CS440/ECE448 Lecture 22: Linear Classifiers

Mark Hasegawa-Johnson, 3/2020 Including Slides by Svetlana Lazebnik, 10/2016

License: CC-BY 4.0

A

en.wikipedia.org/wiki/Voronoi_d...

Linear Classifiers

- Classifiers
- Perceptron
- Linear classifiers in general
- Logistic regression

Can you write a program that can tell which ones are dogs, and which ones are cats?

By YellowLabradorLooking_new.jpg: *derivative work: Djmirko (talk)YellowLabradorLooking.jpg: User:HabjGolden_Retriever_Sammy.jpg: Pharaoh HoundCockerpoo.jpg: ALMMLonghaired_yorkie.jpg: Ed Garcia from United StatesBoxer_female_brown.jpg: Flickr user boxercabMilù_050.JPG: AleRBeagle1.jpg: TobycatBasset_Hound_600.jpg: ToBNewfoundland_dog_Smoky.jpg: Flickr user DanDee Shotsderivative work: December21st2012Freak (talk) -

YellowLabradorLooking_new.jpgGolden_Retriever_Sammy.jpgCockerpoo.jpgLonghaired_yorkie.jpgBoxer_female_br own.jpgMilù_050.JPGBeagle1.jpgBasset_Hound_600.jpgNewfoundland_dog_Smoky.jpg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10793219

By Alvesgaspar - Top left:File:Cat August 2010-4.jpg by AlvesgasparTop middle:File:Gustav chocolate.jpg by Martin BahmannTop right:File:Orange tabby cat sitting on fallen leaves-Hisashi-01A.jpg by HisashiBottom left:File:Siam lilacpoint.jpg by Martin BahmannBottom middle:File:Felis catus-cat on snow.jpg by Von.grzankaBottom right:File:Sheba1.JPG by Dovenetel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17960205

Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #1: Cats are smaller than dogs.

Our robot will pick up the animal and weigh it.

If it weighs more than 20 pounds, call it a dog. Otherwise, call it a cat.

Can you write a program that can tell which ones are dogs, and which ones are cats?

Oops.

CC BY-SA 4.0, https://commons.wikimedia.o rg/w/index.php?curid=550843 03

Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #2: Dogs are tame, cats are wild.

We'll try the following experiment: 40 different people call the animal's name. Count how many times the animal comes when called.

If the animal comes when called, more than 20 times out of 40,

it's a dog.

If not, it's a cat.

Can you write a program that can tell which ones are dogs, and which ones are cats?

Oops.

By Smok Bazyli - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16864492

Can you write a program that can tell which ones are dogs, and which ones are cats?

Idea #3:

 $x_1 = \#$ times the animal comes when called (out of 40).

 x_2 = weight of the animal, in pounds.

If $0.5x_1 + 0.5x_2 > 20$, call it a dog.

Otherwise, call it a cat.

This is called a "linear classifier" because $0.5x_1 + 0.5x_2 = 20$ is the equation for a line.

Linear Classifiers

- Classifiers
- Perceptron
- Linear classifiers in general
- Logistic regression

The Giant Squid Axon

- 1909: Williams discovers that the giant squid has a giant neuron (axon 1mm thick)
- 1939: Young finds a giant synapse (fig. shown: Llinás, 1999, via Wikipedia). Hodgkin & Huxley put in voltage clamps.
- 1952: Hodgkin & Huxley publish an electrical current model for the generation of binary action potentials from real-valued inputs.

• 1959: Rosenblatt is granted a patent for the "perceptron," an electrical circuit model of a neuron.

Input

Perceptron model: action potential = signum(affine function of the features)

$$y^* = sgn(w_1x_1 + w_2x_2 + ... + w_Dx_D + b)$$

= $sgn(\vec{w}^T\vec{x})$

Where
$$\overrightarrow{w} = [w_1, ..., w_D, b]^T$$

and $\overrightarrow{x} = [x_1, ..., x_D, 1]^T$

Can incorporate bias as component of the weight vector by always including a feature with value set to 1

Rosenblatt's big innovation: the perceptron learns from examples.

- Initialize weights randomly
- Cycle through training examples in multiple passes (epochs)
- For each training example:
 - If classified correctly, do nothing
 - If classified incorrectly, update weights

By Elizabeth Goodspeed - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=40188333

For each training instance \vec{x} with ground truth label $y \in \{-1,1\}$:

- Classify with current weights: $y^* = \operatorname{sgn}(\vec{w}^T \vec{x})$
- Update weights:
 - if $y = y^*$ then do nothing
 - If $y \neq y^*$ then $\vec{w} = \vec{w} + \eta y \vec{x}$
 - η (eta) is a "learning rate." More about that later.

