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Review: Two-Class 
Perceptron
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True class is 𝑦 ∈ {−1,1}.

Classifier output is 
𝑦 ∗ = sgn 𝑤1𝑥1 + … + 𝑤𝐷𝑥𝐷 + 𝑏

= sgn 𝑤&𝑥⃗
∈ {−1,1}

Where 𝑤 = [𝑤", … , 𝑤' , 𝑏]&

and 𝑥⃗ = [𝑥", … , 𝑥' , 1]&



Review: Two-Class 
Perceptron

True class is 𝑦 ∈ {−1,1}.

Classifier output is 
𝑦∗ = sgn 𝑤1𝑥1 + … + 𝑤𝐷𝑥𝐷 + 𝑏

= sgn 𝑤&𝑥⃗
∈ {−1,1}

Where 𝑤 = [𝑤", … , 𝑤' , 𝑏]&

and 𝑥⃗ = [𝑥", … , 𝑥' , 1]&
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Multi-Class Perceptron True class is 𝑦 ∈ {0,1,2, … , 𝑉 − 1}
(i.e., 𝑉=vocabulary size = # of distinct classes).

Classifier output is 

𝑦∗ = argmax"#$%&' 𝑤"'𝑥' +⋯+𝑤"(𝑥( + 𝑏"

= argmax"#$%&' 𝑤")𝑥⃗

∈ {0,1, … , 𝑉 − 1}

Where 𝑤" = [𝑤"', … , 𝑤"(, 𝑏"])

and 𝑥⃗ = [𝑥', … , 𝑥(, 1])
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By Balu Ertl - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=38534275



Multi-Class Perceptron
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True class is 𝑦 ∈ {0,1,2, … , 𝑉 − 1}
(i.e., 𝑉=vocabulary size = # of distinct classes).

Classifier output is 

𝑦∗ = argmax"#$%&' 𝑤"'𝑥' +⋯+𝑤"(𝑥( + 𝑏"

= argmax"#$%&' 𝑤")𝑥⃗

∈ {0,1, … , 𝑉 − 1}
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and 𝑥⃗ = [𝑥', … , 𝑥(, 1])
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For each training instance 𝒙 w/ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: 𝑦∗ = sgn(𝑤$𝑥)
• Update weights:   
• if 𝑦 = 𝑦∗ then do nothing
• If 𝑦 ≠ 𝑦∗ then 𝑤 = 𝑤 + ηy𝑥⃗

Review: Training a Two-Class Perceptron



For each training instance 𝒙 w/ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: 𝑦∗ = sgn(𝑤$𝑥)
• Update weights:   
• if 𝑦 = 𝑦∗ then do nothing
• If 𝑦 ≠ 𝑦∗ then:
• If 𝑦 = +1 then set 𝑤 = 𝑤 + η𝑥⃗
• If 𝑦 = −1 then set 𝑤 = 𝑤 − η𝑥⃗

Review: Training a Two-Class Perceptron



For each training instance 𝒙 w/ground truth label 𝑦 ∈ {0,1, … , 𝑉 − 1}:
• Classify with current weights: 𝑦∗ = argmax"#$%&' 𝑤"(𝑥⃗
• Update weights:   
• if 𝑦 = 𝑦∗ then do nothing
• If 𝑦 ≠ 𝑦∗ then:
• Update the correct-class vector as 𝑤% = 𝑤( + η𝑥
• Update the wrong-class vector as  𝑤(∗ = 𝑤%∗ − η𝑥
• Don’t change the vectors of any other class

Training a Multi-Class Perceptron
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Multi-Class Logistic 
Regression

1

x1

xD

x2

Input
Weights

.

.

.

Output:
softmax"#$%&' 𝑤"(𝑥⃗

True class is 𝑦 ∈ {0,1,2, … , 𝑉 − 1}
(i.e., 𝑉=vocabulary size = # of distinct classes).

Classifier output is 
𝑦⃗∗ = softmax"#$%&' 𝑤")𝑥⃗

= 𝑦$∗, … , 𝑦%&'∗

The “argmax” of perceptron is replaced by a 
“softmax.”

The “softmax” is a V-dimensional vector, each 
of whose elements is between 0 and 1.

If the classifier is working well, then the 𝑦AB
element of this vector should be close to 1, 
and all other elements should be close to 0.
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Multi-Class Logistic 
Regression
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True class is 𝑦 ∈ {0,1,2, … , 𝑉 − 1}
(i.e., 𝑉=vocabulary size = # of distinct classes).

Classifier output is 
𝑦⃗∗ = softmax"#$%&' 𝑊𝑥⃗
= 𝑦$∗, … , 𝑦%&'∗

The “softmax” function is defined as follows:

softmax" 𝑊𝑥⃗ =
exp 𝑤")𝑥⃗

∑C#$%&' exp 𝑤C)𝑥⃗

where 𝑊 is the weight matrix whose 𝑐, 𝑑 AB

element is 𝑤"D.
The vector 𝑤" = [𝑤"', … , 𝑤"(, 𝑏"])
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One-Hot Vectors
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Let’s redefine the “ground truth” label, so it’s 
easier to train the softmax function.
The softmax output is

𝑦⃗∗ = 𝑦$∗, … , 𝑦%&'∗

where 0 < 𝑦"∗ < 1 and ∑C#$%&'𝑦C∗ = 1.

