝑤#
($) 𝑤$

($) 𝑤,
($) 𝑤/

($)…

𝑥" … 𝑥# 1
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𝑤#,34#
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𝑤/,34#
(#)

𝑤/,3
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Feature Learning: A way to think about neural nets

For example, consider the XOR problem.   

Suppose we create two hidden nodes:

ℎ# 𝑥⃗ = 𝑢 0.5 − 𝑥# − 𝑥$
ℎ$ 𝑥⃗ = 𝑢 𝑥# + 𝑥$ − 1.5

Then the XOR function 𝑌∗ = (𝑥#⊕𝑥$)

is given by

𝑌∗ = ℎ# 𝑥⃗ + ℎ$ 𝑥⃗ − 1

𝑥!

𝑥"

ℎ! 𝑥⃗

ℎ" 𝑥⃗

ℎ! 𝑥⃗ = 1 up 
in this region

ℎ" 𝑥⃗ = 1 down 
in this region

Here in the middle, 
both ℎ" 𝑥⃗ and  ℎ! 𝑥⃗
are zero.



Feature Learning: A way to think about neural nets

In general, this is one of the most useful 

ways to think about neural nets:

• The first layer learns a set of features.

• The second layer learns a linear 

classifier, using those features as its 

input.

𝑥!

𝑥"

ℎ! 𝑥⃗

ℎ" 𝑥⃗
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Biological Inspiration: Simple, Complex, and 
Hypercomplex Cells in the Visual Cortex

D. Hubel and T. Wiesel (1959, 1962, 
Nobel Prize 1981) found that the 
human visual cortex consists of a 
hierarchy of simple, complex, and 
hypercomplex cells.
• Simple cells (in visual area 1, called 

V1) fire when you see a simple 
pattern of colors in a particular 
orientation (figure (b), at right)

By Chavez01 at English Wikipedia -
Transferred from en.wikipedia to 
Commons by ×�×ª× ×�×� using 

CommonsHelper., Public Domain, 
https://commons.wikimedia.org/w/in

dex.php?curid=4431766

Gabor filter-type receptive field typical for a simple 
cell. Blue regions indicate inhibition, red facilitation. 

By English Wikipedia user Joe pharos, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=7437457

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with 
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. 

https://en.wikipedia.org/wiki/Gabor_filter


D. Hubel and T. Wiesel (1959, 1962, 
Nobel Prize 1981) found that the 
human visual cortex consists of a 
hierarchy of simple, complex, and 
hypercomplex cells.
• Complex cells are sensitive to moving 

stimuli of a particular orientation 
traveling in a particular direction 
(figure (d) at right).
• Complex cells can be modeled as 

linear combinations of simple cells!

View of the brain from behind. Brodman
area 17=Red; 18=orange; 19=yellow.  By 
Washington irving at English Wikipedia, 

CC BY-SA 3.0, 
https://commons.wikimedia.org/w/inde

x.php?curid=1643737

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with 
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. 

Biological Inspiration: Simple, Complex, and 
Hypercomplex Cells in the Visual Cortex



Biological Inspiration: Simple, Complex, and 
Hypercomplex Cells in the Visual Cortex

D. Hubel and T. Wiesel (1959, 1962, 
Nobel Prize 1981) found that the 
human visual cortex consists of a 
hierarchy of simple, complex, and 
hypercomplex cells.
• Hypercomplex cells are sensitive to 

moving stimuli of a particular 
orientation traveling in a particular 
direction, and they also stop firing if 
the stimulus gets too long.
• Hypercomplex cells can be modeled 

as linear combinations of complex 
cells!

View of the brain from behind. Brodman
area 17=Red; 18=orange; 19=yellow.  By 
Washington irving at English Wikipedia, 

CC BY-SA 3.0, 
https://commons.wikimedia.org/w/inde

x.php?curid=1643737

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with 
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. 



Biological Inspiration: Simple, Complex, and 
Hypercomplex Cells in the Visual Cortex

Hubel & Wiesel’s simple, complex, and 
hypercomplex cells have been 
modeled as a hierarchy, in which each 
type of cell computes a linear 
combination of the type below it, 
followed by a nonlinear activation 
function.

Simple 
Cells

Complex 
Cells

Hypercomplex 
Cells
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Flexibility: many types of deep networks

The other reason to use deep neural networks is that, with a deep 
enough network, many types of learning algorithms are possible, far 
beyond simple classifiers.
• Convolutional neural networks: output depends on the shape of the 

input, regardless of where it occurs in the image.
• Recurrent neural network: output depends on past values of the 

output.
• Gated neural network: one set of cells is capable of turning another 

set of cells on or off.



Convolutional Neural Network
In a convolutional neural network, the multiplicative first layer is 
replaced by a convolutional first layer:

ℎ( 𝑥⃗ = 𝜎 D
5)*3

3

𝑤5𝑥(*5

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374



Recurrent Neural Network
In a recurrent neural network, the hidden nodes at time t depend on 
the hidden nodes at time t-1:

ℎ(6 = 𝜎 D
5)#

3

𝑢(5𝑥56 +D
!)#

/

𝑣(!ℎ!,6*#

By fdeloche - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=60109157



Gated Neural Network
In a gated neural network (like the 
“long-short-term memory” network 
shown here), the output of some 
hidden nodes are called ”gates:”

𝑔 = 𝜎 𝑢#𝑥 + 𝑏# ∈ [0,1]

The gates are then multiplied by the 
outputs of other hidden nodes, 
effectively turning them on or off:

𝑐 = 𝑢$𝑥 + 𝑏$
𝑓(𝑥) = 𝑔×𝑐

+
𝑥 1

×

𝑓(𝑥)



What are these architectures for?

• Convolutional neural networks: output depends on the shape of the 
input, regardless of where it occurs in the image.
• Recurrent neural network: output depends on past values of the 

output.
• Gated neural network: one set of cells is capable of turning another 

set of cells on or off.



Conclusions
• Why use more than one layer?

• Biological inspiration: the simplest neuronal network in the human body, the reflex 
arc, still uses at least two neurons

• Representational power: the XOR function can’t be computed with a one-layer 
network (a perceptron), but it can be computed with two layers

• Two-layer neural networks
• The Fundamental Theorem of Calculus means that a two-layer network can 

approximate any function f(x) arbitrarily well, as the number of hidden nodes goes to 
infinity

• A useful way to think about neural nets: the last layer is a linear classifier; all of the 
other layers compute features for the last layer to use

• Deep networks
• Biological inspiration: human vision (and hearing) compute complex and 

hypercomplex features from simpler features
• Flexibility: convolutional=independent of where it occurs in space, recurrent=has 

internal memory, gated=one hidden node can turn another node on or off 


