Mark Hasegawa-Johnson, 3/2020

CS440/ECE448 Lecture 22: nclucing Sides by

Svetlana Lazebnik, 10/2016

Llnear ClaSSIflerS License: CC-BY 4.0

Aliza Aufrichtig @ @alizauf - Mar 4 v
Garlic halved horizontally = nature's Voronoi diagram?

en.wikipedia.org/wiki/Voronoi_d...

QO 12 1 234 QO 878 ™

Linear Classifiers

* Classifiers
* Perceptron
* Linear classifiers in general

* Logistic regression

Classifiers example: dogs versus cats

'y AR AR T
By YellowLabradorLooking _new.jpg: *derivative work: Djmirko (talk)YellowLabradorLooking.jpg:
User:HabjGolden_Retriever_Sammy.jpg: Pharaoh HoundCockerpoo.jpg: ALMMLonghaired_yorkie.jpg: Ed Garcia from
United StatesBoxer_female_brown.jpg: Flickr user boxercabMilu_050.JPG: AleRBeaglel.jpg:
TobycatBasset_Hound_600.jpg: ToBNewfoundland_dog_Smoky.jpg: Flickr user DanDee Shotsderivative work:
December21st2012Freak (talk) -

YellowlLabradorLooking _new.jpgGolden_Retriever_Sammy.jpgCockerpoo.jpglLonghaired_yorkie.jpgBoxer_female_br
own.jpgMilu_050.JPGBeaglel.jpgBasset_Hound_600.jpgNewfoundland_dog_Smoky.jpg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=10793219

Can you write a program that can tell which ones are dogs, and which ones are cats?

By Alvesgaspar - Top left:File:Cat August 2010-4.jpg by AlvesgasparTop middle:File:Gustav chocolate.jpg by
Martin BahmannTop right:File:Orange tabby cat sitting on fallen leaves-Hisashi-01A.jpg by HisashiBottom
left:File:Siam lilacpoint.jpg by Martin BahmannBottom middle:File:Felis catus-cat on snow.jpg by
Von.grzankaBottom right:File:Shebal.JPG by Dovenetel, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=17960205

Classifiers example: dogs versus cats

Can you write a program that can tell which ones are dogs, and which ones are cats?

ldea #1: Cats are smaller than dogs.
Our robot will pick up the animal and weigh it.

If it weighs more than 20 pounds, call it a dog. Otherwise, call it a
cat.

Classifiers example: dogs versus cats

Can you write a program that can tell which ones are dogs, and which ones are cats?

Oops.

CCBY-SA 4.0,
https://commons.wikimedia.o
rg/w/index.php?curid=550843
03

Classifiers example: dogs versus cats

Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #2: Dogs are tame, cats are wild.

We’ll try the following experiment: 40 different people call the
animal’s name. Count how many times the animal comes when
called.

If the animal comes when caIIed more than 20 times out of 40,
it’s a dog.

If not, it’s a cat. T

Classifiers example: dogs versus cats

Can you write a program that can tell which ones are dogs, and which ones are cats?

Oops.

By Smok Bazyli - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=16864492

Classifiers example: dogs versus cats

Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #3:
x1 = # times the animal comes when called (out of 40).

\._%

X, = weight of the animal, in pounds.
If 0.5x; + 0.5x, > 20, call it a dog.

Otherwise, call it a cat.

This is called a “linear classifier” because 0.5x; + 0.5x, = 20 is
the equation for a line.

Linear Classifiers

* Perceptron
* Linear classifiers in general

* Logistic regression

: : * 1909: Williams discovers that
The Giant SC]UId Axon the giant squid has a giant

neuron (axon 1mm thick)

* 1939: Young finds a giant
synapse (fig. shown: Llinas,
1999, via Wikipedia).
Hodgkin & Huxley put in
voltage clamps.

* 1952: Hodgkin & Huxley
publish an electrical current
model for the generation of
binary action potentials from
real-valued inputs.

e 1959: Rosenblatt is granted a
patent for the “perceptron,”
an electrical circuit model of
a neuron.

