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Linear Classifiers
• Classifiers
• Perceptron
• Linear classifiers in general
• Logistic regression



Classifiers example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

By YellowLabradorLooking_new.jpg: *derivative work: Djmirko (talk)YellowLabradorLooking.jpg: 
User:HabjGolden_Retriever_Sammy.jpg: Pharaoh HoundCockerpoo.jpg: ALMMLonghaired_yorkie.jpg: Ed Garcia from 
United StatesBoxer_female_brown.jpg: Flickr user boxercabMilù_050.JPG: AleRBeagle1.jpg: 
TobycatBasset_Hound_600.jpg: ToBNewfoundland_dog_Smoky.jpg: Flickr user DanDee Shotsderivative work: 
December21st2012Freak (talk) -
YellowLabradorLooking_new.jpgGolden_Retriever_Sammy.jpgCockerpoo.jpgLonghaired_yorkie.jpgBoxer_female_br
own.jpgMilù_050.JPGBeagle1.jpgBasset_Hound_600.jpgNewfoundland_dog_Smoky.jpg, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=10793219

By Alvesgaspar - Top left:File:Cat August 2010-4.jpg by AlvesgasparTop middle:File:Gustav chocolate.jpg by 
Martin BahmannTop right:File:Orange tabby cat sitting on fallen leaves-Hisashi-01A.jpg by HisashiBottom
left:File:Siam lilacpoint.jpg by Martin BahmannBottom middle:File:Felis catus-cat on snow.jpg by 
Von.grzankaBottom right:File:Sheba1.JPG by Dovenetel, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=17960205



Classifiers example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #1:  Cats are smaller than dogs.

Our robot will pick up the animal and weigh it.

If it weighs more than 20 pounds, call it a dog.   Otherwise, call it a 
cat.



Classifiers example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Oops.

CC BY-SA 4.0, 
https://commons.wikimedia.o
rg/w/index.php?curid=550843
03



Classifiers example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #2:  Dogs are tame, cats are wild.

We’ll try the following experiment: 40 different people call the 
animal’s name.  Count how many times the animal comes when 
called.

If the animal comes when called, more than 20 times out of 40, 
it’s a dog.
If not, it’s a cat.



Classifiers example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Oops.

By Smok Bazyli - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=16864492



Classifiers example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #3:  
𝑥! = # times the animal comes when called (out of 40).
𝑥" = weight of the animal, in pounds.
If 0.5𝑥! + 0. 5𝑥" > 20, call it a dog.
Otherwise, call it a cat.

This is called a “linear classifier” because 0.5𝑥! + 0. 5𝑥" = 20 is 
the equation for a line.
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The Giant Squid Axon • 1909: Williams discovers that 
the giant squid has a giant 
neuron (axon 1mm thick)
• 1939: Young finds a giant 

synapse (fig. shown: Llinás, 
1999, via Wikipedia).  
Hodgkin & Huxley put in 
voltage clamps.
• 1952: Hodgkin & Huxley 

publish an electrical current 
model for the generation of 
binary action potentials from 
real-valued inputs.



Perceptron • 1959: Rosenblatt is granted a 
patent for the “perceptron,” 
an electrical circuit model of 
a neuron.



Perceptron

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: sgn(w×x + b)

Can incorporate bias as 
component of the weight 
vector by always including a 
feature with value set to 1

Perceptron model: action potential 
= signum(affine function of the 
features)

y* = sgn(w1x1 + w2x2 + … + wDxD + b) 
= sgn(𝑤!𝑥⃗)

Where 𝑤 = [𝑤", … , 𝑤# , 𝑏]!

and 𝑥⃗ = [𝑥", … , 𝑥# , 1]!



Perceptron
Rosenblatt’s big innovation: the 
perceptron learns from 
examples.
• Initialize weights randomly
• Cycle through training 

examples in multiple passes 
(epochs)
• For each training example:
• If classified correctly, do 

nothing
• If classified incorrectly, 

update weights
By Elizabeth Goodspeed - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=40188333



Perceptron
For each training instance 𝒙 with ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: 𝑦∗ = sgn(𝑤!𝑥)
• Update weights:   
• if 𝑦 = 𝑦∗ then do nothing
• If 𝑦 ≠ 𝑦∗ then 𝑤 = 𝑤 + ηy𝑥⃗
• η (eta) is a “learning rate.”  More about that later.



Perceptron training example: dogs vs. cats
• Let’s start with the rule “if it comes when called (by at least 20 different people 

out of 40), it’s a dog.”
• So if 𝑥! = # times it comes when called, then the rule is:
If 𝑥! − 20 > 0, call it a dog.
In other words, 𝑦∗ = sgn(𝑤$𝑥⃗), where 𝑤$ = 1,0, −20 , and 𝑥⃗$ = [𝑥!, 𝑥", 1].

𝑥!

