
CS440/ECE448 Lecture 20
Computer Vision: Image

Formation
Mark Hasegawa-Johnson, 3/11/2020

License: CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/

Outline

• Space
• Pinhole camera equations
• Vanishing point

• Color
• Structure of the eye
• RGB displays
• Color features: YPrPb

• Edges
• Things that look like edges
• Edge detection: the difference-of-Gaussians filter

Lenses and focus

• The lens in your eye collects light.
• Light that passes directly through

the center of the lens is not bent.
• Light that passes above center is

bent back toward center, and vice
versa, so that it can all be
collected in the same point on
the image plane.

Image
plane Lens

Object

By Rhcastilhos. And Jmarchn. -
Schematic_diagram_of_the_human_eye_with_English_annotations.svg, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1597930

The “pinhole camera” approximation

• A “pinhole camera” is a camera
that only allows light through a
very small hole.
• Disadvantage: A pinhole camera

gets much less light than a lens
(because the hole is smaller).
• Advantage: A pinhole camera

focuses on all objects, at every
distance, simultaneously.

Image
plane Pinhole

Object

Converting a 3D world to a 2D picture

• Different spots in the real world
are projected onto different
points in the image plane.
• Light that passes through the

center of the lens is not bent.
• Therefore, we can use the

pinhole camera approximation to
analyze the relationship between
real world position (x,y,z) and
position on the image plane
(x’,y’).

Image
plane Lens

Object

The pinhole camera equations

• Define the origin (0,0,0) to be the
pinhole.
• Define (x,y,z) as position of the

object: x is horizontal (into the
slide), y is vertical (upward), z is
away from the camera.
• Define (x’,y’) as the position on

the image plane where the light
strikes (upside down).
• Define f as the distance from the

pinhole to the image plane.

Image
plane

Object

Pinhole

y’

y

z

-f

The pinhole camera equations

• These are similar triangles! So
𝑥′
𝑥
=
𝑦′
𝑦
=
−𝑓
𝑧

• Solving for (x’,y’), we get the
famous pinhole camera
equations:

𝑥! =
−𝑓𝑥
𝑧

, 𝑦′ =
−𝑓𝑦
𝑧

Image
plane

Object

Pinhole

y’

y

z

-f

Outline

• Space
• Pinhole camera equations
• Vanishing point

• Color
• Structure of the eye
• RGB displays
• Color features: YPrPb

• Edges
• Things that look like edges
• Edge detection: the difference-of-Gaussians filter

Vanishing point

• When you take a picture, lines
that are parallel in the real world
appear to converge.
• The point toward which they

converge is called the vanishing
point. It lies on the horizon.
• The “horizon” is a line in the

image, where a plane parallel to
the ground passes through the
pinhole.

Vanishing point

• Recall the pinhole camera
equations:

𝑥! =
−𝑓𝑥
𝑧

, 𝑦′ =
−𝑓𝑦
𝑧

• Suppose we have a couple of lines,
in the plane y=g (the ground plane):

Line 1: 𝑥" = 𝑚𝑧 + 𝑏"
Line 2: 𝑥# = 𝑚𝑧 + 𝑏#
• These are parallel lines, so they

have the same slope, 𝑚.

Image
plane

Object

Pinhole

y’

y

z

-f

Vanishing point

• Plug equations for the lines into the
pinhole camera equations:

𝑥"! =
−𝑓(𝑚𝑧 + 𝑏")

𝑧 , 𝑦"′ =
𝑓𝑔
𝑧

𝑥#! =
−𝑓 𝑚𝑧 + 𝑏#

𝑧 , 𝑦#′ =
𝑓𝑔
𝑧

• As 𝑧 → ∞, the two lines converge to
the vanishing point

𝑥!, 𝑦! = (−𝑓𝑚, 0)

Image
plane

Object

Pinhole

y’

y

z

f

Vanishing point (x’,y’)=(-fm,0)

Vanishing point

(-fm,0):
• Notice that, if the lines are on a

flat plane (e.g., the ground),
then the vanishing point is at the
eye level of the camera (y’=0).
• The line y’=0 is therefore called

the “horizon.”
• If the lines are not on a flat

plane, they would not converge
at y’=0.