- Let's start with the rule "if it comes when called (by at least 20 different people out of 40), it's a dog."
- So if $x_1 = \#$ times it comes when called, then the rule is:

If $x_1 - 20 > 0$, call it a dog.

In other words, $y^* = \operatorname{sgn}(\overrightarrow{w}^T \overrightarrow{x})$, where $\overrightarrow{w}^T = [1,0,-20]$, and $\overrightarrow{x}^T = [x_1,x_2,1]$.

• The <u>Presa Canario</u> gets misclassified as a cat $(y = 1, \text{ but } y^* = -1)$ because it only obeys its trainer $(x_1 = 1)$, and nobody else. But we notice that the <u>Presa</u> <u>Canario</u>, though it rarely comes when called, is very large $(x_2 = 100 \text{ pounds})$, so we have $\vec{x}^T = [x_1, x_2, 1] = [1,100,1]$.

- The <u>Presa Canario</u> gets misclassified as a cat $(y = 1, \text{ but } y^* = -1)$ because it only obeys its trainer $(x_1 = 1)$, and nobody else. But we notice that the <u>Presa</u> <u>Canario</u>, though it rarely comes when called, is very large $(x_2 = 100 \text{ pounds})$, so we have $\vec{x}^T = [x_1, x_2, 1] = [1,100,1]$.
- So we update: $\vec{w} = \vec{w} + y\vec{x} = [1,0,-20] + [1,100,1] = [2,100,-19]$

- The <u>Maltese</u>, though it's small ($x_2 = 10$ pounds), is very tame ($x_1 = 40$): $\vec{x} = [x_1, x_2, 1] = [40,10,1]$.
- But it's correctly classified! $y^* = \operatorname{sgn}(\vec{w}^T \vec{x}) = \operatorname{sgn}(2 \times 40 + 100 \times 10 19) = +1$, which is equal to y = 1.
- So the \overrightarrow{w} vector is unchanged.

• The Maine Coon cat is big ($x_2 = 20$ pounds: $\vec{x} = [0,20,1]$), so it gets misclassified as a dog (true label is y = -1="cat," but the classifier thinks $y^* = 1$ ="dog").

- The Maine Coon cat is big ($x_2 = 20$ pounds: $\vec{x} = [0,20,1]$), so it gets misclassified as a dog (true label is y = -1="cat," but the classifier thinks $y^* = 1$ ="dog").
- So we update: $\vec{w} = \vec{w} + y\vec{x} = [2,100,-19] + (-1) \times [0,20,1] = [2,80,-20]$

- Definition: <u>linearly separable:</u>
 - A dataset is linearly separable if and only if there exists a vector, \overrightarrow{w} , such that the ground truth label of each token is given by $y = \operatorname{sgn}(\overrightarrow{w}^T \overrightarrow{x})$.
- Theorem (proved in the next few slides):

If the data are linearly separable, then the perceptron learning algorithm converges to a correct solution, even with a learning rate of $\eta=1$.

Suppose the data are linearly separable. For example, suppose red dots are the class y=1, and blue dots are the class y=-1:

Instead of plotting \vec{x} , plot $y\vec{x}$. The red dots are unchanged; the blue dots are multiplied by -1.

• Since the original data were linearly separable, the new data are all in the same half of the feature space.

Suppose we start out with some initial guess, \vec{w} , that makes mistakes. In other words, $sgn(\vec{w}^T(y\vec{x})) = -1$ for some of the tokens.

Perceptron: Proof of Convergence In that case, \vec{w} will be updated by adding $y\vec{x}$ to it.

If there is any \vec{w} such that $sgn(\vec{w}^T(y\vec{x})) = 1$ for all tokens, then this procedure will eventually find it.

• If the data are linearly separable, the perceptron algorithm converges to a correct solution, even with $\eta=1$.

What about non-separable data?

- If the data are NOT linearly separable, then the perceptron with η =1 doesn't converge.
- In fact, that's what η is for.
- Remember that $\vec{w} = \vec{w} + \eta y \vec{x}$.
- We can force the perceptron to stop wiggling around by forcing η (and therefore $\eta y \vec{x}$) to get gradually smaller and smaller.
- This works: for the n^{th} training token, set $\eta = \frac{1}{n}$.
- Notice: $\sum_{n=1}^{\infty} \frac{1}{n}$ is infinite. Nevertheless, $\eta = \frac{1}{n}$ works, because the $y\vec{x}$ tokens are not all in the same direction.

