
Multi-Class Linear Classifiers
Mark Hasegawa-Johnson, 4/2/2020. CC-BY 4.0: You are free

to share and adapt these slides if you cite the original.

𝛽!

𝛽"

20 40 60 80

𝑦"∗ = softmax" 𝛽$

𝒚𝟏∗ → 𝟏

𝒚𝟏∗ → 𝟎

Outline

• Multi-Class Perceptron
• Testing
• Training

• Multi-Class Logistic Regression
• Testing: softmax function
• Training: cross-entropy training criterion
• Training: how to differentiate the softmax

• Comparing Multi-Class Perceptron and Logistic Regression

Outline

• Multi-Class Perceptron
• Testing
• Training

• Multi-Class Logistic Regression
• Testing: softmax function
• Training: cross-entropy training criterion
• Training: how to differentiate the softmax

• Comparing Multi-Class Perceptron and Logistic Regression

Review: Two-Class
Perceptron

1

x1

xD

b

w1

w2

x2

wD

Input

Weights

.

.

.

Output: sgn(w×x)

True class is 𝑦 ∈ {−1,1}.

Classifier output is
𝑦 ∗ = sgn 𝑤1𝑥1 + … + 𝑤𝐷𝑥𝐷 + 𝑏

= sgn 𝑤&𝑥⃗
∈ {−1,1}

Where 𝑤 = [𝑤", … , 𝑤' , 𝑏]&

and 𝑥⃗ = [𝑥", … , 𝑥' , 1]&

Review: Two-Class
Perceptron

True class is 𝑦 ∈ {−1,1}.

Classifier output is
𝑦∗ = sgn 𝑤1𝑥1 + … + 𝑤𝐷𝑥𝐷 + 𝑏

= sgn 𝑤&𝑥⃗
∈ {−1,1}

Where 𝑤 = [𝑤", … , 𝑤' , 𝑏]&

and 𝑥⃗ = [𝑥", … , 𝑥' , 1]&

𝑥!

𝑥"
𝑦∗ = 1

𝑦∗ = −1

Multi-Class Perceptron True class is 𝑦 ∈ {0,1,2, … , 𝑉 − 1}
(i.e., 𝑉=vocabulary size = # of distinct classes).

Classifier output is

𝑦∗ = argmax"#$%&' 𝑤"'𝑥' +⋯+𝑤"(𝑥(+ 𝑏"

= argmax"#$%&' 𝑤")𝑥⃗

∈ {0,1, … , 𝑉 − 1}

Where 𝑤" = [𝑤"', … , 𝑤"(, 𝑏"])

and 𝑥⃗ = [𝑥', … , 𝑥(, 1])

𝑥!

𝑦∗ = 0

𝑦∗ = 1 𝑦∗ = 2 𝑦∗ = 3

𝑦∗ = 4
𝑦∗ = 5 𝑦∗ = 6

𝑦∗ = 7

……

…

…

…

…

𝑥"

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

Multi-Class Perceptron

1

x1

xD

x2

Input
Weights

.

.

.

Output:
argmax"#$%&' 𝑤"(𝑥⃗

True class is 𝑦 ∈ {0,1,2, … , 𝑉 − 1}
(i.e., 𝑉=vocabulary size = # of distinct classes).

Classifier output is

𝑦∗ = argmax"#$%&' 𝑤"'𝑥' +⋯+𝑤"(𝑥(+ 𝑏"

= argmax"#$%&' 𝑤")𝑥⃗

∈ {0,1, … , 𝑉 − 1}

Where 𝑤" = [𝑤"', … , 𝑤"(, 𝑏"])

and 𝑥⃗ = [𝑥', … , 𝑥(, 1])

.

.

.

𝑏$𝑏'

𝑤$)

𝑏%&'

𝑤')

𝑤%&',)

argm
ax

.

.

.

