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Classifiers
•Many types of classifiers
• Naive Bayes, Bayesian Network
• K-Nearest-Neighbors
• Linear Classifiers: Perceptron, Logistic Regression

• How good is your classifier?
• Train, Dev, and Test corpora
• Confusion Matrix; Precision and Recall

• Review: Perceptron and Logistic Regression
• Signed and unsigned classification functions 
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Definition of “Classifier”

A classifier is a function:
• Input = a set of features (observations about some object)
• Output = a class label



Example: Naïve Bayes

• Class label = 𝑌, drawn from some set of labels
• Features = 𝐸', … , 𝐸(
• Classification function: output the label, 𝑌, which maximizes 
𝑃 𝑌, 𝐸', … , 𝐸( under the following “naïve Bayes” assumption:

𝑃 𝑌, 𝐸', … , 𝐸( = 𝑃(𝑌))
)*'

(

𝑃 𝐸)|𝑌



Example: Bayesian Network
• Class Label = one of the variables in the network, 𝑌
• Features = the set of variables that are observed, 𝐸', … , 𝐸(
• Classification function: output the label, 𝑌, which maximizes 𝑃 𝑌, 𝐸', … , 𝐸(

under the assumption that this distribution is given by the structure of the 
network.

An Example Bayesian Network
with some observed variables 𝐸$ and 𝐸%,

a hidden class variable , 𝑌,
and some other hidden variables, 𝐻$ and 𝐻%: 

𝑌

𝐻'𝐻+𝐸'

𝐸+The model specified by this Bayesian network:

𝑃 𝑌, 𝐸$, 𝐸% ='
&!

'
&"

𝑃 𝑌 𝑃 𝐸$|𝑌 𝑃 𝐻$|𝑌 𝑃 𝐻%|𝑌 𝑃 𝐸%|𝐻$, 𝐻%



Nearest Neighbors Classifier

• Given n different training examples, 𝑥,, for 1 ≤ 𝑖 ≤ 𝑛 (𝑥, might be a 
vector, or a visible object, or a word, or whatever).  Each one has a 
corresponding class label, 𝑦, =correct_label(𝑥,).

• Input to the classifier: a test token 𝑥 whose correct label is unknown.
• Classification function:

1. Find the training token 𝑥' that is most similar to the test token.
2. Find out the corresponding class label, 𝑦' =correct_label(𝑥').
3. Output 𝑦' as the best guess for the label of test token 𝑥.



Example of Nearest-Neighbor Classification
Test Token: Maltese

CC BY-SA 4.0, 
https://commons.wikimedia.org/w/in

dex.php?curid=55084303

By YellowLabradorLooking_new.jpg: 
*derivative work: Djmirko

(talk)YellowLabradorLooking.jpg: 
User:HabjGolden_Retriever_Sammy.jpg: 

Pharaoh HoundCockerpoo.jpg: 
ALMMLonghaired_yorkie.jpg: Ed Garcia 

from United 
StatesBoxer_female_brown.jpg: Flickr user 

boxercabMilù_050.JPG: AleRBeagle1.jpg: 
TobycatBasset_Hound_600.jpg: 

ToBNewfoundland_dog_Smoky.jpg: Flickr 
user DanDee Shotsderivative work: 

December21st2012Freak (talk) -
YellowLabradorLooking_new.jpgGolden_Ret
riever_Sammy.jpgCockerpoo.jpgLonghaired
_yorkie.jpgBoxer_female_brown.jpgMilù_0

50.JPGBeagle1.jpgBasset_Hound_600.jpgNe
wfoundland_dog_Smoky.jpg, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.p

hp?curid=10793219

By Alvesgaspar - Top 
left:File:Cat August 2010-
4.jpg by AlvesgasparTop
middle:File:Gustav
chocolate.jpg by Martin 
BahmannTop
right:File:Orange tabby cat 
sitting on fallen leaves-
Hisashi-01A.jpg by 
HisashiBottom
left:File:Siam lilacpoint.jpg
by Martin 
BahmannBottom
middle:File:Felis catus-cat 
on snow.jpg by 
Von.grzankaBottom
right:File:Sheba1.JPG by 
Dovenetel, CC BY-SA 3.0, 
https://commons.wikimed
ia.org/w/index.php?curid=
17960205

Training Tokens:

This is the most similar training 
token…

Therefore the Maltese is 
classified as a dog.



