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Lenses and focus

• The lens in your eye collects light.
• Light that passes directly through 

the center of the lens is not bent.
• Light that passes above center is 

bent back toward center, and vice 
versa, so that it can all be 
collected in the same point on 
the image plane.
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By Rhcastilhos. And Jmarchn. -
Schematic_diagram_of_the_human_eye_with_English_annotations.svg, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1597930



The “pinhole camera” approximation

• A “pinhole camera” is a camera 
that only allows light through a 
very small hole.
• Disadvantage: A pinhole camera 

gets much less light than a lens 
(because the hole is smaller).
• Advantage: A pinhole camera 

focuses on all objects, at every 
distance, simultaneously.
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Converting a 3D world to a 2D picture

• Different spots in the real world 
are projected onto different 
points in the image plane.
• Light that passes through the 

center of the lens is not bent.
• Therefore, we can use the 

pinhole camera approximation to 
analyze the relationship between 
real world position (x,y,z) and 
position on the image plane 
(x’,y’).
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The pinhole camera equations

• Define the origin (0,0,0) to be the 
pinhole.
• Define (x,y,z) as position of the 

object: x is horizontal (into the 
slide), y is vertical (upward), z is 
away from the camera.
• Define (x’,y’) as the position on 

the image plane where the light 
strikes (upside down).
• Define f as the distance from the 

pinhole to the image plane.
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The pinhole camera equations

• These are similar triangles!  So
𝑥′
𝑥
=
𝑦′
𝑦
=
−𝑓
𝑧

• Solving for (x’,y’), we get the 
famous pinhole camera 
equations:

𝑥! =
−𝑓𝑥
𝑧

, 𝑦′ =
−𝑓𝑦
𝑧

Image
plane

Object

Pinhole

y’

y

z

-f



Outline

• Space
• Pinhole camera equations
• Vanishing point

• Color
• Structure of the eye
• RGB displays
• Color features: YPrPb

• Edges
• Things that look like edges
• Edge detection: the difference-of-Gaussians filter



Vanishing point

• When you take a picture, lines 
that are parallel in the real world 
appear to converge.
• The point toward which they 

converge is called the vanishing 
point.  It lies on the horizon.
• The “horizon” is a line in the 

image, where a plane parallel to 
the ground passes through the 
pinhole.



Vanishing point

• Recall the pinhole camera 
equations:

𝑥! =
−𝑓𝑥
𝑧

, 𝑦′ =
−𝑓𝑦
𝑧

• Suppose we have a couple of lines, 
in the plane y=g (the ground plane):

Line 1:   𝑥" = 𝑚𝑧 + 𝑏"
Line 2: 𝑥# = 𝑚𝑧 + 𝑏#
• These are parallel lines, so they 

have the same slope, 𝑚.
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Vanishing point

• Plug equations for the lines into the 
pinhole camera equations:

𝑥"! =
−𝑓(𝑚𝑧 + 𝑏")

𝑧 , 𝑦"′ =
𝑓𝑔
𝑧

𝑥#! =
−𝑓 𝑚𝑧 + 𝑏#

𝑧 , 𝑦#′ =
𝑓𝑔
𝑧

• As 𝑧 → ∞, the two lines converge to 
the vanishing point 

𝑥!, 𝑦! = (−𝑓𝑚, 0)
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Vanishing point

(-fm,0):
• Notice that, if the lines are on a 

flat plane (e.g., the ground), 
then the vanishing point is at the 
eye level of the camera (y’=0).
• The line y’=0 is therefore called 

the “horizon.”
• If the lines are not on a flat 

plane, they would not converge 
at y’=0.
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Color spaces: RGB
• Every natural object reflects a 

continuous spectrum of colors.
• However, the human eye only has 

three color sensors:
• Red cones are sensitive to lower 

frequencies
• Green cones are sensitive to 

intermediate frequencies
• Blue cones are sensitive to higher 

frequencies

Illustration from Anatomy & 
Physiology, Connexions Web site. 
http://cnx.org/content/col11496/1.
6/, Jun 19, 2013.

http://cnx.org/content/col11496/1.6/


Structure of the eye

• Cones (color-sensitive cells) are 
located in only a small area, 
close to the fovea
• Rods (black-and-white cells) are 

spread more widely.