Outline

• Multi-Class Perceptron
• Testing
• Training

• Multi-Class Logistic Regression
• Testing: softmax function
• Training: cross-entropy training criterion
• Training: how to differentiate the softmax

• Comparing Multi-Class Perceptron and Logistic Regression

For each training instance 𝒙 w/ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: 𝑦∗ = sgn(𝑤$𝑥)
• Update weights:
• if 𝑦 = 𝑦∗ then do nothing
• If 𝑦 ≠ 𝑦∗ then 𝑤 = 𝑤 + ηy𝑥⃗

Review: Training a Two-Class Perceptron

For each training instance 𝒙 w/ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: 𝑦∗ = sgn(𝑤$𝑥)
• Update weights:
• if 𝑦 = 𝑦∗ then do nothing
• If 𝑦 ≠ 𝑦∗ then:
• If 𝑦 = +1 then set 𝑤 = 𝑤 + η𝑥⃗
• If 𝑦 = −1 then set 𝑤 = 𝑤 − η𝑥⃗

Review: Training a Two-Class Perceptron

For each training instance 𝒙 w/ground truth label 𝑦 ∈ {0,1, … , 𝑉 − 1}:
• Classify with current weights: 𝑦∗ = argmax"#$%&' 𝑤"(𝑥⃗
• Update weights:
• if 𝑦 = 𝑦∗ then do nothing
• If 𝑦 ≠ 𝑦∗ then:
• Update the correct-class vector as 𝑤% = 𝑤(+ η𝑥
• Update the wrong-class vector as 𝑤(∗ = 𝑤%∗ − η𝑥
• Don’t change the vectors of any other class

Training a Multi-Class Perceptron

Outline

• Multi-Class Perceptron
• Testing
• Training

• Multi-Class Logistic Regression
• Testing: softmax function
• Training: cross-entropy training criterion
• Training: how to differentiate the softmax

• Comparing Multi-Class Perceptron and Logistic Regression

Multi-Class Logistic
Regression

1

x1

xD

x2

Input
Weights

.

.

.

Output:
softmax"#$%&' 𝑤"(𝑥⃗

True class is 𝑦 ∈ {0,1,2, … , 𝑉 − 1}
(i.e., 𝑉=vocabulary size = # of distinct classes).

Classifier output is
𝑦⃗∗ = softmax"#$%&' 𝑤")𝑥⃗

= 𝑦$∗, … , 𝑦%&'∗

The “argmax” of perceptron is replaced by a
“softmax.”

The “softmax” is a V-dimensional vector, each
of whose elements is between 0 and 1.

If the classifier is working well, then the 𝑦AB
element of this vector should be close to 1,
and all other elements should be close to 0.

.

.

.

𝑏$𝑏'

𝑤$)

𝑏%&'

𝑤')

𝑤%&',)

softm
ax

.

.

.

Multi-Class Logistic
Regression

1

x1

xD

x2

Input
Weights

.

.

.

Output:
softmax"#$%&' 𝑤"(𝑥⃗

True class is 𝑦 ∈ {0,1,2, … , 𝑉 − 1}
(i.e., 𝑉=vocabulary size = # of distinct classes).

Classifier output is
𝑦⃗∗ = softmax"#$%&' 𝑊𝑥⃗
= 𝑦$∗, … , 𝑦%&'∗

The “softmax” function is defined as follows:

softmax" 𝑊𝑥⃗ =
exp 𝑤")𝑥⃗

∑C#$%&' exp 𝑤C)𝑥⃗

where 𝑊 is the weight matrix whose 𝑐, 𝑑 AB

element is 𝑤"D.
The vector 𝑤" = [𝑤"', … , 𝑤"(, 𝑏"])

.

.

.

𝑏$𝑏'

𝑤$)

𝑏%&'

𝑤')

𝑤%&',)

softm
ax

.

.

.

One-Hot Vectors

1

x1

xD

x2

Input
Weights

.

.

.

