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Probabilistic reasoning over time

• So far, we’ve mostly dealt with episodic environments
• Exceptions: games with multiple moves, planning

• In particular, the Bayesian networks we’ve seen so far 
describe static situations
• Each random variable gets a single fixed value in a single 

problem instance

• Now we consider the problem of describing 
probabilistic environments that evolve over time
• Examples: robot localization, human activity detection, 

tracking, speech recognition, machine translation, 



Hidden Markov Models

• At each time slice t, the state of the world is 
described by an unobservable variable Xt and an 
observable evidence variable Et

• Transition model: distribution over the current state 
given the whole past history:
P(Xt | X0, …, Xt-1) = P(Xt | X0:t-1) 
• Observation model: P(Et | X0:t, E1:t-1) 
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Hidden Markov Models
• Markov assumption (first order)
• The current state is conditionally independent of all the other 

states given the state in the previous time step
• What does P(Xt | X0:t-1) simplify to?

P(Xt | X0:t-1) = P(Xt | Xt-1) 

• Markov assumption for observations
• The evidence at time t depends only on the state at time t
• What does P(Et | X0:t, E1:t-1)  simplify to?

P(Et | X0:t, E1:t-1)  = P(Et | Xt) 
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Example Scenario: UmbrellaWorld
Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell & Norvig

• Elspeth Dunsany is an AI researcher at the Canadian company Unitek.
• Richard Feynman is an AI, named after the famous physicist, whose 

personality he resembles.
• To keep him from escaping, Richard’s workstation is not connected to 

the internet.  He knows about rain but has never seen it.
• He has noticed, however, that Elspeth sometimes brings an umbrella 

to work.  He correctly infers that she is more likely to carry an 
umbrella on days when it rains.
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Example Scenario: UmbrellaWorld
Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell & Norvig

Since he has read a lot about rain, 
Richard proposes a hidden Markov 
model:
• Rain on day t-1 (𝑅!"#) makes rain 

on day t (𝑅!) more likely.
• Elspeth usually brings her 

umbrella (𝑈!) on days when it 
rains (𝑅!), but not always.
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Example Scenario: UmbrellaWorld
Characters from the novel Hammered by Elizabeth Bear,
Scenario from chapter 15 of Russell & Norvig

• Richard learns that the weather 
changes on 3 out of 10 days, thus

𝑃 𝑅!|𝑅!"# = 0.7
𝑃 𝑅!|¬𝑅!"# = 0.3

• He also learns that Elspeth 
sometimes forgets her umbrella 
when it’s raining, and that she 
sometimes brings an umbrella 
when it’s not raining. Specifically,

𝑃 𝑈!|𝑅! = 0.9
𝑃 𝑈!|¬𝑅! = 0.2
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HMM as a Bayes Net

This slide shows an HMM as a 
Bayes Net.  You should remember 
the graph semantics of a Bayes net:
• Nodes are random variables.
• Edges denote stochastic 

dependence.



HMM as a Finite State Machine

This slide shows exactly the same 
HMM, viewed in a totally different 
way.  Here, we show it as a finite 
state machine:
• Nodes denote states.
• Edges denote possible transitions 

between the states.
• Observation probabilities must 

be written using little table 
thingies, hanging from each state.
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Bayes Net vs. Finite State Machine

Finite State Machine:
• Lists the different possible states 

that the world can be in, at one 
particular time.
• Evolution over time is not 

shown.

Bayes Net:
• Lists the different time slices.
• The various possible settings of 

the state variable are not shown.
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Applications of HMMs
• Speech recognition HMMs:

• Observations are acoustic signals 
(continuous valued)

• States are specific positions in specific words 
(so, tens of thousands)

• Machine translation HMMs:
• Observations are words (tens of thousands)
• States are translation options

• Robot tracking:
• Observations are range readings 

(continuous)
• States are positions on a map (continuous)

Source: Tamara Berg



Example: Speech Recognition 
Acoustic wave form

Sampled at 16KHz, quantized to 8-12 bits
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FFT of one frame (10ms)
is the HMM observation, 
once per 10ms

Observation = compressed version of the 
log magnitude FFT, from one 10ms frame

• Observations: 𝐸! = FFT of 10ms “frame” 
of the speech signal.