Outline

• Space
• Pinhole camera equations
• Vanishing point

• Color
• Structure of the eye
• RGB displays
• Color features: YPrPb

• Edges
• Things that look like edges
• Edge detection: the difference-of-Gaussians filter

Color spaces: RGB
• Every natural object reflects a

continuous spectrum of colors.
• However, the human eye only has

three color sensors:
• Red cones are sensitive to lower

frequencies
• Green cones are sensitive to

intermediate frequencies
• Blue cones are sensitive to higher

frequencies

Illustration from Anatomy &
Physiology, Connexions Web site.
http://cnx.org/content/col11496/1.
6/, Jun 19, 2013.

http://cnx.org/content/col11496/1.6/

Structure of the eye

• Cones (color-sensitive cells) are
located in only a small area,
close to the fovea
• Rods (black-and-white cells) are

spread more widely.

By Rhcastilhos. And Jmarchn. -
Schematic_diagram_of_the_human_eye_with_English_annotations.svg, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1597930

Structure of the eye

• Because we only have cones in
the center of the eye, we can
only actually see color in the
center.
• The colors that you believe you

see, in the periphery of your
vision, are being filled in from
memory by your pre-conscious
visual processes (optic nerve and
striate cortex).

By Ben Bogart - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=31009153

Illustration of image as 'seen' by the retina independent of
optic nerve and striate cortex processing.

Outline

• Space
• Pinhole camera equations
• Vanishing point

• Color
• Structure of the eye
• RGB displays
• Color spaces: YPrPb, HSV

• Edges
• Things that look like edges
• Edge detection: the difference of Gaussians filter

Color spaces: RGB
• Every natural object reflects a

continuous spectrum of colors.
• However, the human eye only has

three color sensors:
• Red cones are sensitive to lower

frequencies
• Green cones are sensitive to

intermediate frequencies
• Blue cones are sensitive to higher

frequencies

Illustration from Anatomy &
Physiology, Connexions Web site.
http://cnx.org/content/col11496/1.
6/, Jun 19, 2013.

http://cnx.org/content/col11496/1.6/

Color spaces: RGB
• By activating LED or other

display hardware at just
three discrete colors (R, G,
and B), it is possible to
fool the human eye into
thinking that it sees a
continuum of colors.
• Therefore, a so-called

“color” camera is really
three different black-and-
white photographs:
• R(x’,y’) is the brightness of

red light at position (x’,y’)
• G(x’,y’) is brightness of

green.
• B(x’,y’) is brightness of

blue.
By Sergei Prokudin-Gorskii - Taken from the Library of Congress' website and
converted from TIFF to PNG.TIFF file from LOC, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=1470606

A photograph of Mohammed Alim Khan (1880–1944), Emir of
Bukhara, taken in 1911 by Sergey Prokudin-Gorsky using three
exposures with blue, green, and red filters.

https://en.wikipedia.org/wiki/Mohammed_Alim_Khan
https://en.wikipedia.org/wiki/Emir_of_Bukhara
https://en.wikipedia.org/wiki/Sergey_Prokudin-Gorsky

Outline

• Space
• Pinhole camera equations
• Vanishing point

• Color
• Structure of the eye
• RGB displays
• Color features: YPrPb

• Edges
• Things that look like edges
• Edge detection: the difference-of-Gaussians filter

Color features: Luminance

• The “grayscale” image is often computed as the average of R, G, and B
intensities, i.e., 𝐼 𝑥!, 𝑦′ = "

#
𝑅 𝑥!, 𝑦! + 𝐺 𝑥!, 𝑦! + 𝐵(𝑥!, 𝑦!)

• The human eye, on the other hand, is more sensitive to green light
than to either red or blue.
• The intensity of light, as viewed by the human eye, is well

approximated by the standard ITU-R BT.601:

𝑌(𝑥!, 𝑦!) = 0.299𝑅(𝑥!, 𝑦!) + 0.587𝐺(𝑥!, 𝑦!) + 0.114𝐵(𝑥!, 𝑦!)

• The signal 𝑌(𝑥!, 𝑦!) is called the luminance of light at pixel (𝑥!, 𝑦!).

Color features: YPrPb

• The human eye is much more sensitive to spatial variation in
luminance (brightness) than to spatial variation in chrominance
(color)
• For this reason, the JPG image coding standard represents luminance,

Y(x’,y’), at twice the spatial resolution of chrominance:
• First, JPG converts (R,G,B) into (Y,Pr,Pb), where Pr and Pb represent the

“degree of redness” and “degree of blueness.”
• Second, JPG downsamples Pr(x’,y’) and Pb(x’,y’), so that they have ½ as many

rows and ½ as many columns as Y(x’,y’).