𝑥"

𝑤# = 1,0, −20

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1



Perceptron training example: dogs vs. cats
• The Presa Canario gets misclassified as a cat (𝑦 = 1, but 𝑦∗ = −1) because it only 

obeys its trainer (𝑥! = 1), and nobody else.  But we notice that the Presa 
Canario, though it rarely comes when called, is very large (𝑥" = 100 pounds), so 
we have 𝑥⃗$ = 𝑥!, 𝑥", 1 = [1,100,1].

𝑥"

𝑥!

𝑤# = 1,0, −20

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1



Perceptron training example: dogs vs. cats
• The Presa Canario gets misclassified as a cat (𝑦 = 1, but 𝑦∗ = −1) because it only 

obeys its trainer (𝑥! = 1), and nobody else.  But we notice that the Presa 
Canario, though it rarely comes when called, is very large (𝑥" = 100 pounds), so 
we have 𝑥⃗$ = 𝑥!, 𝑥", 1 = [1,100,1].
• So we update: 𝑤 = 𝑤 + 𝑦𝑥⃗ = 1,0, −20 + 1,100,1 = [2,100,−19]

𝑥"

𝑥!

𝑤# = 2,100, −19

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1



Perceptron training example: dogs vs. cats
• The Maltese, though it’s small (𝑥" = 10 pounds), is very tame (𝑥! = 40): 𝑥⃗ =
𝑥!, 𝑥", 1 = 40,10,1 .

• But it’s correctly classified! 𝑦∗ = sgn 𝑤$𝑥 = sgn 2×40 + 100×10 − 19 =
+ 1, which is equal to 𝑦 = 1.
• So the 𝑤 vector is unchanged.

𝑥"

𝑥!

sgn 𝑤#𝑥 = 1

𝑤# = 2,100, −19

sgn 𝑤#𝑥 = −1



Perceptron training example: dogs vs. cats
• The Maine Coon cat is big (𝑥" = 20 pounds: 𝑥⃗ = 0,20,1 ), so it gets misclassified 

as a dog (true label is 𝑦 = −1=“cat,”  but the classifier thinks 𝑦∗ = 1=“dog”). 

𝑥"

𝑥!

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1

𝑤# = 2,100, −19



Perceptron training example: dogs vs. cats
• The Maine Coon cat is big (𝑥" = 20 pounds: 𝑥⃗ = 0,20,1 ), so it gets misclassified 

as a dog (true label is 𝑦 = −1=“cat,”  but the classifier thinks 𝑦∗ = 1=“dog”). 
• So we update: 𝑤 = 𝑤 + 𝑦𝑥⃗ = 2,100,−19 + (−1)× 0,20,1 = [2,80,−20]

𝑥"

𝑥!

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1

𝑤# = 2,80, −20



Perceptron: Proof of Convergence
•Definition: linearly separable:
• A dataset is linearly separable if and only if there exists a 

vector, 𝑤, such that the ground truth label of each 
token is given by 𝑦 = sgn 𝑤"𝑥⃗ .

•Theorem (proved in the next few slides):

If the data are linearly separable, then the perceptron 
learning algorithm converges to a correct solution, 

even with a learning rate of η=1.



Perceptron: Proof of Convergence
Suppose the data are linearly separable.  For example, 
suppose red dots are the class y=1, and blue dots are the 
class y=-1:

𝑥#

𝑥$



Perceptron: Proof of Convergence
Instead of plotting 𝑥⃗, plot y𝑥⃗.  The red dots are unchanged; 
the blue dots are multiplied by -1.  
• Since the original data were linearly separable, the new 

data are all in the same half of the feature space.

𝑦𝑥#

𝑦𝑥$



Perceptron: Proof of Convergence
Suppose we start out with some initial guess, 𝑤, that makes 
mistakes.  In other words, sgn 𝑤"(𝑦𝑥⃗) = −1 for some of 
the tokens.

𝑦𝑥#

𝑦𝑥$

𝑤

Oops! An error.



Perceptron: Proof of Convergence
In that case, 𝑤 will be updated by adding 𝑦𝑥⃗ to it.

𝑦𝑥#

𝑦𝑥$

Old 𝑤

New 𝑤
y𝑥⃗



Perceptron: Proof of Convergence
If there is any 𝑤 such that sgn 𝑤"(𝑦𝑥⃗) = 1 for all tokens, 
then this procedure will eventually find it.
• If the data are linearly separable, the perceptron algorithm 

converges to a correct solution, even with η=1.

𝑦𝑥#

𝑦𝑥$
New 𝑤



What about non-separable data?
• If the data are NOT linearly separable, then the perceptron with 

η=1 doesn’t converge.
• In fact, that’s what η is for.  
• Remember that 𝑤 = 𝑤 + ηy𝑥⃗.
•We can force the perceptron to stop wiggling around by forcing η

(and therefore ηy𝑥⃗) to get gradually smaller and smaller.