Fast Fourier Transform (FFT), once per 10ms, 
computes a ”picture” whose axes are time and 

frequency



Example: Speech Recognition 

• Observations: 𝐸! = FFT of 10ms “frame” 
of the speech signal.

• States: 𝑋! = a specific position in a 
specific word, coded using the 
international phonetic alphabet:

• b = first sound of the word “Beth”
• ɛ = second sound of the word “Beth”
• θ = third sound in the word “Beth”
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Finite State Machine model of the word “Beth”

https://en.wikipedia.org/wiki/International_Phonetic_Alphabet


The Joint Distribution

• Transition model: P(Xt | X0:t-1) = P(Xt | Xt-1) 
• Observation model: P(Et | X0:t, E1:t-1)  = P(Et | Xt) 
• How do we compute the full joint probability table 

P(X0:t, E1:t)?
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HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, E1:t ?   (example: is it currently raining?)
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HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, E1:t ?
• Smoothing: what is the distribution of some state Xk (k<t) given 

the entire observation sequence E1:t?   (example: did it rain on 
Sunday?)
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HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, E1:t ?
• Smoothing: what is the distribution of some state Xk (k<t) given 

the entire observation sequence E1:t?
• Evaluation: compute the probability of a given observation 

sequence E1:t (example: is Richard using the right model?)
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Query:
Is this the right model 

for these data?



HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, E1:t

• Smoothing: what is the distribution of some state Xk (k<t) given 
the entire observation sequence E1:t?
• Evaluation: compute the probability of a given observation 

sequence E1:t

• Decoding: what is the most likely state sequence X0:t given the 
observation sequence E1:t?  (example: what’s the weather every 
day?)
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HMM Learning and Inference
• Inference tasks
• Filtering: what is the distribution over the current state Xt

given all the evidence so far, E1:t

• Smoothing: what is the distribution of some state Xk (k<t) 
given the entire observation sequence E1:t?
• Evaluation: compute the probability of a given observation 

sequence E1:t

• Decoding: what is the most likely state sequence X0:t given the 
observation sequence E1:t?

• Learning
• Given a training sample of sequences, learn the model 

parameters (transition and emission probabilities)
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Filtering and Decoding in UmbrellaWorld

Filtering: Richard observes 
Elspeth’s umbrella on day 2, but 
not on day 1.  What is the 
probability that it’s raining on day 
2?

𝑃 𝑅&|¬𝑈#, 𝑈& ?
Decoding: Same observation.  
What is the most likely sequence of 
hidden variables?
argmax
'!,'"

𝑃 𝑅#, 𝑅&|¬𝑈#, 𝑈& ?
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Bayes Net Inference for HMMs
To calculate a probability 𝑃 𝑅&|𝑈#,𝑈& :
1. Select: which variables do we need, in order to model the 

relationship among 𝑈#, 𝑈&, and 𝑅&?  
• We need also 𝑅! and 𝑅".

2. Multiply to compute joint probability:
𝑃 𝑅), 𝑅#, 𝑅&, 𝑈#,𝑈& = 𝑃 𝑅) 𝑃 𝑅#|𝑅) 𝑃 𝑈#|𝑅# …𝑃 𝑈&|𝑅&

3. Add to eliminate those we don’t care about
𝑃 𝑅&, 𝑈#,𝑈& =5

'#,'!
𝑃 𝑅), 𝑅#, 𝑅&, 𝑈#,𝑈&

4. Divide: use Bayes’ rule to get the desired conditional
𝑃 𝑅&|𝑈#,𝑈& = 𝑃 𝑅&, 𝑈#,𝑈& /𝑃 𝑈#,𝑈&
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Filtering and Decoding in UmbrellaWorld

1. Select: 
To represent the relationship among

𝑃 𝑅#|¬𝑈", 𝑈# ?
…we also need knowledge of 𝑅! and 𝑅".  
• In particular, we need the initial state 

probability, 𝑃 𝑅! .  
• It wasn’t specified in the problem 

statement!  Therefore we are justified 
in making any reasonable assumption, 
and clearly stating our assumption. 
Let’s assume 