• For computer vision, we can use the same logic: represent Pr and Pb
at half the resolution that we use for luminance.

Color features: Chrominance

• Chrominance = color-shift of the image.
• We measure 𝑃!=red-shift, and 𝑃"=blue-shift, relative to

luminance (luminance is sort of green-based,
remember?)

• We want 𝑃!(𝑥#, 𝑦#) and 𝑃"(𝑥#, 𝑦#) to describe only the
color-shift of the pixel, not its average luminance.

• We do that using

𝑌
𝑃"
𝑃!

=
�⃗�$
�⃗�"
�⃗�!

𝑅
𝐺
𝐵

Where 𝑠𝑢𝑚(�⃗�!) = 𝑠𝑢𝑚(�⃗�") = 0.

Cr and Cb, at Y=0.5
Simon A. Eugster, own work.

Color features: Chrominance

𝑌
𝑃"
𝑃#
=

0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

𝑅
𝐺
𝐵

gives 𝑠𝑢𝑚(�⃗�#) = 𝑠𝑢𝑚(�⃗�") = 0. You don’t need to
memorize those numbers, but you should know that
• Y = weighted average(R,G,B)
• Pr = (1/2) (R – weighted average(G,B))
• Pb = (1/2) (B – weighted average(R,G))

Color features: Chrominance

• Some images are obviously red!
(e.g., fire, or wood)
• Some images are obviously blue!

(e.g., water, or sky)
• Average(Pb)-Average(Pr) should be

a good feature for distinguishing
between, for example, ”fire” versus
“water”

Outline

• Space
• Pinhole camera equations
• Vanishing point

• Color
• Structure of the eye
• RGB displays
• Color features: YPrPb

• Edges
• Things that look like edges
• Edge detection: the difference-of-Gaussians filter

El Castillo (pyramid of Kukulcán) in Chichén Itzá
By Daniel Schwen - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=7647000

1. Depth
discontinuities

4. Color
discontinuities

2. Orientation
discontinuities

3. Illumination
discontinuities
(shadows)

Things that look like edges

Edge detection by subtraction
Subtract neighboring pixels, to compute an “image
gradient:”
X gradient:

𝐺% 𝑥’, 𝑦’ =
𝑌(𝑥’ + 1, 𝑦’) − 𝑌(𝑥’ − 1, 𝑦’)

2 ≈
𝜕𝑌
𝜕𝑥′

Y gradient:

𝐺& 𝑥’, 𝑦’ =
𝑌(𝑥’, 𝑦’ + 1) − 𝑌(𝑥’, 𝑦’ − 1)

2
≈
𝜕𝑌
𝜕𝑦′

Magnitude of the edge:

𝐺 𝑥’, 𝑦’ = 𝐺%' + 𝐺&' ≈
𝜕𝑌
𝜕𝑥′

'
+

𝜕𝑌
𝜕𝑦′

'

A problem with “edge detection by
subtraction”

It tends to exaggerate noise.

Solving the noise problem
We can solve the noise problem by
smoothing the image first, then taking
the difference.
Smoothing is done by taking a local
average, e.g.,

𝑆 𝑥!, 𝑦!

= &
"#$%

%

&
&#$%

%
1
11 ' 𝑌(𝑥! −𝑚, 𝑦! − 𝑛)

𝐺(𝑥’, 𝑦’ =
𝑆(𝑥’ + 1, 𝑦’) − 𝑆(𝑥’ − 1, 𝑦’)

2

𝐺) 𝑥’, 𝑦’ =
𝑆(𝑥’, 𝑦’ + 1) − 𝑆(𝑥’, 𝑦’ − 1)

2

Gaussian blur
Weighted averaging is a little better than
unweighted averaging. We just need to
make sure that the weights add up to one.
For example:

𝑆 𝑥#, 𝑦#

= >
()*+

+

>
,)*+

+

ℎ(𝑚, 𝑛)𝑌(𝑥# −𝑚, 𝑦# − 𝑛)

ℎ 𝑚, 𝑛 =
1

2𝜋𝜎'
𝑒
* (

-
!
. ,
-

!