By Rhcastilhos. And Jmarchn. -
Schematic_diagram_of_the_human_eye_with_English_annotations.svg, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1597930



Structure of the eye

• Because we only have cones in 
the center of the eye, we can 
only actually see color in the 
center.
• The colors that you believe you 

see, in the periphery of your 
vision, are being filled in from 
memory by your pre-conscious 
visual processes (optic nerve and 
striate cortex).

By Ben Bogart - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=31009153

Illustration of image as 'seen' by the retina independent of 
optic nerve and striate cortex processing.
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Color spaces: RGB
• Every natural object reflects a 

continuous spectrum of colors.
• However, the human eye only has 

three color sensors:
• Red cones are sensitive to lower 

frequencies
• Green cones are sensitive to 

intermediate frequencies
• Blue cones are sensitive to higher 

frequencies

Illustration from Anatomy & 
Physiology, Connexions Web site. 
http://cnx.org/content/col11496/1.
6/, Jun 19, 2013.

http://cnx.org/content/col11496/1.6/


Color spaces: RGB
• By activating LED or other 

display hardware at just 
three discrete colors (R, G, 
and B), it is possible to 
fool the human eye into 
thinking that it sees a 
continuum of colors.
• Therefore, a so-called 

“color” camera is really 
three different black-and-
white photographs:
• R(x’,y’) is the brightness of 

red light at position (x’,y’)
• G(x’,y’) is brightness of 

green.
• B(x’,y’) is brightness of 

blue.
By Sergei Prokudin-Gorskii - Taken from the Library of Congress' website and 
converted from TIFF to PNG.TIFF file from LOC, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=1470606

A photograph of Mohammed Alim Khan (1880–1944), Emir of 
Bukhara, taken in 1911 by Sergey Prokudin-Gorsky using three 
exposures with blue, green, and red filters.

https://en.wikipedia.org/wiki/Mohammed_Alim_Khan
https://en.wikipedia.org/wiki/Emir_of_Bukhara
https://en.wikipedia.org/wiki/Sergey_Prokudin-Gorsky
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Color features: Luminance

• The “grayscale” image is often computed as the average of R, G, and B 
intensities, i.e.,  𝐼 𝑥!, 𝑦′ = "

#
𝑅 𝑥!, 𝑦! + 𝐺 𝑥!, 𝑦! + 𝐵(𝑥!, 𝑦!)

• The human eye, on the other hand, is more sensitive to green light 
than to either red or blue.
• The intensity of light, as viewed by the human eye, is well 

approximated by the standard ITU-R BT.601:

𝑌(𝑥!, 𝑦!) = 0.299𝑅(𝑥!, 𝑦!) + 0.587𝐺(𝑥!, 𝑦!) + 0.114𝐵(𝑥!, 𝑦!)

• The signal 𝑌(𝑥!, 𝑦!) is called the luminance of light at pixel (𝑥!, 𝑦!).



Color features: YPrPb

• The human eye is much more sensitive to spatial variation in 
luminance (brightness) than to spatial variation in chrominance 
(color)
• For this reason, the JPG image coding standard represents luminance, 

Y(x’,y’), at twice the spatial resolution of chrominance:
• First, JPG converts (R,G,B) into (Y,Pr,Pb), where Pr and Pb represent the 

“degree of redness” and “degree of blueness.”
• Second, JPG downsamples Pr(x’,y’) and Pb(x’,y’), so that they have ½ as many 

rows and ½ as many columns as Y(x’,y’).

• For computer vision, we can use the same logic: represent Pr and Pb 
at half the resolution that we use for luminance.



Color features: Chrominance

• Chrominance = color-shift of the image.  
• We measure 𝑃!=red-shift, and 𝑃"=blue-shift, relative to 

luminance (luminance is sort of green-based, 
remember?)

• We want 𝑃!(𝑥#, 𝑦#) and 𝑃"(𝑥#, 𝑦#) to describe only the 
color-shift of the pixel, not its average luminance.