Linear Classifiers

- Classifiers
- Perceptron
- Linear classifiers in general
- Logistic regression

The function $b + \sum_{j=1}^{D} w_j x_j$ is an affine function of the features x_j . That means that its contours are all straight lines. Here is an example of such a function, plotted as variations of color in a two-dimensional space x_1 by x_2 :

Consider the classifier

$$Y^* = 1$$
 if: $b + \sum_{j=1}^{D} w_j x_j > 0$

$$Y^* = 0$$
 if: $b + \sum_{j=1}^{D} w_j x_j < 0$

This is called a "linear classifier" because the boundary between the two classes is a line. Here is an example of such a classifier, with its boundary plotted as a line in the two-dimensional space x_1 by x_2 :

Consider the classifier

$$Y^* = \arg\max_{c} \left(b_c + \sum_{j} w_{cj} x_j \right)$$

- This is called a "multi-class linear classifier."
- The regions $Y^* = 0$, $Y^* = 1$, $Y^* = 2$ etc. are called "Voronoi regions."
- They are regions with piece-wise linear boundaries. Here is an example from Wikipedia of Voronoi regions plotted in the two-dimensional space x_1 by x_2 :

When the features are binary $(x_j \in \{0,1\})$, many (but not all!) binary functions can be re-written as linear functions. For example, the function $Y^* = (x_1 \lor x_2)$

can be re-written as

$$Y^* = 1$$
 if: $x_1 + x_2 - 0.5 > 0$

Similarly, the function

$$Y^* = (x_1 \wedge x_2)$$

can be re-written as

$$Y^* = 1$$
 if: $x_1 + x_2 - 1.5 > 0$

- Not all logical functions can be written as linear classifiers!
- Minsky and Papert wrote a book called Perceptrons in 1969. Although the book said many other things, the only thing most people remembered about the book was that:

"A linear classifier cannot learn an XOR function."

- Because of that statement, most people gave up working on neural networks from about 1969 to about 2006.
- Minsky and Papert also proved that a two-layer neural net can learn an XOR function. But most people didn't notice.

Linear Classifiers

Classification:

$$Y^* = \arg\max_{c} \left(b_c + \sum_{j=1}^{D} w_{cj} x_j \right)$$

• Where x_j are the features (binary, integer, or real), w_{cj} are the feature weights, and b_c is the offset for the c^{th} class.

Linear Classifiers

- Classifiers
- Perceptron
- Linear classifiers in general
- Logistic regression

Differentiable Perceptron

- Also known as a "one-layer feedforward neural network," also known as "logistic regression." Has been re-invented many times by many different people.
- Basic idea: replace the non-differentiable decision function

$$y^* = \operatorname{sgn}(\vec{w}^T \vec{x})$$

with a differentiable decision function:

$$y^* = \tanh(\vec{w}^T \vec{x})$$

$$= \frac{1 - e^{-2w\vec{x}}}{1 + e^{-2\vec{w}^T\vec{x}}}$$

Why?

More about perceptron learning

Let's re-write the training data in a different way.

Suppose we have n training vectors, \vec{x}_1 through \vec{x}_n , where $\vec{x}_i = \begin{bmatrix} x_{i1}, \dots, x_{ij}, \dots, x_{iD}, 1 \end{bmatrix}^T$

$$\vec{x}_i = [x_{i1}, ..., x_{ij}, ..., x_{iD}, 1]^T$$

Each one has an associated ground-truth reference label $y_i \in \{-1,1\}$. The perceptron computes a classifier output $y_i^* = \operatorname{sgn}(\vec{w}^T \vec{x}_i)$ which is also $\in \{-1,1\}$.

The LOSS FUNCTION (a.k.a. the error rate on the training corpus) is

$$L(\vec{w}) = \frac{1}{4} \sum_{i=1}^{n} (y_i - y_i^*)^2$$

More about perceptron learning

$$L(\vec{w}) = \frac{1}{4} \sum_{i=1}^{n} (y_i - y_i^*)^2$$

The perceptron learning algorithm tries to minimize the loss function using the following strategy:

- If $y_i = y_i^*$ then do nothing.
- If $y_i \neq y_i^*$ then set $\vec{w} = \vec{w} + \eta y_i \vec{x}_i$.

Why is the perceptron so weird?

- If $y_i = y_i^*$ then do nothing.
- If $y_i \neq y_i^*$ then set $\vec{w} = \vec{w} + \eta y_i \vec{x}_i$.

... that seems really weird. Why not just use gradient descent, i.e., why not just set $\vec{w} = \vec{w} - \eta \nabla_{\vec{w}} L$?

Answer: because $y_i^* = \operatorname{sgn}(\vec{w}^T \vec{x}_i)$ is not differentiable.