Output:
softmax"#$%&' 𝑤"(𝑥⃗

Let’s redefine the “ground truth” label, so it’s
easier to train the softmax function.
The softmax output is

𝑦⃗∗ = 𝑦$∗, … , 𝑦%&'∗

where 0 < 𝑦"∗ < 1 and ∑C#$%&'𝑦C∗ = 1.

Let’s redefine the “ground truth” label so it
has the same format. Let’s define

𝑦⃗ = 𝑦$, … , 𝑦%&'
where
• 𝑦C = 1 if 𝑗 is the correct class

• 𝑦C = 0 otherwise

This is called a ONE-HOT VECTOR.

.

.

.

𝑏$𝑏'

𝑤$)

𝑏%&'

𝑤')

𝑤%&',)

softm
ax

.

.

.

Classifier
output:
softmax
vector

Ground
truth:

one-hot
vector

One-Hot Vector
• Example: if the example is from class 1, then 𝑦⃗ = [0,1,0]

𝑦$ = A1 example is from class j
0 example is NOT from class j

Call 𝑦$ the reference label, and call 𝑦$∗ the hypothesis. Then notice that:
• 𝑦$ = True value of 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑗 𝑥⃗), because the true probability is

always either 1 or 0!
• 𝑦$∗ = Estimated value of 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑗 𝑥⃗), 0 < 𝑦$∗ < 1, ∑$)"* 𝑦$∗ = 1

Comparing the argmax and the softmax

The multi-class perceptron calculates
𝑦∗ = argmax*)!+," 𝑤*&𝑥⃗

The multi-class logistic regression calculates

𝑦*∗ = softmax* 𝑊𝑥⃗ =
exp 𝑤*&𝑥⃗

∑$)!
+," exp 𝑤$&𝑥⃗

How do these two things compare?
Inputs

Perceptrons w/
weights wc

Max

Comparing the argmax and softmax

Here’s the second term in a two-
class argmax function:

𝑦"∗ = O1 if 𝛽" = argmax$)!" 𝛽$
0 otherwise

Where I’m using the abbreviation
𝛽$ = 𝑤$&𝑥⃗

𝛽!

𝛽"

𝑦"∗ = argmax" 𝛽$
20 40 60 80

20

40

60

80

𝒚𝟏∗ = 𝟎

𝒚𝟏∗ = 𝟏

20 40 60 80

Comparing the argmax and softmax

Here’s the second term in a two-
class softmax function:

𝑦"∗ =
exp 𝛽"

∑$)!" exp 𝛽$

𝛽!

𝛽"

20 40 60 80

𝑦"∗ = softmax" 𝛽$

𝒚𝟏∗ → 𝟏

𝒚𝟏∗ → 𝟎

Outline

• Multi-Class Perceptron
• Testing
• Training

• Multi-Class Logistic Regression
• Testing: softmax function
• Training: cross-entropy training criterion
• Training: how to differentiate the softmax

• Comparing Multi-Class Perceptron and Logistic Regression

Training a Softmax Neural Network
We want to train the neural network
to represent a training database as
well as possible. If we can define
the training error to be some
function L, then we want to update
the weights according to

𝑤*- = 𝑤*- − 𝜂
𝑑𝐿
𝑑𝑤*-

So what is L?

Training: Maximize the probability of the training data
Remember, the whole point of that denominator in
the softmax function is that it allows us to use
softmax as

𝑦$∗ = EsPmated value of 𝑃 class = 𝑗 𝑥⃗)

Suppose we decide to estimate the network
weights 𝑤*- in order to maximize the probability of
the training database, in the sense of

𝑤*-
= argmax

.
𝑃 training labels training feature vectors)

Training: Maximize the probability of the training data
Remember, the whole point of that denominator in
the softmax function is that it allows us to use
softmax as

𝑦$∗ = EsPmated value of 𝑃 class = 𝑗 𝑥⃗)

If we assume the training tokens are independent,
this is:

𝑤*-

= argmax
.

