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Motivation: Planning under uncertainty

• Recall: representation for planning
• States are specified as conjunctions of predicates

• Start state: At(Me, UIUC) Ù TravelTime(35min,UIUC,CMI) Ù Now(12:45)
• Goal state: At(Me, CMI, 15:30)

• Actions are described in terms of preconditions and effects:
• Go(t, src, dst)

• Precond: At(Me,src) Ù TravelTime(dt,src,dst) Ù Now(≤t)
• Effect: At(Me, dst, t+dt)



Making decisions under uncertainty
• Suppose the agent believes the following:

P(Go(deadline-25) gets me there on time) = 0.04 
P(Go(deadline-90) gets me there on time) = 0.70 
P(Go(deadline-120) gets me there on time) = 0.95 
P(Go(deadline-180) gets me there on time) = 0.9999 

• Which action should the agent choose?
• Depends on preferences for missing flight vs. time spent waiting
• Encapsulated by a utility function

• The agent should choose the action that maximizes the expected utility:

Prob(A succeeds) × Utility(A succeeds) + Prob(A fails) × Utility(A fails)



Making decisions under uncertainty
• More generally: the expected utility of an action is defined as:

E[Utility|Action] = ∑!"#$!%&'𝑃 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑜𝑢𝑡𝑐𝑜𝑚𝑒)

• Utility theory is used to represent and infer preferences
• Decision theory = probability theory + utility theory



Where do probabilities come from?
• Frequentism

• Probabilities are relative frequencies
• For example, if we toss a coin many times, P(heads) is the proportion of 

the time the coin will come up heads
• But what if we’re dealing with an event that has never happened 

before?
• What is the probability that the Earth will warm by 0.15 degrees this 

year?
• Subjectivism

• Probabilities are degrees of belief 
• But then, how do we assign belief values to statements?
• In practice: models.  Represent an unknown event as a series of better-

known events
• A theoretical problem with Subjectivism: 

Why do “beliefs” need to follow the laws of probability?



The Rational Bettor Theorem
• Why should a rational agent hold beliefs that are consistent with axioms of 

probability?
• For example, P(A) + P(¬A) = 1

• Suppose an agent believes that P(A)=0.7, and P(¬A)=0.7
• Offer the following bet: if A occurs, agent wins $100.  If A doesn’t occur, agent loses 

$105.  Agent believes P(A)>100/(100+105), so agent accepts the bet.
• Offer another bet: if ¬A occurs, agent wins $100.  If ¬A doesn’t occur, agent loses 

$105.  Agent believes P(¬A)>100/(100+105), so agent accepts the bet. Oops…

• Theorem: An agent who holds beliefs inconsistent with axioms of probability can be 
convinced to accept a combination of bets that is guaranteed to lose them money
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Events

• Probabilistic statements are defined over events, or sets of 
world states
§ A = “It is raining”
§ B = “The weather is either cloudy or snowy”
§ C = “I roll two dice, and the result is 11”
§ D = “My car is going between 30 and 50 miles per hour”

• An EVENT is a SET of OUTCOMES
§ B = { outcomes : cloudy OR snowy }
§ C = { outcome tuples (d1,d2) such that d1+d2 = 11 }

§ Notation: P(A) is the probability of the set of world states 
(outcomes) in which proposition A holds



Kolmogorov’s axioms of probability

• For any propositions (events) A, B
§ 0 ≤ P(A) ≤ 1
§ P(True) = 1 and P(False) = 0
§ P(A Ú B) = P(A) + P(B) – P(A Ù B)

– Subtraction accounts for double-counting

• Based on these axioms, what is P(¬A)?

• These axioms are sufficient to completely specify probability theory for discrete
random variables
• For continuous variables, need density functions

A BAÙB



Outcomes = Atomic events

• OUTCOME or ATOMIC EVENT: is a complete specification of the state 
of the world, or a complete assignment of domain values to all 
random variables
• Atomic events are mutually exclusive and exhaustive

• E.g., if the world consists of only two Boolean variables Cavity and 
Toothache, then there are four outcomes:

Outcome #1: ¬Cavity Ù ¬Toothache
Outcome #2: ¬Cavity Ù Toothache
Outcome #3: Cavity Ù ¬Toothache
Outcome #4: Cavity Ù Toothache
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Joint probability distributions

• A joint distribution is an assignment of probabilities to every possible 
atomic event

• Why does it follow from the axioms of probability that the probabilities of all 
possible atomic events must sum to 1?