Perceptron

N MRS BT B ool v wsa N

i
|
L
f
i
|
:
b

Perceptron model: action potential

Perceptron = signum(affine function of the
features)
Input
*k —
Weights y* = sgnLv¥1_>)<1 + W)X, + ... + WpXp + b)
X1 =sgn(w' x)
Wy
X2) — b T
W, Where w = [wy, ..., wp, D]
— Output: sgn(w-x + b) > T
“ v and X = [xq, ..., xp, 1]
W3 _
Can incorporate bias as
Wp

component of the weight
vector by always including a
feature with value set to 1

size
size

Perceptron ‘ W
Rosenblatt’s big innovation: the

perceptron learns from

examples.

* Initialize weights randomly

domestication

-
>

domestication

* Cycle through training
examples in multiple passes

(epochs) m
* For each training example: 7
* If classified correctly, do
nothing

* If classified incorrectly, . O N

u pd ate WEightS domestication
By Elizabeth Goodspeed - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=40188333

size
size

Perceptron

For each training instance X with ground truth label y € {—1,1}:
» Classify with current weights: y* = sgn(w' x)
* Update weights:
if y = y then do nothing
If y # y thenw = w + nyx
*n (eta) is a “learning rate.” More about that later.

Perceptron training example: dogs vs. cats

* Let’s start with the rule “if it comes when called (by at least 20 different people
out of 40), it’s a dog.”

* So if x; = # times it comes when called, then the rule is:
If x; — 20 > 0, call it a dog.
In other words, y* = sgn(W!x), where w! =[1,0,—20], and ¥ = [xq, x5, 1].

A

X3 sen(w'x) =1

w! =[1,0,-20]

\4

m—————

sen(w'x) = —1

Perceptron training example: dogs vs. cats

* The Presa Canario gets misclassified as a cat (y = 1, but y* = —1) because it only
obeys its trainer (x; = 1), and nobody else. But we notice that the Presa
Canario, though it rarely comes when called, is very large (x, = 100 pounds), so
we have X7 = [x4,x,,1] = [1,100,1].

| sen(w'x) =1

sen(w'x) = —1 | X1

Perceptron training example: dogs vs. cats

* The Presa Canario gets misclassified as a cat (y = 1, but y* = —1) because it only
obeys its trainer (x; = 1), and nobody else. But we notice that the Presa
Canario, though it rarely comes when called, is very large (x, = 100 pounds), so

we have X7 = [x4,x,,1] = [1,100,1].
* So we update: w=w + yx = [1,0,—20] + [1,100,1] = [2,100, —19]

y o5 g~ (A
7 3 it
A 3 b P ~’, o Rt

sen(w'x) =1

w! =[2,100,—19]

e
ﬁ—
—
_— —

sen(w'x) = —1

Perceptron training example: dogs vs. cats

* The Maltese, though it’s small (x, = 10 pounds), is very tame (x; = 40): X =
[Xl, X2, 1] = [4‘0,10,1]

* But it’s correctly classified! y* = Sgn(vT’/Tic’) = sgn(2x40 + 100x10 — 19) =
+ 1, which is equal toy = 1.

 So the w vector is unchanged.

X2

sen(w'x) =1

w! =[2,100,—19]

sen(w'x) = —1

Perceptron training example: dogs vs. cats

* The Maine Coon cat is big (x, = 20 pounds: x = [0,20,1]), so it gets misclassified
as a dog (true label is y = —1="cat,” but the classifier thinks y* = 1="dog”).

—
— e —
— —

sen(w'x) = —1

w! =[2,100,—19]

sen(w'x) =1

Perceptron training example: dogs vs. cats

* The Maine Coon cat is big (x, = 20 pounds: x = [0,20,1]), so it gets misclassified
as a dog (true label is y = —1="cat,” but the classifier thinks y* = 1="dog”).

* So we update: w=w + yx = [2,100,—19] + (—1)x[0,20,1] = [2,80, —20]

—

<_ y A

‘_
§~
-~

* sen(w'x) =1

sen(w'x) = —1

Perceptron: Proof of Convergence

* Definition: linearly separable:

* A dataset is linearly separable if and only if there exists a
vector, w, such that the ground truth label of each
token is given by y = sgn(w’ x).

*Theorem (proved in the next few slides):

If the data are linearly separable, then the perceptron
learning algorithm converges to a correct solution,
even with a learning rate of n=1.

