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Probabilistic reasoning over time

* So far, we’ve mostly dealt with episodic environments
* Exceptions: games with multiple moves, planning

* In particular, the Bayesian networks we’ve seen so far
describe static situations

* Each random variable gets a single fixed value in a single
problem instance
* Now we consider the problem of describing
probabilistic environments that evolve over time

* Examples: robot localization, human activity detection,
tracking, speech recognition, machine translation,



Hidden Markov Models

e At each time slice t, the state of the world is
described by an unobservable variable X, and an
observable evidence variable E,

* Transition model: distribution over the current state
given the whole past history:
P(Xt | XOI Y Xt—l) = P(Xt | XO:t—l)

* Observation model: P(E, | X,.;, E;..1)




Hidden Markov Models

* Markov assumption (first order)

* The current state is conditionally independent of all the other
states given the state in the previous time step

* What does P(X; | X;...;) simplify to?
P(X; | Xo.t.1) = P(X; | Xis)
* Markov assumption for observations
* The evidence at time t depends only on the state at time t
* What does P(E, | X4, E;..;) simplify to?
P(E; | Xo.t» E1.e1) = P(E; | X)




Example Scenario: UmbrellaWorld

Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell & Norvig

* Elspeth Dunsany is an Al researcher at the Canadian company Unitek.

e Richard Feynman is an Al, named after the famous physicist, whose
personality he resembles.

* To keep him from escaping, Richard’s workstation is not connected to
the internet. He knows about rain but has never seen it.

* He has noticed, however, that Elspeth sometimes brings an umbrella
to work. He correctly infers that she is more likely to carry an
umbrella on days when it rains.



Example Scenario: UmbrellaWorld

Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell & Norvig

Since he has read a lot about rain,

Richard proposes a hidden Markov
model:

_ tat
* Rain on day t-1 (R;_,) makes rain i e @ %

on day t (R;) more likely.

* Elspeth usually brings her
umbrella (U;) on days when it
rains (R;), but not always.

observation



Example Scenario: UmbrellaWorld

Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell & Norvig

* Richard learns that the weather Transition model
changes on 3 out of 10 days, thus x| PR)
P(R:|R;—1) = 0.7 t | 07
P(R;|=R;—1) = 0.3 state /1 0

* He also learns that Elspeth
sometimes forgets her umbrella
when it’s raining, and that she
sometimes brings an umbrella
when it’s not raining. Specifically,

P(U;|—=R;) = 0.2

observation

Observation model



HMM as a Bayes Net

This slide shows an HMM as a Transition model
Bayes Net. You should remember R | P(R)
the graph semantics of a Bayes net: o ¢ o1

e Nodes are random variables.

* Edges denote stochastic
dependence.

observation

Observation model



HMM as a Finite State Machine

This slide shows exactly the same
HMM, viewed in a totally different
way. Here, we show it as a finite
state machine:

0.3

0.7

* Nodes denote states.

¢

* Edges denote possible transitions 0.7 0.3
between the states.

N

* Observation probabilities must
be written using Iittle table Transition probabilities Observation probabilities

. . . Re=T Re=F U=T Ug=F
thingies, hanging from each state. R 03 =T | 09 1

Rei=F 0.3 0.7 R, =F 0.2 0.8




Bayes Net vs. Finite State Machine

Finite State Machine: Bayes Net:

* Lists the different possible states * Lists the different time slices.
that the world can be in, atone . The various possible settings of

particular time. the state variable are not shown.
 Evolution over time is not
shown.
03 R[-] P(Rt)
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Applications of HMMs

« Speech recognition HMMs:

 Observations are acoustic signals
(continuous valued)

» States are specific positions in specific words
(so, tens of thousands)

« Machine translation HMMs:
« Observations are words (tens of thousands) Google
« States are translation options

Translate From: Latin + « To: English v

« Robot tracking:

 Observations are range readings
(continuous)

« States are positions on a map (continuous)

Source: Tamara Berg



Example: Speech Recognition

Acoustic wave form

 Observations: E; = FFT of 10ms “frame” Sampled at 16KHz, quantized to 8-12 bits
of the speech signal.