[
/)"

0

𝑃 reference label of the 𝑖12token 𝑖12feature vector)

Training: Maximize the probability of the training data
Remember, the whole point of that denominator in
the softmax function is that it allows us to use
softmax as

𝑦$∗ = EsPmated value of 𝑃 class = 𝑗 𝑥⃗)

OK. We need to create some notation to mean
“the reference label for the 𝑖12 token.” Let’s call it
𝑗(𝑖).

𝑤*- = argmax
.

[
/)"

0

𝑃 class = 𝑗(𝑖) 𝑥⃗)

Training: Maximize the probability of the training data
Wow, Cool!! So we can maximize the probability of
the training data by just picking the softmax output
corresponding to the correct class 𝑗(𝑖), for each
token, and then multiplying them all together:

𝑤*- = argmax
.

[
/)"

0

𝑦$(/)∗

So, hey, let’s take the logarithm, to get rid of that
nasty product operation.

𝑤*- = argmax
.

_
/)"

0

ln 𝑦$(/)∗

Training: Minimizing the negative log probability
Softmax neural networks are almost always trained in order
to minimize the negative log probability of the training data:

𝑤"D = argmin
E

𝐿

𝐿 =I
F#'

G

− ln 𝑦C(F)∗

This loss function is called the cross-entropy loss. Cross-
entropy is a measure of dissimilarity between two
probability distributions. In this case, we’re minimizing the
dissimilarity between the true and estimated classes:

𝑦C = True 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑗 𝑥⃗) = P1 𝑗 = 𝑗(𝑖)
0 otherwise

𝑦C∗ = Estimated 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑗 𝑥⃗) =
JKL M!

"N⃗

∑#$%
&'(JKL M#

"N⃗

Outline

• Multi-Class Perceptron
• Testing
• Training

• Multi-Class Logistic Regression
• Testing: softmax function
• Training: cross-entropy training criterion
• Training: how to differentiate the softmax

• Comparing Multi-Class Perceptron and Logistic Regression

Training a Softmax Neural Network
We want to train the neural network
to represent a training database as
well as possible. If we can define
the training error to be some
function L, then we want to update
the weights according to

𝑤*- = 𝑤*- − 𝜂
𝑑𝐿
𝑑𝑤*-

So what is -5
-6"#

?

Differentiating the cross-entropy
The cross-entropy loss function is:

𝐿 =_
/)"

0

− ln 𝑦$(/)∗

Let’s try to differentiate it:
𝑑𝐿
𝑑𝑤*-

=_
/)"

0

−
1
𝑦$(/)∗

𝑑𝑦$(/)∗

𝑑𝑤*-

So what is
-($(&)

∗

-6"#
?

Differentiating the cross-entropy
The cross-entropy loss function is:

𝑦C(F)∗ = softmaxC 𝛽P =
exp(𝛽C(F))

∑P#$%&' exp(𝛽P)
Let’s try to differentiate it:

𝑑𝑦C(F)
∗

𝑑𝑤"D
=

1
∑P#$%&' exp(𝛽P)

𝑑exp(𝛽C(F))
𝑑𝑤"D

−
exp(𝛽C(F))

∑P#$%&' exp(𝛽P) Q
𝑑 ∑R#$%&' exp(𝛽R)

𝑑𝑤"D

=
exp(𝛽C(F))

∑C#$%&' exp(𝛽P)
𝑑𝛽C(F)
𝑑𝑤"D

−I
R#$

%&'
exp 𝛽C(F) exp 𝛽R
∑P#$%&' exp(𝛽P) Q

𝑑𝛽R
𝑑𝑤"D

= 𝑦C(F)
∗ 𝑑𝛽C(F)

𝑑𝑤"D
−I

R#$

%&'