• This works: for the 𝑛%& training token, set η= #
'

.

• Notice: ∑'(#) #
'

is infinite.  Nevertheless, η= #
'

works, because the 
y𝑥⃗ tokens are not all in the same direction.



Linear Classifiers
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• Logistic regression



Linear Classifiers in General
The function  𝑏 + ∑+,"# 𝑤+𝑥+ is an affine function of the features 𝑥+.  
That means that its contours are all straight lines.  Here is an example 
of such a function, plotted as variations of color in a two-dimensional 
space 𝑥" by 𝑥-:

𝑥#

𝑥$



Linear Classifiers in General
Consider the classifier  

𝑌∗ = 1 if: 𝑏 +6
%&!

'

𝑤%𝑥% > 0

𝑌∗ = 0 if: 𝑏 +6
%&!

'

𝑤%𝑥% < 0

This is called a “linear classifier” because the boundary between the two classes is a line.  Here is an example of 
such a classifier, with its boundary plotted as a line in the two-dimensional space 𝑥! by 𝑥":

𝑥#

𝑥$
𝑌∗ = 1

𝑌∗ = 0



Linear Classifiers in General
Consider the classifier  

𝑌∗ = argmax
9

𝑏9 +@
:

𝑤9:𝑥:

• This is called a “multi-class linear 
classifier.” 
• The regions 𝑌∗ = 0, 𝑌∗ = 1, 
𝑌∗ = 2 etc. are called “Voronoi
regions.”  
• They are regions with piece-wise 

linear boundaries. Here is an 
example from Wikipedia of 
Voronoi regions plotted in the 
two-dimensional space 𝑥" by 𝑥-:

𝑥#

𝑥$

𝑌∗ = 0

𝑌∗ = 1 𝑌∗ = 2 𝑌∗ = 3

𝑌∗ = 4
𝑌∗ = 5 𝑌∗ = 6

𝑌∗ = 7

……

…

…

…

…



Linear Classifiers in General
When the features are binary (𝑥+ ∈
{0,1}), many (but not all!) binary 
functions can be re-written as linear 
functions.  For example, the function

𝑌∗ = (𝑥" ∨ 𝑥-)
can be re-written as 

𝑌∗ = 1 if: 𝑥" + 𝑥- − 0.5 > 0

𝑥#

𝑥$

Similarly, the function
𝑌∗ = (𝑥" ∧ 𝑥-)

can be re-written as 
𝑌∗ = 1 if: 𝑥" + 𝑥- − 1.5 > 0

𝑥#

𝑥$



Linear Classifiers in General
• Not all logical functions can be written as 

linear classifiers! 
• Minsky and Papert wrote a book called 
Perceptrons in 1969.  Although the book 
said many other things, the only thing 
most people remembered about the book 
was that:
“A linear classifier cannot learn an 

XOR function.”
• Because of that statement, most people 

gave up working on neural networks from 
about 1969 to about 2006.
• Minsky and Papert also proved that a 

two-layer neural net can learn an XOR 
function.  But most people didn’t notice. 𝑥#

𝑥$



Linear Classifiers
Classification: 

𝑌∗ = argmax
9

𝑏9 +@
:@!

A

𝑤9:𝑥:

• Where 𝑥+ are the features (binary, integer, or real), 𝑤.+ are the feature 
weights, and 𝑏. is the offset for the 𝑐/0 class.
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Differentiable Perceptron
• Also known as a “one-layer feedforward neural network,” also known 

as “logistic regression.”  Has been re-invented many times by many 
different people.
• Basic idea: replace the non-differentiable decision function

𝑦∗ = sgn(𝑤!𝑥⃗)
with a differentiable decision function:

𝑦∗ = tanh 𝑤!𝑥⃗

=
1 − 𝑒1-24⃗

1 + 𝑒1-2!4⃗



Why?



More about perceptron learning

Let’s re-write the training data in a different way.  
Suppose we have n training vectors, 𝑥⃗"through 𝑥⃗5, where

𝑥⃗6 = 𝑥6", … , 𝑥6+ , … , 𝑥6# , 1
!

Each one has an associated ground-truth reference label 𝑦6 ∈ −1,1 .  
The perceptron computes a classifier output 𝑦6∗ = sgn 𝑤!𝑥⃗6 which	is	
also	∈ −1,1 .
The LOSS FUNCTION (a.k.a. the error rate on the training corpus) is

𝐿(𝑤) =
1
4
N
6,"

5

𝑦6 − 𝑦6∗ -



More about perceptron learning

𝐿(𝑤) =
1
4
N
6,"

5

𝑦6 − 𝑦6∗ -

The perceptron learning algorithm tries to minimize the loss function 
using the following strategy:
• If  𝑦6 = 𝑦6∗ then do nothing.
• If  𝑦6 ≠ 𝑦6∗ then set 𝑤 = 𝑤 + 𝜂𝑦6𝑥⃗6.