Let’s redefine the “ground truth” label so it 
has the same format.  Let’s define 

𝑦⃗ = 𝑦$, … , 𝑦%&'
where
• 𝑦C = 1 if 𝑗 is the correct class

• 𝑦C = 0 otherwise

This is called a ONE-HOT VECTOR.
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One-Hot Vector
• Example: if the example is from class 1, then 𝑦⃗ = [0,1,0]

𝑦$ = A1 example is from class j
0 example is NOT from class j

Call 𝑦$ the reference label, and call 𝑦$∗ the hypothesis.  Then notice that:
• 𝑦$ = True value of 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑗 𝑥⃗), because the true probability is 

always either 1 or 0!
• 𝑦$∗ = Estimated value of 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑗 𝑥⃗),   0 < 𝑦$∗ < 1, ∑$)"* 𝑦$∗ = 1



Comparing the argmax and the softmax

The multi-class perceptron calculates
𝑦∗ = argmax*)!+," 𝑤*&𝑥⃗

The multi-class logistic regression calculates

𝑦*∗ = softmax* 𝑊𝑥⃗ =
exp 𝑤*&𝑥⃗

∑$)!
+," exp 𝑤$&𝑥⃗

How do these two things compare?
Inputs

Perceptrons w/ 
weights wc

Max



Comparing the argmax and softmax

Here’s the second term in a two-
class argmax function: 

𝑦"∗ = O1 if 𝛽" = argmax$)!" 𝛽$
0 otherwise

Where I’m using the abbreviation 
𝛽$ = 𝑤$&𝑥⃗
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Comparing the argmax and softmax

Here’s the second term in a two-
class softmax function: 

𝑦"∗ =
exp 𝛽"

∑$)!" exp 𝛽$

𝛽!
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𝑦"∗ = softmax" 𝛽$

𝒚𝟏∗ → 𝟏

𝒚𝟏∗ → 𝟎
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Training a Softmax Neural Network
We want to train the neural network 
to represent a training database as 
well as possible.  If we can define 
the training error to be some 
function L, then we want to update 
the weights according to

𝑤*- = 𝑤*- − 𝜂
𝑑𝐿
𝑑𝑤*-

So what is L?



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

𝑦$∗ = EsPmated value of 𝑃 class = 𝑗 𝑥⃗)

Suppose we decide to estimate the network 
weights 𝑤*- in order to maximize the probability of 
the training database, in the sense of

𝑤*-
= argmax

.
𝑃 training labels training feature vectors)



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

𝑦$∗ = EsPmated value of 𝑃 class = 𝑗 𝑥⃗)

If we assume the training tokens are independent, 
this is:

𝑤*-

= argmax
.

[
/)"

0

𝑃 reference label of the 𝑖12token 𝑖12feature vector)



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

𝑦$∗ = EsPmated value of 𝑃 class = 𝑗 𝑥⃗)

OK.  We need to create some notation to mean 
“the reference label for the 𝑖12 token.”  Let’s call it 
𝑗(𝑖).  

𝑤*- = argmax
.

[
/)"

0

𝑃 class = 𝑗(𝑖) 𝑥⃗)



Training: Maximize the probability of the training data 
Wow, Cool!!  So we can maximize the probability of 
the training data by just picking the softmax output 
corresponding to the correct class 𝑗(𝑖), for each 
token, and then multiplying them all together:

𝑤*- = argmax
.

[
/)"

0

𝑦$(/)∗

So, hey, let’s take the logarithm, to get rid of that 
nasty product operation.

𝑤*- = argmax
.

_
/)"

0

ln 𝑦$(/)∗



Training: Minimizing the negative log probability
Softmax neural networks are almost always trained in order 
to minimize the negative log probability of the training data:

𝑤"D = argmin
E

𝐿

𝐿 =I
F#'

G

− ln 𝑦C(F)∗

This loss function is called the cross-entropy loss.  Cross-
entropy is a measure of dissimilarity between two 
probability distributions.  In this case, we’re minimizing the 
dissimilarity between the true and estimated classes:

𝑦C = True 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑗 𝑥⃗) = P1 𝑗 = 𝑗(𝑖)
0 otherwise

𝑦C∗ = Estimated 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑗 𝑥⃗) =
JKL M!

"N⃗

∑#$%
&'( JKL M#

"N⃗
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Training a Softmax Neural Network
We want to train the neural network 
to represent a training database as 
well as possible.  If we can define 
the training error to be some 
function L, then we want to update 
the weights according to

𝑤*- = 𝑤*- − 𝜂
𝑑𝐿
𝑑𝑤*-

So what is -5
-6"#

?