𝐺% 𝑥’, 𝑦’ =
𝑆(𝑥’ + 1, 𝑦’) − 𝑆(𝑥’ − 1, 𝑦’)

2

𝐺& 𝑥’, 𝑦’ =
𝑆(𝑥’, 𝑦’ + 1) − 𝑆(𝑥’, 𝑦’ − 1)

2

By IkamusumeFan - Own
work, CC BY-SA 4.0,
https://commons.wikime
dia.org/w/index.php?curi
d=41790217

The Gaussian blur filter ℎ 𝑚, 𝑛 results in
different degrees of smoothness of
𝑆 𝑥!, 𝑦! , depending on how we set the
hyperparameter 𝜎 (the StDev):

Gaussian blur
Weighted averaging is a little better than
unweighted averaging. We just need to
make sure that the weights add up to one.
For example:

𝑆 𝑥#, 𝑦#

= >
()*+

+

>
,)*+

+

ℎ(𝑚, 𝑛)𝑌(𝑥# −𝑚, 𝑦# − 𝑛)

ℎ 𝑚, 𝑛 =
1

2𝜋𝜎'
𝑒
* (

-
!
. ,
-

!

𝐺% 𝑥’, 𝑦’ =
𝑆(𝑥’ + 1, 𝑦’) − 𝑆(𝑥’ − 1, 𝑦’)

2

𝐺& 𝑥’, 𝑦’ =
𝑆(𝑥’, 𝑦’ + 1) − 𝑆(𝑥’, 𝑦’ − 1)

2

The Gaussian blur filter ℎ 𝑚, 𝑛 looks kind
of like this (plotted as a function of just 𝑛,
for the coordinate 𝑚 = 0):

𝑛

ℎ 0, 𝑛

By Krishnavedala - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=35701251

Plotted in 2D, it looks kind of like this:

Difference of Gaussians

A “difference-of-Gaussians” filter is created by
subtracting two Gaussian-blur filters, like this:

ℎ 𝑚, 𝑛 =
1

2𝜋𝜎# 𝑒
$ %

&
*
' (
&

*

ℎ)′ 𝑥’, 𝑦’ =
ℎ(𝑥’ + 1, 𝑦’) − ℎ(𝑥’ − 1, 𝑦’)

2

ℎ*′ 𝑥’, 𝑦’ =
ℎ(𝑥’, 𝑦’ + 1) − ℎ(𝑥’, 𝑦’ − 1)

2

𝑥’

ℎ$′ 𝑥’, 0

A “difference-of-Gaussians”
filter looks kind of like this:

𝑦’

ℎ$′ 1, 𝑦′

Difference of Gaussians
If we pre-compute the difference-of-Gaussians
filters, then we can combine the weighted-
average and the subtraction into just one
operation, to save computation:

𝐺! 𝑥", 𝑦"

= *
#$%&

&

*
'$%&

&

ℎ!′(𝑚, 𝑛)𝑌(𝑥" −𝑚, 𝑦" − 𝑛)

𝐺(𝑥", 𝑦"

= *
#$%&

&

*
'$%&

&

ℎ(′(𝑚, 𝑛)𝑌(𝑥" −𝑚, 𝑦" − 𝑛)

… so we never need to compute the smoothed
image, 𝑆 𝑥", 𝑦" , at all. We just go directly from the
luminance, 𝑌(𝑥" −𝑚, 𝑦" − 𝑛), to the edge
detection.

By Overremorto - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=10581259

The difference-of-Gaussians filters,
ℎ$′(𝑚, 𝑛) and ℎ4′(𝑚, 𝑛), detect more or
less edges, depending on how we set the

hyperparameter 𝜎. Here is 𝐺$5 + 𝐺45,

thresholded to make it black and white:

Conclusions
• Pinhole camera equations tell you the relationship between the position on

the image, (x’,y’), and the position in the real world, (x,y,z). In particular,
they tell you why parallel lines seem to converge at the vanishing point.

• The eye has two types of light sensors: cones (see color, only near the
center), and rods (see black & white, near the periphery). The real world
has all colors, but we can fool the eye by stacking up three images (R, G, and
B). The YPrPB color space separates luminance (Y = average(R,G,B)) from
chrominance (Pr=R-average(G,B), Pb=B-average(R,G)).

• Edges are caused by discontinuities of depth, orientation, illumination, and
color. It’s useful to detect where such things happen! Subtracting pixels is
noisy, so use a difference-of-Gaussians filter instead.