• We do that using 

𝑌
𝑃"
𝑃!

=
�⃗�$
�⃗�"
�⃗�!

𝑅
𝐺
𝐵

Where 𝑠𝑢𝑚(�⃗�!) = 𝑠𝑢𝑚(�⃗�") = 0.

Cr and Cb, at Y=0.5
Simon A. Eugster, own work.



Color features: Chrominance

𝑌
𝑃"
𝑃#
=

0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

𝑅
𝐺
𝐵

gives 𝑠𝑢𝑚(�⃗�#) = 𝑠𝑢𝑚(�⃗�") = 0.  You don’t need to 
memorize those numbers, but you should know that 
• Y = weighted average(R,G,B) 
• Pr = (1/2) (R – weighted average(G,B))
• Pb = (1/2) (B – weighted average(R,G)) 



Color features: Chrominance

• Some images are obviously red!  
(e.g., fire, or wood)
• Some images are obviously blue!  

(e.g., water, or sky)
• Average(Pb)-Average(Pr) should be 

a good feature for distinguishing 
between, for example, ”fire” versus 
“water” 
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El Castillo (pyramid of Kukulcán) in Chichén Itzá
By Daniel Schwen - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=7647000

1. Depth 
discontinuities

4. Color 
discontinuities

2. Orientation 
discontinuities

3. Illumination 
discontinuities
(shadows)

Things that look like edges



Edge detection by subtraction
Subtract neighboring pixels, to compute an “image 
gradient:”
X gradient:

𝐺% 𝑥’, 𝑦’ =
𝑌(𝑥’ + 1, 𝑦’) − 𝑌(𝑥’ − 1, 𝑦’)

2 ≈
𝜕𝑌
𝜕𝑥′

Y gradient:

𝐺& 𝑥’, 𝑦’ =
𝑌(𝑥’, 𝑦’ + 1) − 𝑌(𝑥’, 𝑦’ − 1)

2
≈
𝜕𝑌
𝜕𝑦′

Magnitude of the edge:

𝐺 𝑥’, 𝑦’ = 𝐺%' + 𝐺&' ≈
𝜕𝑌
𝜕𝑥′

'
+

𝜕𝑌
𝜕𝑦′

'



A problem with “edge detection by 
subtraction”

It tends to exaggerate noise.



Solving the noise problem
We can solve the noise problem by 
smoothing the image first, then taking 
the difference.
Smoothing is done by taking a local 
average, e.g.,

𝑆 𝑥!, 𝑦!

= &
"#$%

%

&
&#$%

%
1
11 ' 𝑌(𝑥! −𝑚, 𝑦! − 𝑛)

𝐺( 𝑥’, 𝑦’ =
𝑆(𝑥’ + 1, 𝑦’) − 𝑆(𝑥’ − 1, 𝑦’)

2

𝐺) 𝑥’, 𝑦’ =
𝑆(𝑥’, 𝑦’ + 1) − 𝑆(𝑥’, 𝑦’ − 1)

2



Gaussian blur
Weighted averaging is a little better than 
unweighted averaging.  We just need to 
make sure that the weights add up to one.  
For example:

𝑆 𝑥#, 𝑦#

= >
()*+

+

>
,)*+

+

ℎ(𝑚, 𝑛)𝑌(𝑥# −𝑚, 𝑦# − 𝑛)

ℎ 𝑚, 𝑛 =
1

2𝜋𝜎'
𝑒
* (

-
!
. ,
-

!