Fixing the perceptron

Let's make $L(\vec{w})$ differentiable.

First, we make $y^*(\vec{w})$ differentiable.

Instead of $y_i^* = \operatorname{sgn}(\vec{w}^T \vec{x}_i)$

We'll use $y_i^* = \tanh(\vec{w}^T \vec{x}_i)$.

That's pronounced "tanch," it means

"hyperbolic tangent," and it looks like this:

$$y_i^* = \tanh(\vec{w}^T \vec{x}_i) = \frac{e^{\vec{w}^T \vec{x}} - e^{-\vec{w}^T \vec{x}}}{e^{\vec{w}^T \vec{x}} + e^{-\vec{w}^T \vec{x}}} = \frac{1 - e^{-2\vec{w}^T \vec{x}}}{1 + e^{-2\vec{w}^T \vec{x}}}$$

Fixing the perceptron

Let's make $L(\vec{w})$ differentiable.

First, we make $y^*(\vec{w})$ differentiable.

Instead of $y_i^* = \operatorname{sgn}(\vec{w}^T \vec{x}_i)$

We'll use $y_i^* = \tanh(\vec{w}^T \vec{x}_i)$.

That's pronounced "tanch," it means

"hyperbolic tangent," and it looks like this:

$$y_i^* = \tanh(\vec{w}^T \vec{x}_i) = \frac{e^{\vec{w}^T \vec{x}} - e^{-\vec{w}^T \vec{x}}}{e^{\vec{w}^T \vec{x}} + e^{-\vec{w}^T \vec{x}}} = \frac{1 - e^{-2\vec{w}^T \vec{x}}}{1 + e^{-2\vec{w}^T \vec{x}}}$$

Its derivative is

$$\frac{dy_i^*}{d\vec{w}^T\vec{x}_i} = \frac{d \tanh(\vec{w}^T\vec{x}_i)}{d\vec{w}^T\vec{x}_i} = 1 - \tanh^2(\vec{w}^T\vec{x}_i) = 1 - y_i^{*2}$$

Fixing the perceptron

Now, we just differentiate $L(\vec{w})$.

Remember that $L(\overrightarrow{w}) = \frac{1}{4} \sum_{i=1}^{n} (y_i - y_i^*)^2$.

Its derivative is:

$$\nabla_{\overrightarrow{w}}L = -\frac{1}{2}\sum_{i=1}^{n}(y_i - y_i^*)\nabla_{\overrightarrow{w}}y_i^*$$
 Coefficient \overrightarrow{w}

$$= -\frac{1}{2} \sum_{i=1}^{n} (y_i - y_i^*) \left(1 - y_i^{*2}\right) \nabla_{\overrightarrow{w}} (\overrightarrow{w}^T \overrightarrow{x}_i) = -\sum_{i=1}^{n} \left(\frac{y_i - y_i^*}{2}\right) \left(1 - y_i^{*2}\right) \overrightarrow{x}_i$$

Comparing logistic regression vs. the perceptron

Logistic regression:

$$\vec{w} = \vec{w} - \eta \nabla_{\vec{w}} L = \vec{w} + \eta \sum_{i=1}^{n} \left(\frac{y_i - y_i^*}{2} \right) \left(1 - y_i^{*2} \right) \vec{x}_i$$

- If $y_i = y_i^*$ then do nothing.
- If $y_i \neq y_i^*$ then set $\vec{w} = \vec{w} + \eta \left(\frac{y_i y_i^*}{2}\right) \left(1 y_i^{*2}\right) \vec{x}_i$

Perceptron:

- If $y_i = y_i^*$ then do nothing.
- If $y_i \neq y_i^*$ then set $\vec{w} = \vec{w} + \eta y_i \vec{x}_i$

Conclusions

- Perceptron and Logistic Regression are similar in most ways:
 - They both implement linear classification rules.
 - They can both be initialized either using random weights, or using all zero weights, or setting the weight vector equal to the average of the y=+1 class, or any other reasonable initialization.
 - They can both be trained, one training token at a time. They only change when the classifier output is different from the ground truth label, i.e., $y_i \neq y_i^*$.
 - They both use a "learning rate," η , which should start at $\eta \approx 1$, and should gradually decay toward zero as you see more and more data.
- They differ only in the way the weight vector, w, is updated.
 - Perceptron just adds $\eta y_i \vec{x}_i$.
 - Logistic regression adds $-\eta \nabla_{\overrightarrow{w}} L = \eta \left(\frac{y_i y_i^*}{2} \right) \left(1 y_i^{*2} \right) \overrightarrow{x}_i$.