Perceptron: Proof of Convergence

Suppose the data are linearly separable. For example,
suppose red dots are the class y=1, and blue dots are the

class y=-1:
xZL
»

O O
¢ O
- s 2 - Xq
O S ®
O
O

Perceptron: Proof of Convergence

Instead of plotting x, plot yx. The red dots are unchanged;
the blue dots are multiplied by -1.

* Since the original data were linearly separable, the new
data are all in the same half of the feature space.

O
VX2 ®

Perceptron: Proof of Convergence

Suppose we start out with some initial guess, w, that makes

mistakes. In other words, sgn(W! (yx)) = —1 for some of
the tokens.

—
w

d—
<«

Oops! An error.

Perceptron: Proof of Convergence
In that case, w will be updated by adding yx to it.

Perceptron: Proo

If there is any w
then this procec

 If the data are

- of Convergence

such that sen(W! (yx)) = 1 for all tokens,

ure will eventually finc

It.

inearly separable, the

oerceptron algorithm

converges to a correct solution, even with n=1.

New W

What about non-separable data?

* If the data are NOT linearly separable, then the perceptron with
n=1 doesn’t converge.

* In fact, that’s what n is for.
e Remember that w = w + nyx.

* We can force the perceptron to stop wiggling around by forcing n

(and therefore nyx) to get gradually smaller and smaller.

. . 1
» This works: for the nt" training token, set n= -,
1 1

* Notice: 27010=15 is infinite. Nevertheless, n=— works, because the

yx tokens are not all in the same direction.

Linear Classifiers

* Linear classifiers in general
* Logistic regression

Linear Classifiers in General

The function b + Z]Dzl w;x; is an affine function of the features x;.

That means that its contours are all straight lines. Here is an example

of such a function, plotted as variations of color in a two-dimensional
space x; by x,:

1

Linear Classifiers in General

Consider the classifier

D
j=1

D
j=1

This is called a “linear classifier” because the boundary between the two classes is a line. Here is an example of
such a classifier, with its boundary plotted as a line in the two-dimensional space x; by x:

5 I I T I I I I I

Y* =0
xzo /

Linear Classifiers in General

Consider the classifier

Y* = arg max (bc + E Wcjx]')
C -
J

* This is called a “multi-class linear
classifier.”

* TheregionsY* =0, Y" =1,
Y* = 2 etc. are called “Voronoi
regions.”

* They are regions with piece-wise
linear boundaries. Here is an
example from Wikipedia of
Voronoi regions plotted in the
two-dimensional space x; by x5:

Linear Classifiers in General

When the features are binary (x; € Similarly, the function
{0,1}), many (but not all!) binary Y* = (x; Axyp)
functions can be re-written as linear

: . can be re-written as
functions. For example, the function Y*=1 ifix;4+x,—15>0

Y* = (x1 Vxy)

can be re-written as
Y*=1 it x;+x,—05>0

X2 X2

Linear Classifiers in General

* Not all logical functions can be written as
linear classifiers!

* Minsky and Papert wrote a book called
Perceptrons in 1969. Although the book
said many other things, the only thing
most people remembered about the book
was that:

“A linear classifier cannot learn an
XOR function.”

e Because of that statement, most people Xy
gave up working on neural networks from ®
about 1969 to about 2006.

* Minsky and Papert also proved that a
two-layer neural net can learn an XOR o
function. But most people didn’t notice.

Linear Classifiers
Classification:
D
Y* =argmax|(b, +) w;x;
c =

* Where x; are the features (binary, integer, or real), w,; are the feature

weights, and b, is the offset for the ct"* class.

Linear Classifiers

* Logistic regression

Differentiable Perceptron

* Also known as a “one-layer feedforward neural network,” also known
as “logistic regression.” Has been re-invented many times by many

different people.

* Basic idea: replace the non-differentiable decision function
y* = sgn(w'x)

with a differentiable decision function:

* —T =) _
Signum: g(b)=sign(b) y* = tanh(w" x) o Tanh: gb)=(e>-e)(e% ")
1.5 w ; . ‘ ‘
1t f R 1
0.5 f 1 — e_zwx 0.5t
0] — —T > =
5 —2witx 5 O
s f 1+e
0.5
-1t
_17
1.5
%4 2 0 2 4
b “-54 2 0 2

Why?

