CS 440/ECE 448 Lecture 12: Probability

Slides by Svetlana Lazebnik, 9/2016

Modified by Mark Hasegawa-Johnson, 2/2019

- Motivation: Why use probability?
- Review of Key Concepts
 - Outcomes, Events
 - Joint, Marginal, and Conditional
 - Independent vs. Conditionally Independent events
- Classification Using Probabilities

- Motivation: Why use probability?
- Review of Key Concepts
 - Outcomes, Events
 - Joint, Marginal, and Conditional
 - Independence and Conditional Independence
- Classification Using Probabilities

Motivation: Planning under uncertainty

- Recall: representation for planning
- States are specified as conjunctions of predicates
 - Start state: At(Me, UIUC) \land TravelTime(35min,UIUC,CMI) \land Now(12:45)
 - Goal state: At(Me, CMI, 15:30)
- Actions are described in terms of preconditions and effects:
 - Go(t, src, dst)
 - **Precond:** At(Me,src) ∧ TravelTime(dt,src,dst) ∧ Now(≤t)
 - Effect: At(Me, dst, t+dt)

Making decisions under uncertainty

• Suppose the agent believes the following:

P(Go(deadline-25) gets me there on time) = 0.04 P(Go(deadline-90) gets me there on time) = 0.70 P(Go(deadline-120) gets me there on time) = 0.95 P(Go(deadline-180) gets me there on time) = 0.9999

- Which action should the agent choose?
 - Depends on preferences for missing flight vs. time spent waiting
 - Encapsulated by a *utility function*
- The agent should choose the action that maximizes the *expected utility*:

Prob(A succeeds) × Utility(A succeeds) + Prob(A fails) × Utility(A fails)

Making decisions under uncertainty

• More generally: the <u>expected utility</u> of an action is defined as:

 $E[Utility|Action] = \sum_{outcomes} P(outcome|action)Utility(outcome)$

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Where do probabilities come from?

- Frequentism
 - Probabilities are relative frequencies
 - For example, if we toss a coin many times, P(heads) is the proportion of the time the coin will come up heads
 - But what if we're dealing with an event that has never happened before?
 - What is the probability that the Earth will warm by 0.15 degrees this year?
- Subjectivism
 - Probabilities are degrees of belief
 - But then, how do we assign belief values to statements?
 - In practice: models. Represent an *unknown event* as a series of *better-known events*
- A theoretical problem with Subjectivism:

Why do "beliefs" need to follow the laws of probability?

The Rational Bettor Theorem

- Why should a rational agent hold beliefs that are consistent with axioms of probability?
 - For example, $P(A) + P(\neg A) = 1$
- Suppose an agent believes that P(A)=0.7, and P(¬A)=0.7
- <u>Offer the following bet</u>: if A occurs, agent wins \$100. If A doesn't occur, agent loses \$105. Agent believes P(A)>100/(100+105), so agent accepts the bet.
- <u>Offer another bet</u>: if ¬A occurs, agent wins \$100. If ¬A doesn't occur, agent loses \$105. Agent believes P(¬A)>100/(100+105), so agent accepts the bet. <u>Oops...</u>
- **Theorem:** An agent who holds beliefs inconsistent with axioms of probability can be convinced to accept a combination of bets that is guaranteed to lose them money

- Motivation: Why use probability?
- Review of Key Concepts
 - Outcomes, Events
 - Joint, Marginal, and Conditional
 - Independence and Conditional Independence
- Classification Using Probabilities

Events

- Probabilistic statements are defined over *events*, or sets of world states
 - A = "It is raining"
 - B = "The weather is either cloudy or snowy"
 - C = "I roll two dice, and the result is 11"
 - D = "My car is going between 30 and 50 miles per hour"
- An EVENT is a SET of OUTCOMES
 - B = { outcomes : cloudy OR snowy }
 - C = { outcome tuples (d1,d2) such that d1+d2 = 11 }
- Notation: P(A) is the probability of the set of world states (outcomes) in which proposition A holds

Kolmogorov's axioms of probability

- For any propositions (events) A, B
 - 0 ≤ P(A) ≤ 1
 - P(True) = 1 and P(False) = 0
 - $P(A \lor B) = P(A) + P(B) P(A \land B)$
 - Subtraction accounts for double-counting
- Based on these axioms, what is $P(\neg A)$?