𝐺% 𝑥’, 𝑦’ =
𝑆(𝑥’ + 1, 𝑦’) − 𝑆(𝑥’ − 1, 𝑦’)

2

𝐺& 𝑥’, 𝑦’ =
𝑆(𝑥’, 𝑦’ + 1) − 𝑆(𝑥’, 𝑦’ − 1)

2

By IkamusumeFan - Own 
work, CC BY-SA 4.0, 
https://commons.wikime
dia.org/w/index.php?curi
d=41790217

The Gaussian blur filter ℎ 𝑚, 𝑛 results in 
different degrees of smoothness of 
𝑆 𝑥!, 𝑦! , depending on how we set the 
hyperparameter 𝜎 (the StDev):



Gaussian blur
Weighted averaging is a little better than 
unweighted averaging.  We just need to 
make sure that the weights add up to one.  
For example:

𝑆 𝑥#, 𝑦#

= >
()*+

+

>
,)*+

+

ℎ(𝑚, 𝑛)𝑌(𝑥# −𝑚, 𝑦# − 𝑛)

ℎ 𝑚, 𝑛 =
1

2𝜋𝜎'
𝑒
* (

-
!
. ,
-

!

𝐺% 𝑥’, 𝑦’ =
𝑆(𝑥’ + 1, 𝑦’) − 𝑆(𝑥’ − 1, 𝑦’)

2

𝐺& 𝑥’, 𝑦’ =
𝑆(𝑥’, 𝑦’ + 1) − 𝑆(𝑥’, 𝑦’ − 1)

2

The Gaussian blur filter ℎ 𝑚, 𝑛 looks kind 
of like this (plotted as a function of just 𝑛, 
for the coordinate 𝑚 = 0):

𝑛

ℎ 0, 𝑛

By Krishnavedala - Own work, CC0, 
https://commons.wikimedia.org/w/index.php?curid=35701251

Plotted in 2D, it looks kind of like this:



Difference of Gaussians

A “difference-of-Gaussians” filter is created by 
subtracting two Gaussian-blur filters, like this:

ℎ 𝑚, 𝑛 =
1

2𝜋𝜎# 𝑒
$ %

&
*
' (
&

*

ℎ)′ 𝑥’, 𝑦’ =
ℎ(𝑥’ + 1, 𝑦’) − ℎ(𝑥’ − 1, 𝑦’)

2

ℎ*′ 𝑥’, 𝑦’ =
ℎ(𝑥’, 𝑦’ + 1) − ℎ(𝑥’, 𝑦’ − 1)

2

𝑥’

ℎ$′ 𝑥’, 0

A “difference-of-Gaussians” 
filter looks kind of like this:

𝑦’

ℎ$′ 1, 𝑦′



Difference of Gaussians
If we pre-compute the difference-of-Gaussians 
filters, then we can combine the weighted-
average and the subtraction into just one 
operation, to save computation:

𝐺! 𝑥", 𝑦"

= *
#$%&

&

*
'$%&

&

ℎ!′(𝑚, 𝑛)𝑌(𝑥" −𝑚, 𝑦" − 𝑛)

𝐺( 𝑥", 𝑦"

= *
#$%&

&

*
'$%&

&

ℎ(′(𝑚, 𝑛)𝑌(𝑥" −𝑚, 𝑦" − 𝑛)

… so we never need to compute the smoothed 
image, 𝑆 𝑥", 𝑦" , at all.  We just go directly from the 
luminance, 𝑌(𝑥" −𝑚, 𝑦" − 𝑛), to the edge 
detection.

By Overremorto - Own work, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=10581259

The difference-of-Gaussians filters, 
ℎ$′(𝑚, 𝑛) and ℎ4′(𝑚, 𝑛), detect more or 
less edges, depending on how we set the 

hyperparameter 𝜎.  Here is 𝐺$5 + 𝐺45, 

thresholded to make it black and white:



Conclusions
• Pinhole camera equations tell you the relationship between the position on 

the image, (x’,y’), and the position in the real world, (x,y,z).  In particular, 
they tell you why parallel lines seem to converge at the vanishing point.

• The eye has two types of light sensors: cones (see color, only near the 
center), and rods (see black & white, near the periphery).  The real world 
has all colors, but we can fool the eye by stacking up three images (R, G, and 
B).  The YPrPB color space separates luminance (Y = average(R,G,B)) from 
chrominance (Pr=R-average(G,B), Pb=B-average(R,G)).

• Edges are caused by discontinuities of depth, orientation, illumination, and 
color.  It’s useful to detect where such things happen!  Subtracting pixels is 
noisy, so use a difference-of-Gaussians filter instead.