K-Nearest Neighbors (KNN) Classifier
The nearest-neighbors classifier sometimes fails if one of the 
training tokens is unusual.  In that case, a test token that is 
similar to the weird training token might get misclassified.  
Solution:  K-Nearest Neighbors.By DK1k - Own work, CC BY-SA 

4.0, 
https://commons.wikimedia.org
/w/index.php?curid=77847428

By Mandruss - This file was 
derived from:  Maine Coon 
female 2.jpg, CC BY-SA 4.0, 
https://commons.wikimedia.
org/w/index.php?curid=7938
9146



K-Nearest Neighbors (KNN) Classifier
K-Nearest Neighbors Classification 
Function

1. Find the K training tokens, 𝑥', that 
are most similar to the test token (K 
is a number chosen in advance by 
the system designer, e.g., 𝐾 = 3).

2. Find out the corresponding class 
labels, 𝑦' =correct_label(𝑥').

3. Vote!  Find the class label that is 
most frequent among the K-nearest 
neighbors, and output that as the 
label of the test token.

By DK1k - Own work, CC BY-SA 
4.0, 
https://commons.wikimedia.org
/w/index.php?curid=77847428

By Mandruss - This file was 
derived from:  Maine Coon 
female 2.jpg, CC BY-SA 4.0, 
https://commons.wikimedia.
org/w/index.php?curid=7938
9146

By Mike Powell from 
United States - Stephanie 
2, CC BY-SA 2.0, 
https://commons.wikimedi
a.org/w/index.php?curid=6
114385

By Dustin Warrington - Flickr, 
CC BY-SA 2.0, 
https://commons.wikimedia.
org/w/index.php?curid=264
5977



Linear Classifiers
Consider the classifier  

𝑌∗ = 1 if: 𝑏 +0
%&"

'

𝑤%𝑥% > 0

𝑌∗ = 0 if: 𝑏 +0
%&"

'

𝑤%𝑥% < 0

This is called a “linear classifier” because the boundary between the two classes is a line.  Here is an example of 
such a classifier, with its boundary plotted as a line in the two-dimensional space 𝑥" by 𝑥!:

𝑥!

𝑥"
𝑌∗ = 1

𝑌∗ = 0



Linear Classifiers in General
Consider the classifier  

𝑌∗ = argmax
5

𝑏5 +'
6

𝑤56𝑥6

• This is called a “multi-class linear 
classifier.” 
• The regions 𝑌∗ = 0, 𝑌∗ = 1, 
𝑌∗ = 2 etc. are called “Voronoi
regions.”  
• They are regions with piece-wise 

linear boundaries. Here is an 
example from Wikipedia of 
Voronoi regions plotted in the 
two-dimensional space 𝑥' by 𝑥+:

𝑥!

𝑥"

𝑌∗ = 0

𝑌∗ = 1 𝑌∗ = 2 𝑌∗ = 3

𝑌∗ = 4
𝑌∗ = 5 𝑌∗ = 6

𝑌∗ = 7

……

…

…

…

…
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Accuracy

When we train a classifier, the metric that we usually report is 
“accuracy.”

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑡𝑜𝑘𝑒𝑛𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

# 𝑡𝑜𝑘𝑒𝑛𝑠 𝑡𝑜𝑡𝑎𝑙
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Accuracy on which corpus?

Consider the following experiment: among all of your friends’ pets, 
there are 4 dogs and 4 cats.
1. Measure several attributes of each animal: weight, height, 

domesticity, color, number of letters in its name…
2. You discover that, among your friends’ pets, all dogs have 1-syllable 

names, while the names of all cats have 2+ syllables.
3. Your classifier: an animal is a cat if its name has 2+ syllables.
4. Your accuracy: 100%

Is it correct to say that this classifier has 100%?  Is it useful to say so?



Training vs. Test Corpora

Training Corpus = a set of data that you use in order to optimize the parameters of 
your classifier (for example, optimize which features you measure, what are the 
weights of those features, what are the thresholds, and so on).

Test Corpus = a set of data that is non-overlapping with the training set (none of 
the test samples is also in the training dataset) that you can use to measure the 
accuracy.

• Measuring the training corpus accuracy is useful for debugging: if your training 
algorithm is working, then training corpus accuracy should always go up.
• Measuring the test corpus accuracy is the only way to estimate how your 

classifier will work on new data (data that you’ve never yet seen).



Accuracy on which corpus?
This actually happened:

• Large Scale Visual Recognition Challenge 2015: 
Each competing institution was allowed to test up 
to 2 different fully-trained classifiers per week.

• One institution used 30 different e-mail addresses 
so that they could test a lot more classifiers (200, 
total).  One of their systems achieved <46% error 
rate – the competition’s best, at that time.