Why is the perceptron 
so weird?

• If  𝑦6 = 𝑦6∗ then do nothing.
• If  𝑦6 ≠ 𝑦6∗ then set 𝑤 = 𝑤 + 𝜂𝑦6𝑥⃗6.

… that seems really weird.  Why not just use gradient descent, i.e., why 
not just set 𝑤 = 𝑤 − 𝜂∇2𝐿?

Answer: because 𝑦6∗ = sgn 𝑤!𝑥⃗6 is not differentiable.

basic gradient descent

Lo
ss

 fu
nc

tio
n 
𝐿(
𝑤
)

Coefficient 𝑤



Fixing the perceptron

Let’s make 𝐿(𝑤) differentiable.
First, we make 𝑦∗(𝑤) differentiable.
Instead of 𝑦6∗ = sgn 𝑤!𝑥⃗6
We’ll use 𝑦6∗ = tanh 𝑤!𝑥⃗6 .
That’s pronounced “tanch,” it means
“hyperbolic tangent,” and it looks like this:

𝑦6∗ = tanh 𝑤!𝑥⃗6 =
𝑒2!4⃗ − 𝑒12!4⃗

𝑒2!4⃗ + 𝑒12!4⃗
=
1 − 𝑒1-2!4⃗

1 + 𝑒1-2!4⃗



Fixing the perceptron

Let’s make 𝐿(𝑤) differentiable.
First, we make 𝑦∗(𝑤) differentiable.
Instead of 𝑦6∗ = sgn 𝑤!𝑥⃗6
We’ll use 𝑦6∗ = tanh 𝑤!𝑥⃗6 .
That’s pronounced “tanch,” it means
“hyperbolic tangent,” and it looks like this:

𝑦6∗ = tanh 𝑤!𝑥⃗6 =
𝑒2!4⃗ − 𝑒12!4⃗

𝑒2!4⃗ + 𝑒12!4⃗
=
1 − 𝑒1-2!4⃗

1 + 𝑒1-2!4⃗

Its derivative is
𝑑𝑦6∗

𝑑𝑤!𝑥⃗6
=
𝑑 tanh 𝑤!𝑥⃗6

𝑑𝑤!𝑥⃗6
= 1 − tanh- 𝑤!𝑥⃗6 = 1 − 𝑦6∗-



Fixing the perceptron

Now, we just differentiate 𝐿(𝑤).

Remember that 𝐿(𝑤) = "
7
∑6,"5 𝑦6 − 𝑦6∗ -.

Its derivative is:

∇2𝐿 = −
1
2
N
6,"

5

𝑦6 − 𝑦6∗ ∇2𝑦6∗

= −
1
2
N
6,"

5

𝑦6 − 𝑦6∗ 1 − 𝑦6∗- ∇2(𝑤!𝑥⃗6) = −N
6,"

5
𝑦6 − 𝑦6∗

2
1 − 𝑦6∗- 𝑥⃗6

basic gradient descent

Lo
ss

 fu
nc

tio
n 
𝐿(
𝑤
)

Coefficient 𝑤



Comparing logistic regression vs. the perceptron

Logistic regression:

𝑤 = 𝑤 − 𝜂∇2𝐿 = 𝑤 + 𝜂N
6,"

5
𝑦6 − 𝑦6∗

2
1 − 𝑦6∗- 𝑥⃗6

• If  𝑦6 = 𝑦6∗ then do nothing.

• If  𝑦6 ≠ 𝑦6∗ then set  𝑤 = 𝑤 + 𝜂 8"18"
∗

-
1 − 𝑦6∗- 𝑥⃗6

Perceptron:
• If  𝑦6 = 𝑦6∗ then do nothing.
• If  𝑦6 ≠ 𝑦6∗ then set  𝑤 = 𝑤 + 𝜂𝑦6𝑥⃗6



Conclusions
• Perceptron and Logistic Regression are similar in most ways:
• They both implement linear classification rules.
• They can both be initialized either using random weights, or using all zero weights, or 

setting the weight vector equal to the average of the y=+1 class, or any other 
reasonable initialization.
• They can both be trained, one training token at a time.  They only change when the 

classifier output is different from the ground truth label, i.e., 𝑦E ≠ 𝑦E∗.
• They both use a “learning rate,” 𝜂, which should start at 𝜂 ≈ 1, and should gradually 

decay toward zero as you see more and more data.
• They differ only in the way the weight vector, w, is updated.
• Perceptron just adds 𝜂𝑦E𝑥⃗E.

• Logistic regression adds −𝜂∇F𝐿 = 𝜂 G!HG!
∗

" 1 − 𝑦E∗" 𝑥⃗E.