More about perceptron learning

Let’s re-write the training data in a different way.
Suppose we have n training vectors, xX;through x,,, where
S T
Xi = [Xil, ...,Xl'j, ey XiD) 1]

Each one has an associated ground-truth reference label y; € {—1,1}.
The perceptron computes a classifier output y; = sgn(w’x;) which is
also € {—1,1}.

The LOSS FUNCTION (a.k.a. the error rate on the training corpus) is

1
L) =5) i =¥

More about perceptron learning

1 n
L) =5) =¥

The perceptron learning algorithm tries to minimize the loss function
using the following strategy:

* If y; = y; then do nothing.
* If y; # y; thensetw = w + ny;X;.

Why is the perceptron :

so weird? i

* If y; = y; then do nothing.
* If y; # y; thensetw = w + ny;X;.

Loss function L(w)

-3

... that seems really weird. Why not just use gradient descent, i.e., why

not just set w = w — nVzL?

—

basic gradient descent

/‘i‘

<

0 0.5

Answer: because y; = sgn(W'x;) is not differentiable.

1

15 2
Coefficient w

25

3

Signum: g(b)=sign(b) Tanh: g(b)=(e-e™®)/(e°+e™)

Fixing the perceptron - Ya

Let’s make L(w) differentiable.

1.5 -~ ‘ 15 - 5 5

First, we make y*(w) differentiable.

Instead of y; = sgn(W'%;)

-

We'll use y; = tanh(W'x,).
That’s pronounced “tanch,” it means

“hyperbolic tangent,” and it looks like this:
ev_v’Tf _ e—v_v’

T T

X —2w'x
. 1—e

y = tanh(W'%;) =

T—> _—>’1"—>_ _—)T—)

Signum: g(b)=sign(b) Tanh: g(b)=(e-e™®)/(e°+e™)

1.5

1

Fixing the perceptron I e

| | >
-0.5¢ 1 -0.5¢
At 1 -1

g(b)
o)
(b
o

Let’s make L(w) differentiable.

-1.5 : : -1.5

First, we make y*(w) differentiable. . Tth g.(b)=(12_gz(b»
Instead of y; = sgn(W'%;) /\
We'll use y; = tanh(w'x;). :
That’s pronounced “tanch,” it means '

-1.5

4 2

T O

“hyperbolic tangent,” and it looks like this:

—T = _—>T—> . —T =
) s ewx_ewx 1_82wx
y; = tanh(W' x;) = — =

eWTf + e—WTf - 1 + e—ZWTf
Its derivative is
dy; dtanh(W'x;)

— > T > :1_tanh2 WT)_C) :1— sz
dWT.X'i dWTxl. (l) y

l

basic gradient descent

3———

Fixing the perceptron

Now, we just differentiate L(w).

/‘i‘

.V

Remember that L(w) = i LG —yH)e.

Loss function L(w)

Its derivative is:

1 15 2 25
Coefficient w

n 2 05
1
Vgl = — EZ(%' — i) Vpy;
=1

n

n
1)) I Vi —Yi 2\ =
=1

=1

3

Comparing logistic regression vs. the perceptron

Logistic regression: ,

— = = yi o yzk *2\ 2

W=w-—nVgyzL=w+n > (1—yi)xi
i=1

* If y; = y; then do nothing.

* If y; # y; thenset w=w + 17 (yi;y;) (1-yi%)%,

Perceptron:

* If y; = y; then do nothing.
* If y; # vy thenset w =w + ny;Xx;

Conclusions

* Perceptron and Logistic Regression are similar in most ways:
* They both implement linear classification rules.

* They can both be initialized either using random weights, or using all zero weights, or
setting the weight vector equal to the average of the y=+1 class, or any other
reasonable initialization.

* They can both be trained, one training token at a time. They only change when the
classifier output is different from the ground truth label, i.e., y; # y;.

* They both use a “learning rate,” n, which should start atn = 1, and should gradually
decay toward zero as you see more and more data.

* They differ only in the way the weight vector, w, is updated.
* Perceptron just adds ny;x;.

* Logistic regression adds —nVyL =1 (%) (1 — yi*z)fi.