• That institution was forbidden from participating in 
the ImageNet competitions for the following 12 
months.



Training vs. Development vs. Evaluation 
Corpora
Training Corpus = a set of data that you use in order to optimize the parameters of your 
classifier (for example, optimize which features you measure, what are the weights of 
those features, what are the thresholds, and so on).

Development Test (DevTest or Validation) Corpus = a dataset, separate from the training 
dataset, on which you test 200 different fully-trained classifiers (trained, e.g., using 
different training algorithms, or different features), in order to see which one works best.

Evaluation Test Corpus = a dataset that is used only to test the ONE classifier that does best 
on DevTest.  From this corpus, you learn how well your classifier will actually perform in 
the real world.
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The problem with accuracy

• Here are the first several words of the ISLEdict:
• AAA (proper noun)
• Aaberg (proper noun)
• Aachen (proper noun)
• Aaron (proper noun)
• aaronic (adjective)

• How can we classify part of speech?  How about this rule:

If it’s a word, then it is a proper noun.



The problem of unbalanced class distributions

• In most real-world problems, there is one class label that is much more 
frequent than all others.
• Words: most words are nouns
• Animals: most animals are insects
• Disease: most people are healthy

• It is therefore easy to get a very high accuracy.  All you need to do is write a 
program that completely ignores its input, and always guesses the majority 
class.  The accuracy of this classifier is called the “chance accuracy.”
• It is sometimes very hard to beat the chance accuracy.  If chance=90%, and 

your classifier gets 89% accuracy, is that good, or bad?



The solution: Confusion Matrix
• In case of an unbalanced class distribution, it’s 

not useful to summarize the performance of 
your classifier with just one number 
(Accuracy).  You need more information.

• Confusion Matrix = a matrix whose 𝑚, 𝑛 th

element is the number of tokens of the 𝑚th
class that were labeled, by the classifier, as 
belonging to the 𝑛th class.

• (The term might have been invented by 
George Miller & Patricia Nicely, 1955, ”Analysis 
of Some Perceptual Confusions of English 
Consonants”)

Plaintext versions of the Miller & Nicely matrices, posted by 
Dinoj Surendran, 
http://people.cs.uchicago.edu/~dinoj/research/nicely.html



False Positives & False Negatives

• Recall and precision are measured for each class 
separately.

• For each class, you create a 2x2 confusion matrix, 
with four entries:
• TP (True Positives) = tokens that correctly belong to 

the target class, and were labeled as such by the 
classifier

• FN (False Negatives) = tokens that correctly belong to 
the target class, but were not so labeled by the 
classifier

• FP (False Positives) = tokens that don’t belong to the 
target class, but the classifier thought they do belong

• TN (True Negative) = tokens that don’t belong to the 
target class, and were correctly rejected by the 
classifier

Other Target 
Class

Other TN FP

Target 
Class

FN TP

Classified As:

Co
rr

ec
t L

ab
el

:



Recall & Precision

Recall tells you, of the number that should 
have been detected, how many were 
correctly detected:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Precision tells you, of the number actually 
detected, how many were correct:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Classified As:

Co
rr

ec
t L

ab
el

:

Other Target 
Class

Other TN FP

Target 
Class

FN TP
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Perceptron

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: sgn(w×x)

Can incorporate bias as 
component of the weight 
vector by always including a 
feature with value set to 1

Perceptron classification function:

y* = sgn(w1x1 + w2x2 + … + wDxD + b) 
= sgn(𝑤3�⃗�)

Where 𝑤 = [𝑤', … , 𝑤( , 𝑏]3

and �⃗� = [𝑥', … , 𝑥( , 1]3



Perceptron
For each training instance 𝒙 with ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: 𝑦∗ = sgn(𝑤$𝑥)
• Update weights:   
• if 𝑦 = 𝑦∗ then do nothing
• If 𝑦 ≠ 𝑦∗ then 𝑤 = 𝑤 + ηy�⃗�

•η (eta) is the “learning rate.”  If the training data are 
linearly separable, you can just set it to 𝜂 = 1.  If not (or 
if you don’t know), you should set it to 𝜂 = 1/𝑛, where 
n is the number of training tokens you’ve seen.