Differentiating the cross-entropy
The cross-entropy loss function is:

𝐿 =_
/)"

0

− ln 𝑦$(/)∗

Let’s try to differentiate it:
𝑑𝐿
𝑑𝑤*-

=_
/)"

0

−
1
𝑦$(/)∗

𝑑𝑦$(/)∗

𝑑𝑤*-

So what is 
-($(&)

∗

-6"#
?



Differentiating the cross-entropy
The cross-entropy loss function is:

𝑦C(F)∗ = softmaxC 𝛽P =
exp(𝛽C(F))

∑P#$%&' exp(𝛽P)
Let’s try to differentiate it:

𝑑𝑦C(F)
∗

𝑑𝑤"D
=

1
∑P#$%&' exp(𝛽P)

𝑑exp(𝛽C(F))
𝑑𝑤"D

−
exp(𝛽C(F))

∑P#$%&' exp(𝛽P) Q
𝑑 ∑R#$%&' exp(𝛽R)

𝑑𝑤"D

=
exp(𝛽C(F))

∑C#$%&' exp(𝛽P)
𝑑𝛽C(F)
𝑑𝑤"D

−I
R#$

%&'
exp 𝛽C(F) exp 𝛽R
∑P#$%&' exp(𝛽P) Q

𝑑𝛽R
𝑑𝑤"D

= 𝑦C(F)
∗ 𝑑𝛽C(F)

𝑑𝑤"D
−I

R#$

%&'

𝑦C F
∗ 𝑦R∗

𝑑𝛽R
𝑑𝑤"D

= (𝑦C F
∗ 𝑦" − 𝑦C F

∗ 𝑦"∗)𝑥D

Where the last line uses 𝛽C = 𝑤C)𝑥⃗, and therefore 
DS!
DM)*

= P𝑥D if 𝑗 = 𝑐
0 otherwise



Putting it all together…
𝑤"D = 𝑤"D − 𝜂

𝑑𝐿
𝑑𝑤"D

= 𝑤"D + 𝜂I
F#'

G
1
𝑦C(F)∗

𝑑𝑦C(F)∗

𝑑𝑤"D

= 𝑤"D + 𝜂I
F#'

G

(𝑦" − 𝑦"∗)𝑥D

where

𝑦" = True 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑐 𝑥⃗) = P1 𝑐 = 𝑗(𝑖)
0 otherwise

𝑦"∗ = Estimated 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑐 𝑥⃗) = JKL M)"N⃗
∑#$%
&'( JKL M#

"N⃗



Training Multi-Class Logistic Regression

Putting it all together, we wind up with a surprisingly simple result:

𝑤* = 𝑤* + 𝜂_
/)"

0

𝑦* − 𝑦*∗ 𝑥⃗

where 𝑦* = 1 if and only if the i’th token is of class c.  In other words,
• If 𝑐 is the correct class, but 𝑦*∗ ≈ 0, then 𝑤* = 𝑤" + η𝑥⃗
• If 𝑦*∗ ≈ 1, but 𝑐 is the wrong class, then 𝑤* = 𝑤" − η𝑥⃗
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For each training instance 𝒙 w/ground truth label 𝑦 ∈ {0,1, … , 𝑉 − 1}:
• Classify with current weights: 𝑦∗ = argmax"#$%&' 𝑤"(𝑥⃗
• Update weights:   
• if 𝑦 = 𝑦∗ then do nothing
• If 𝑦 ≠ 𝑦∗ then:
• Update the correct-class vector as 𝑤% = 𝑤( + η𝑥
• Update the wrong-class vector as  𝑤(∗ = 𝑤%∗ − η𝑥

Training a Multi-Class Perceptron



Training Multi-Class Logistic Regression

Putting it all together, we wind up with a surprisingly simple result:

𝑤* = 𝑤* + 𝜂_
/)"

0

𝑦* − 𝑦*∗ 𝑥⃗

where 𝑦* = 1 if and only if the i’th token is of class c.  In other words,
• If 𝑐 is the correct class, but 𝑦*∗ ≈ 0, then 𝑤* = 𝑤" + η𝑥⃗
• If 𝑦*∗ ≈ 1, but 𝑐 is the wrong class, then 𝑤* = 𝑤" − η𝑥⃗



Conclusion: Comparing Multi-Class Perceptron and Logistic 
Regression

Perceptron:  If classifier output is incorrect, then:
• Update the correct-class, y, as  𝑤( = 𝑤( + η𝑥⃗
• Update the wrong-class, 𝑦∗, as  𝑤(∗ = 𝑤(∗ − η𝑥⃗

Logistic Regression: for every class 𝑐, 
𝑤) = 𝑤) + η 𝑦) − 𝑦)∗ 𝑥⃗

≈ /𝑤) + η𝑥⃗ if 𝑐 is the correct class 𝑦) = 1 and 𝑦)∗ ≈ 0
𝑤) − η𝑥⃗ if 𝑐 is the wrong class 𝑦) = 0 and 𝑦)∗ ≈ 1

Conclusion: they’re almost exactly the same thing!  The main difference is that, for logistic 
regression, 0 < 𝑦)∗ < 1: it’s never exactly equal to either 0 or 1.