Fast Fourier Transform (FFT), once per 10ms,
computes a “picture” whose axes are time and
frequency
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Time
FFT of one frame (10ms)
is the HMM observation,
once per 10ms

Frequency

Observation = compressed version of the
log magnitude FFT, from one 10ms frame




Example: Speech Recognition

* Observations: E; = FFT of 10ms “frame”
of the speech Slgnal. Finite State Machine model of the word “Beth”

« States: X; = a specific position in a
specific word, coded using the
international phonetic alphabet:

* b = first sound of the word “Beth”
* £ = second sound of the word “Beth”
* O = third sound in the word “Beth”

0.05 0.5 0.1
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https://en.wikipedia.org/wiki/International_Phonetic_Alphabet

The Joint Distribution

* Transition model: P(X; | Xy...1) = P(X; | X;4)
* Observation model: P(E; | X,.;, E1.+q) =P(E; | X,)

* How do we compute the full joint probability table
P(XO:t' El:t)?

P(X,,.E,,) = PCX,)[ | (X)X, P(E|X))




HMM inference tasks

* Filtering: what is the distribution over the current state X, given all
the evidence so far, E;.. ? (example: is it currently raining?)

Query
variable

G s > D
D> O® O

Evidence variables



HMM inference tasks

* Filtering: what is the distribution over the current state X, given all
the evidence so far, E,., ?

* Smoothing: what is the distribution of some state X, (k<t) given
the entire observation sequence E,..? (example: did it rain on
Sunday?)

Query
variable

> ® @O



HMM inference tasks

* Filtering: what is the distribution over the current state X, given all
the evidence so far, E,., ?

* Smoothing: what is the distribution of some state X, (k<t) given
the entire observation sequence E,.;?

e Evaluation: compute the probability of a given observation
sequence E,.; (example: is Richard using the right model?)

Query:
Is this the right model
for these data?

G . — O — (O
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HMM inference tasks

Filtering: what is the distribution over the current state X, given all
the evidence so far, E

Smoothing: what is the distribution of some state X, (k<t) given
the entire observation sequence E,.;?

Evaluation: compute the probability of a given observation
sequence E,.;

Decoding: what is the most likely state sequence X,.; given the
observation sequence E,.? (example: what’s the weather every
day?)

Query variables: all of them



HMM Learning and Inference

* Inference tasks

* Filtering: what is the distribution over the current state X,
given all the evidence so far, E;

* Smoothing: what is the distribution of some state X, (k<t)
given the entire observation sequence E,..?

e Evaluation: compute the probability of a given observation
sequence E,.;

* Decoding: what is the most likely state sequence X, given the
observation sequence E,.;?

* Learning

* Given a training sample of sequences, learn the model
parameters (transition and emission probabilities)



Filtering and Decoding in UmbrellaWorld

Filtering: Richard observes Transition model

Elspeth’s umbrella on day 2, but

not on day 1. What is the state 0 o @
probability that it’s raining on day

27 observation 0 o

P(Rzl_lUl, Uz)?
Decoding: Same observation.

. . Transition probabilities Observation probabilities

What is the most likely sequence of R=T R=F U=T  U=F
hidden variables? R.=T | 0.7 0.3 R.=T | 009 0.1
argmax P(R,,R,|—=U{,U, )? Re=F | 0.3 0.7 Re=F | 02 0.8

R4{,R»



Bayes Net Inference for HMMs

To calculate a probability P(R,|U,,U,):

1. Select: which variables do we need, in order to model the

relationship among Uy, U,, and R,?