Differentiable Perceptron
• Also known as a “one-layer feedforward neural network,” also known 

as “logistic regression.”  Has been re-invented many times by many 
different people.
• Basic idea: replace the non-differentiable decision function

𝑦∗ = sgn(𝑤3�⃗�)
with a differentiable decision function:

𝑦∗ = tanh 𝑤3�⃗�

=
1 − 𝑒4+5!7⃗

1 + 𝑒4+5!7⃗



Differentiating tanh

Instead of 𝑦,∗ = sgn 𝛽
We use 𝑦,∗ = tanh 𝛽 .
(I’m using the abbreviation 𝛽 = 𝑤3�⃗�.)
That’s pronounced “tanch,” it means
“hyperbolic tangent,” and it looks like this:

𝑦,∗ = tanh 𝛽 =
𝑒8 − 𝑒48

𝑒8 + 𝑒48
=
1 − 𝑒4+8

1 + 𝑒4+8
Its derivative is
𝑑𝑦,∗

𝑑𝛽
= tanh′ 𝛽 =

𝑑
𝑑𝛽

1 − 𝑒4+8

1 + 𝑒4+8
=

4𝑒4+8

1 + 𝑒4+8 + = 1 − tanh+ 𝛽 = 1 − 𝑦,∗+



Differentiating the error
Remember that, if the true label is 𝑦, ∈ {−1,1} and the classifier outputs 𝑦,∗ ∈
{−1,1}, then we can write the training corpus error as:

𝐿(𝑤) =
1
4
V
,*'

9

𝑦, − 𝑦,∗ +

Its derivative is:

∇5𝐿 = −
1
2
V
,*'

9

𝑦, − 𝑦,∗ ∇5𝑦,∗ = −
1
2
V
,*'

9

𝑦, − 𝑦,∗ 1 − 𝑦,∗+ ∇5(𝑤3�⃗�,)

= −V
,*'

9
𝑦, − 𝑦,∗

2
1 − 𝑦,∗+ �⃗�,



Comparing logistic regression vs. the perceptron

Logistic regression:

𝑤 = 𝑤 − 𝜂∇5𝐿 = 𝑤 + 𝜂V
,*'

9
𝑦, − 𝑦,∗

2
1 − 𝑦,∗+ �⃗�,

• If  𝑦, = 𝑦,∗ then do nothing.

• If  𝑦, ≠ 𝑦,∗ then set  𝑤 = 𝑤 + 𝜂 :"4:"
∗

+
1 − 𝑦,∗+ �⃗�,

Perceptron:
• If  𝑦, = 𝑦,∗ then do nothing.
• If  𝑦, ≠ 𝑦,∗ then set  𝑤 = 𝑤 + 𝜂𝑦,�⃗�,
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Signed vs. Unsigned Classification Functions
Signed Binary Classifier: Signum
Sometimes, we don’t mind if the 
classifier outputs 𝑦,∗ ∈ {−1,1}.  This 
can be written as 𝑦,∗ = sgn 𝛽 .
Unsigned Binary Classifier: Unit Step
Other times, we really want the 
classifier to output 𝑦,∗ ∈ {0,1}.  This 
can be written as 𝑦,∗ = u 𝛽 , where 
u 𝛽 is called the “unit step function.”



The relationship between sgn(𝛽) and u(𝛽)

Notice that

u 𝛽 =
1
2
+
1
2
sgn(𝛽)



Signed vs. Unsigned Logistic Regression
Signed Logistic Regression: tanh

tanh 𝛽 =
1 − 𝑒4+8

1 + 𝑒4+8

Unsigned Logistic Regression:           
The “logistic function” or “sigmoid 
function”

σ 𝛽 =
1

1 + 𝑒48



The relationship between tanh 𝛽 and σ 𝛽

tanh 𝛽 =
1 − 𝑒4+8

1 + 𝑒4+;

σ 𝛽 =
1

1 + 𝑒48

Notice that

σ 𝛽 =
1
2
+
1
2
tanh

𝛽
2



A question for you to solve…
If

σ 𝛽 =
1
2
+
1
2
tanh

𝛽
2

and
tanh′ 𝛽 = 1 − tanh+ 𝛽

and
tanh+ 𝛽 = 2σ 2𝛽 − 1 +

…then what is σ′ 𝛽 ?



Conclusions
• Naïve Bayes is a type of classifier.  Other Bayesian Networks can be 

used as classifiers.
• Nearest-Neighbors: find the nearest training token and use its label.  

KNN: find the K nearest training tokens, and vote.
• Training Corpus trains the parameters; DevTest Corpus chooses the 

best of your classifiers; Evaluation Test Corpus tells you how well your 
classifier will do in the real world.
• Confusion Matrix, Precision and Recall tell you how your classifier 

will perform if you have an unbalanced class distribution.

• Unsigned Logistic Regression: σ 𝑏 = '
+
+ '

+
tanh ;

+