- These axioms are sufficient to completely specify probability theory for *discrete* random variables
 - For continuous variables, need density functions

Outcomes = Atomic events

- OUTCOME or ATOMIC EVENT: is a complete specification of the state of the world, or a complete assignment of domain values to all random variables
 - Atomic events are mutually exclusive and exhaustive
- E.g., if the world consists of only two Boolean variables *Cavity* and *Toothache*, then there are four outcomes:

Outcome #1: ¬*Cavity* ∧ ¬*Toothache* Outcome #2: ¬*Cavity* ∧ *Toothache* Outcome #3: *Cavity* ∧ ¬*Toothache* Outcome #4: *Cavity* ∧ *Toothache*

- Motivation: Why use probability?
- Review of Key Concepts
 - Outcomes, Events
 - Joint, Marginal, and Conditional
 - Independence and Conditional Independence
- Classification Using Probabilities

Joint probability distributions

• A *joint distribution* is an assignment of probabilities to every possible atomic event

Atomic event	Р
¬Cavity ^ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity $\land \neg$ Toothache	0.05
Cavity \land Toothache	0.05

• Why does it follow from the axioms of probability that the probabilities of all possible atomic events must sum to 1?

Joint probability distributions

- Suppose we have a joint distribution of N random variables, each of which takes values from a domain of size D:
 - What is the size of the probability table?
 - Impossible to write out completely for all but the smallest distributions

Marginal distributions

- The marginal distribution of event X_k is just its probability, $P(X_k)$.
- If you're given the joint distribution, P(X₁, X₂, ..., X_N), from it, how can you calculate P(X_k)?
- You calculate $P(X_k)$ from $P(X_1, X_2, ..., X_N)$ by <u>marginalizing</u>.

Marginal probability distributions

 From the joint distribution p(X,Y) we can find the marginal distributions p(X) and p(Y)

P(Cavity, Toothache)	
¬Cavity ^ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity <pre>^ ¬Toothache</pre>	0.05
Cavity \land Toothache	0.05

P(Cavity)	
¬Cavity	0.9
Cavity	0.1

P(Toothache)	
¬Toothache	0.85
Toochache	0.15

Conditional distributions

- The conditional probability of event X_k, given event X_j, is the probability that X_k has occurred if you already know that X_i has occurred.
- The conditional distribution is written $P(X_k | X_j)$.
- The probability that both X_j and X_k occurred was, originally, $P(X_j, X_k)$.
- But now you know that X_j has occurred. So all of the other events are no longer possible.
 - Other events: probability used to be $P(\neg X_j)$, but now their probability is 0.
 - Events in which X_j occurred: probability used to be P(X_j), but now their probability is 1.
- So we need to renormalize: the probability that both X_j and X_k occurred, GIVEN that X_j has occurred, is P(X_k | X_j)=P(X_j, X_k)/P(X_j).

Conditional Probability: renormalize (divide)

- Probability of cavity given toothache:
 P(Cavity = true | Toothache = true)
- For any two events A and B,

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = \frac{P(A, B)}{P(B)}$$

The set of all possible events used to be this _____ rectangle, so the whole rectangle used to have probability=1.

Now that we know B has occurred, the set of all possible events = the set of events in which B occurred. So we renormalize to make the area of this circle = 1.

Conditional probability

P(Cavity, Toothache)	
¬Cavity ^ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity $\land \neg$ Toothache	0.05
Cavity \land Toothache	0.05

P(Cavity)		P(Toothache)	
¬Cavity	0.9	¬Toothache	0.85
Cavity	0.1	Toochache	0.15

- What is p(Cavity = true | Toothache = false)? p(Cavity|¬Toothache) = 0.05/0.85 = 1/17
- What is p(*Cavity = false* | *Toothache = true*)? p(¬*Cavity* | *Toothache*) = 0.1/0.15 = 2/3

Conditional distributions

• A conditional distribution is a distribution over the values of one variable given fixed values of other variables

P(Cavity, Toothache)	
¬Cavity ∧ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity <pre>^ ¬Toothache</pre>	0.05
Cavity \land Toothache	0.05

P(Cavity Toothache)	
¬Cavity	0.667
Cavity	0.333

P(Toothache Cavity)	
¬Toothache	0.5
Toochache	0.5

P(Cavity ¬Toothache)	
¬Cavity	0.941
Cavity	0.059

P(Toothache ¬Cavity)	
¬Toothache	0.889
Toochache	0.111

Normalization trick

To get the whole conditional distribution p(X | Y = y) at once, select all entries in the joint distribution table matching Y = y and renormalize them to sum to one

P(Cavity, Toothache)	
¬Cavity ^ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity <pre>^ ¬Toothache</pre>	0.05
Cavity ~ Toothache	0.05