𝑦C F
∗ 𝑦R∗

𝑑𝛽R
𝑑𝑤"D

= (𝑦C F
∗ 𝑦" − 𝑦C F

∗ 𝑦"∗)𝑥D

Where the last line uses 𝛽C = 𝑤C)𝑥⃗, and therefore
DS!
DM)*

= P𝑥D if 𝑗 = 𝑐
0 otherwise

Putting it all together…
𝑤"D = 𝑤"D − 𝜂

𝑑𝐿
𝑑𝑤"D

= 𝑤"D + 𝜂I
F#'

G
1
𝑦C(F)∗

𝑑𝑦C(F)∗

𝑑𝑤"D

= 𝑤"D + 𝜂I
F#'

G

(𝑦" − 𝑦"∗)𝑥D

where

𝑦" = True 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑐 𝑥⃗) = P1 𝑐 = 𝑗(𝑖)
0 otherwise

𝑦"∗ = Estimated 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑐 𝑥⃗) = JKL M)"N⃗
∑#$%
&'(JKL M#

"N⃗

Training Multi-Class Logistic Regression

Putting it all together, we wind up with a surprisingly simple result:

𝑤* = 𝑤* + 𝜂_
/)"

0

𝑦* − 𝑦*∗ 𝑥⃗

where 𝑦* = 1 if and only if the i’th token is of class c. In other words,
• If 𝑐 is the correct class, but 𝑦*∗ ≈ 0, then 𝑤* = 𝑤" + η𝑥⃗
• If 𝑦*∗ ≈ 1, but 𝑐 is the wrong class, then 𝑤* = 𝑤" − η𝑥⃗

Outline

• Multi-Class Perceptron
• Testing
• Training

• Multi-Class Logistic Regression
• Testing: softmax function
• Training: cross-entropy training criterion
• Training: how to differentiate the softmax

• Comparing Multi-Class Perceptron and Logistic Regression

For each training instance 𝒙 w/ground truth label 𝑦 ∈ {0,1, … , 𝑉 − 1}:
• Classify with current weights: 𝑦∗ = argmax"#$%&' 𝑤"(𝑥⃗
• Update weights:
• if 𝑦 = 𝑦∗ then do nothing
• If 𝑦 ≠ 𝑦∗ then:
• Update the correct-class vector as 𝑤% = 𝑤(+ η𝑥
• Update the wrong-class vector as 𝑤(∗ = 𝑤%∗ − η𝑥

Training a Multi-Class Perceptron

Training Multi-Class Logistic Regression

Putting it all together, we wind up with a surprisingly simple result:

𝑤* = 𝑤* + 𝜂_
/)"

0

𝑦* − 𝑦*∗ 𝑥⃗

where 𝑦* = 1 if and only if the i’th token is of class c. In other words,
• If 𝑐 is the correct class, but 𝑦*∗ ≈ 0, then 𝑤* = 𝑤" + η𝑥⃗
• If 𝑦*∗ ≈ 1, but 𝑐 is the wrong class, then 𝑤* = 𝑤" − η𝑥⃗

Conclusion: Comparing Multi-Class Perceptron and Logistic
Regression

Perceptron: If classifier output is incorrect, then:
• Update the correct-class, y, as 𝑤(= 𝑤(+ η𝑥⃗
• Update the wrong-class, 𝑦∗, as 𝑤(∗ = 𝑤(∗ − η𝑥⃗

Logistic Regression: for every class 𝑐,
𝑤) = 𝑤) + η 𝑦) − 𝑦)∗ 𝑥⃗

≈ /𝑤) + η𝑥⃗ if 𝑐 is the correct class 𝑦) = 1 and 𝑦)∗ ≈ 0
𝑤) − η𝑥⃗ if 𝑐 is the wrong class 𝑦) = 0 and 𝑦)∗ ≈ 1

Conclusion: they’re almost exactly the same thing! The main difference is that, for logistic
regression, 0 < 𝑦)∗ < 1: it’s never exactly equal to either 0 or 1.