𝑃 𝑅! = 0.5
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Filtering and Decoding in UmbrellaWorld
2. Multiply:

𝑃 𝑅!, 𝑅", 𝑅#, 𝑈",𝑈# =
𝑃 𝑅! 𝑃 𝑅"|𝑅! 𝑃 𝑈"|𝑅" …𝑃 𝑈#|𝑅#
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¬𝑹𝟐¬𝑼𝟐¬𝑹𝟐𝑼𝟐 𝑹𝟐¬𝑼𝟐 𝑹𝟐𝑼𝟐
¬𝑹𝟎¬𝑹𝟏¬𝑼𝟏 0.1568 0.0392 0.0084 0.0756
¬𝑹𝟎¬𝑹𝟏𝑼𝟏 0.0392 0.0098 0.0021 0.0189
¬𝑹𝟎𝑹𝟏¬𝑼𝟏 0.0036 0.0009 0.0011 0.0095
¬𝑹𝟎𝑹𝟏𝑼𝟏 0.0324 0.0081 0.0095 0.0851
𝑹𝟎¬𝑹𝟏¬𝑼𝟏 0.0672 0.0168 0.0036 0.0324
𝑹𝟎¬𝑹𝟏𝑼𝟏 0.0168 0.0042 0.009 0.0081
𝑹𝟎𝑹𝟏¬𝑼𝟏 0.0084 0.0021 0.0025 0.0221
𝑹𝟎𝑹𝟏𝑼𝟏 0.0756 0.0189 0.0221 0.1985
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Filtering and Decoding in UmbrellaWorld
3. Add:
𝑃 𝑅#, 𝑈",𝑈# =.

'!,'"
𝑃 𝑅!, 𝑅", 𝑅#, 𝑈",𝑈#
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Rt-1 = F 0.3 0.7
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¬𝑼𝟏¬𝑼𝟐¬𝑼𝟏𝑼𝟐 𝑼𝟏¬𝑼𝟐 𝑼𝟏𝑼𝟐
¬𝑹𝟐 0.236 0.059 0.164 0.041
𝑹𝟐 0.0155 0.1395 0.0345 0.3105
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Filtering and Decoding in UmbrellaWorld
4. Divide:
𝑃 𝑅&|𝑈#,𝑈& = 𝑃 𝑅&, 𝑈#,𝑈& /𝑃 𝑈#,𝑈&
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Rt = F 0.2 0.8

Observation probabilities
Rt = T Rt = F

Rt-1 = T 0.7 0.3

Rt-1 = F 0.3 0.7

Transition probabilities

¬𝑼𝟏¬𝑼𝟐¬𝑼𝟏𝑼𝟐 𝑼𝟏¬𝑼𝟐 𝑼𝟏𝑼𝟐
¬𝑹𝟐 0.94 0.30 0.83 0.12
𝑹𝟐 0.06 0.70 0.17 0.88



Filtering and Decoding in UmbrellaWorld

• Wow!  That was insanely difficult!  Why was it so difficult?
• Answer: The select step chose 5 variables that were necessary, so the 

multiply step needed to construct a table with 32 numbers in it.
• In general:
• If the select step chooses N variables, each of which has k values, then
• The multiply step needs to create a table with k^N entries!
• Complexity is O{k^N}!

• For example: to find 𝑃 𝑅*|𝑈#,… ,𝑈*
• Select: there are 19 relevant variables (𝑅!, … , 𝑅), 𝑈", … , 𝑈))
• …so complexity is 2^19 = 524288



Better Algorithms for HMM Inference

• This can be made much, much more computationally efficient by 
taking advantage of the structure of the HMM.
• Since each node has only 2 children, the complexity can be reduced 

from 𝑂 𝑘+ to only 𝑂 𝑘& .
• The algorithm has two variants: the forward algorithm, and the 

Viterbi algorithm.
• I’ll tell you the secret on Monday.