* We need also Ry and R;.
2. Multiply to compute joint probability:

P(RO'RllRZJ Ul/UZ) — P(RO)P(RllRO)P(UllRl) P(U2|R2)
3. Add to eliminate those we don’t care about
P(R,, Uy,U;) = Z P(Rg, Ry, Ry, Uy, Us)
Ro,R1
4. Divide: use Bayes’ rule to get the desired conditional
P(R;|U,,U;) = P(R,,Uy,U3)/P(U,,Us)

u, ) (u, 0D (U




Filtering and Decoding in UmbrellaWorld

1. Select: Transition model

To represent the relationship among
P(Ry| Uy, Up)? state (R (R )R
...we also need knowledge of Ry and R;.

* |n particular, we need the initial state observation 0 o

probability, P(R,).
* |t wasn’t specified in the problem

| e
_Statem.ent' Therefore we are jUStIerd Transition probabilities Observation probabilities
in making any reasonable assumption, R=T  R.=F U=T  U.=F
ano! clearly stating our assumption. == o 03 S 01
Let’s assume

R =F 0.3 0.7 R,=F 0.2 0.8

P(R,) = 0.5




Filtering and Decoding in UmbrellaWorld

2. Multiply:

P(RO’RliRZJ UltUZ) —

Ro—R1— U R
—Ro—R,U; JXEEY.
—RoR1-U; JNEG
—RoR U; [JXeE¥L!
Ro—R1—U; KXz
A ST 0.0168
1A 0.0084
0.0756

RoR,U,

0.0392
0.0098
0.0009
0.0081
0.0168
0.0042
0.0021
0.0189

0.0084
0.0021
0.0011
0.0095
0.0036
0.009
0.0025
0.0221

| BRy-Ua-RyUp Rp-Up RyUz

0.0756
0.0189
0.0095
0.0851
0.0324
0.0081
0.0221
0.1985

Transition model

OO

observation

Transition probabilities

Observation probabilities

Rt=T Rt=F Ut=T Ut=F
Rea=T 0.7 0.3 Re=T 0.9 0.1
Rey=F 0.3 0.7 R,=F 0.2 0.8




Filtering and Decoding in UmbrellaWorld

3. Add:

P(R,,U1,Uy) = ZRO Rlp(RO’ Ry, R, Uy,Uz) Transition model

_ state Ry )—( R DR,
VA 0236 0059 0.164 0.041
BRI 0.0155 0.1395 0.0345 0.3105 observation o @

Transition probabilities Observation probabilities

R =T 0.7 0.3 Re=T 0.9 0.1
Req=F 0.3 0.7 R, =F 0.2 0.8




Filtering and Decoding in UmbrellaWorld

4. Divide:
P(R;|U1,Uz) = P(Ry,Uy,Uz) /P(Uy,Us)

Transition model

_ state (R (R )R
094 030 083 0.12
0.06 070 017 0.88 observation  (Cu, ) (Cu, )

Transition probabilities Observation probabilities

R =T 0.7 0.3 Re=T 0.9 0.1
Req=F 0.3 0.7 R, =F 0.2 0.8




Filtering and Decoding in UmbrellaWorld

* Wow! That was insanely difficult! Why was it so difficult?

* Answer: The select step chose 5 variables that were necessary, so the
multiply step needed to construct a table with 32 numbers in it.

* In general:
* |f the select step chooses N variables, each of which has k values, then
* The multiply step needs to create a table with kN entries!
* Complexity is O{k"N}!
* For example: to find P(Rq|Uy4, ..., Usg)
* Select: there are 19 relevant variables (Ry, ..., Rg, U4, ..., Ug)
* ...50 complexity is 2219 = 524288



Better Algorithms for HMM Inference

* This can be made much, much more computationally efficient by
taking advantage of the structure of the HMM.

 Since each node has only 2 children, the complexity can be reduced
from O{k"} to only O{k?}.

* The algorithm has two variants: the forward algorithm, and the
Viterbi algorithm.

* I’ll tell you the secret on Monday.