Toothache, Cavity = false	
¬Toothache	0.8
Toochache	0.1
Renormalize	
P(Toothache Cavity = false)	
¬Toothache	0.889
Toochache	0.111

Normalization trick

- To get the whole conditional distribution p(X | Y = y) at once, select all entries in the joint distribution table matching Y = y and renormalize them to sum to one
- Why does it work?

$$P(\mathbf{x} | \mathbf{y}) = \frac{P(x, y)}{\sum_{x'} P(x', y)} = \frac{P(x, y)}{P(y)} \text{ by marginalization}$$

Product rule

- Definition of conditional probability: $P(A | B) = \frac{P(A, B)}{P(B)}$
- Sometimes we have the conditional probability and want to obtain the joint:

$$P(A,B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

• The chain rule:

$$P(A_1, \dots, A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1, A_2) \dots P(A_n \mid A_1, \dots, A_{n-1})$$
$$= \prod_{i=1}^n P(A_i \mid A_1, \dots, A_{i-1})$$

- Motivation: Why use probability?
- Review of Key Concepts
 - Outcomes, Events, and Random Variables
 - Joint, Marginal, and Conditional
 - Independence and Conditional Independence
- Classification Using Probabilities

Independence ≠ Mutually Exclusive

- Two events A and B are *independent* if and only if p(A \wedge B) = p(A, B) = p(A) p(B)
 - In other words, p(A | B) = p(A) and p(B | A) = p(B)
 - This is an important simplifying assumption for modeling, e.g., *Toothache* and *Weather* can be assumed to be independent?
- Are two *mutually exclusive* events independent?
 - No! Quite the opposite! If you know A happened, then you know that B _didn't_ happen!!
 p(A ∨ B) = p(A) + p(B)

Independence ≠ Conditional Independence

Toothache: Boolean variable indicating whether the patient has a toothache

Cavity: Boolean variable indicating whether the patient has a cavity

By Aduran, CC-SA 3.0

Catch: whether the dentist's probe catches in the cavity

By Dozenist, CC-SA 3.0

These Events are not Independent

- If the patient has a toothache, then it's likely he has a cavity. Having a cavity makes it more likely that the probe will catch on something. P(Catch|Toothache) > P(Catch)
- If the probe catches on something, then it's likely that the patient has a cavity. If he has a cavity, then he might also have a toothache.

P(Toothache|Catch) > P(Toothache)

• So Catch and Toothache are not independent

...but they are Conditionally Independent

- Here are some reasons the probe might not catch, despite having a cavity:
 - The dentist might be really careless
 - The cavity might be really small
- Those reasons have nothing to do with the toothache!

P(Catch|Cavity,Toothache) = P(Catch|Cavity)

Catch and Toothache are <u>conditionally independent</u> given knowledge of Cavity

...but they are Conditionally Independent

These statements are all equivalent:

P(Catch|Cavity,Toothache) = P(Catch|Cavity)P(Toothache|Cavity,Catch) = P(Toothache|Cavity)

P(Toothache, Catch|Cavity) = P(Toothache|Cavity) P(Catch|Cavity)

...and they all mean that Catch and Toothache are <u>conditionally independent</u> given knowledge of Cavity

- Motivation: Why use probability?
- Review of Key Concepts
 - Outcomes, Events
 - Joint, Marginal, and Conditional
 - Independent vs. Conditionally Independent events
- Classification Using Probabilities

Classification using probabilities

- Suppose you know that you have a toothache.
- Should you conclude that you have a cavity?
- Goal: make a decision that **minimizes your probability of error**.
- Equivalent: make a decision that <u>maximizes the probability of being</u> <u>correct</u>. This is called a MAP (maximum a posteriori) decision. You decide that you have a toothache if and only if

 $P(Cavity|Toothache) > P(\neg Cavity|Toothache)$

Bayesian Decisions

- What if we don't know *P*(*Cavity*|*Toothache*)? Instead, we only know *P*(*Toothache*|*Cavity*), *P*(*Cavity*), and *P*(*Toothache*)?
- Then we choose to believe we have a Cavity if and only if

 $P(Cavity|Toothache) > P(\neg Cavity|Toothache)$

Which can be re-written as

 $\frac{P(Toothache|Cavity)P(Cavity)}{P(Toothache)} > \frac{P(Toothache|\neg Cavity)P(\neg Cavity)}{P(Toothache)}$

- Motivation: Why use probability?
- Review of Key Concepts
 - Outcomes, Events
 - Joint, Marginal, and Conditional
 - Independent vs. Conditionally Independent events
- Classification Using Probabilities