Atomic event P

¬Cavity Ù ¬Toothache 0.8

¬Cavity Ù Toothache 0.1

Cavity Ù ¬Toothache 0.05

Cavity Ù Toothache 0.05



Joint probability distributions

• Suppose we have a joint distribution of N random variables, 
each of which takes values from a domain of size D:
•What is the size of the probability table?
• Impossible to write out completely for all but the smallest 

distributions



Marginal distributions

• The marginal distribution of event Xk is just its probability, 
P(Xk). 
• If you’re given the joint distribution, P(X1, X2, …, XN) , from it, 

how can you calculate P(Xk)?
• You calculate P(Xk) from P(X1, X2, …, XN) by marginalizing. 



Marginal probability distributions
• From the joint distribution p(X,Y) we can find the 

marginal distributions p(X) and p(Y)

P(Cavity, Toothache)

¬Cavity Ù ¬Toothache 0.8

¬Cavity Ù Toothache 0.1

Cavity Ù ¬Toothache 0.05

Cavity Ù Toothache 0.05

P(Cavity)

¬Cavity 0.9

Cavity 0.1

P(Toothache)

¬Toothache 0.85

Toochache 0.15



Conditional distributions
• The conditional probability of event Xk, given event Xj, is the probability 

that Xk has occurred if you already know that Xj has occurred.
• The conditional distribution is written P(Xk| Xj). 
• The probability that both Xj and Xk occurred was, originally, P(Xj, Xk).
• But now you know that Xj has occurred.  So all of the other events are no 

longer possible.
• Other events: probability used to be P(¬Xj), but now their probability is 0.
• Events in which Xj occurred: probability used to be P(Xj), but now their 

probability is 1.
• So we need to renormalize: the probability that both Xj and Xk occurred, 

GIVEN that Xj has occurred, is P(Xk| Xj)=P(Xj, Xk)/P(Xj).



Conditional Probability: renormalize (divide)
• Probability of cavity given toothache: 

P(Cavity = true | Toothache = true)

• For any two events A and B,  
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The set of all possible 
events used to be this 
rectangle, so the 
whole rectangle used 
to have probability=1.

Now that we know B 
has occurred, the set 
of all possible events 
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which B occurred. So 
we renormalize to 
make the area of this 
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Conditional probability

• What is p(Cavity = true | Toothache = false)?
p(Cavity|¬Toothache) = 0.05/0.85 = 1/17

• What is p(Cavity = false | Toothache = true)?
p(¬Cavity|Toothache) = 0.1/0.15 = 2/3

P(Cavity, Toothache)

¬Cavity Ù ¬Toothache 0.8

¬Cavity Ù Toothache 0.1

Cavity Ù ¬Toothache 0.05

Cavity Ù Toothache 0.05

P(Cavity)

¬Cavity 0.9

Cavity 0.1

P(Toothache)

¬Toothache 0.85

Toochache 0.15



Conditional distributions
• A conditional distribution is a distribution over the values of 

one variable given fixed values of other variables

P(Cavity, Toothache)

¬Cavity Ù ¬Toothache 0.8

¬Cavity Ù Toothache 0.1

Cavity Ù ¬Toothache 0.05

Cavity Ù Toothache 0.05

P(Cavity | Toothache)

¬Cavity 0.667

Cavity 0.333

P(Cavity|¬Toothache)

¬Cavity 0.941

Cavity 0.059

P(Toothache | Cavity)

¬Toothache 0.5

Toochache 0.5

P(Toothache | ¬Cavity)

¬Toothache 0.889

Toochache 0.111



Normalization trick
• To get the whole conditional distribution p(X | Y = y) at 

once, select all entries in the joint distribution table 
matching Y = y and renormalize them to sum to one

P(Cavity, Toothache)

¬Cavity Ù ¬Toothache 0.8

¬Cavity Ù Toothache 0.1

Cavity Ù ¬Toothache 0.05

Cavity Ù Toothache 0.05

Toothache, Cavity = false

¬Toothache 0.8

Toochache 0.1

P(Toothache | Cavity = false)

¬Toothache 0.889

Toochache 0.111

Select

Renormalize



Normalization trick
• To get the whole conditional distribution p(X | Y = y) at 

once, select all entries in the joint distribution table 
matching Y = y and renormalize them to sum to one
• Why does it work?
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Product rule
• Definition of conditional probability: 

• Sometimes we have the conditional probability and want to 
obtain the joint:

• The chain rule:
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Independence ≠ Mutually Exclusive

• Two events A and B are independent if and only if 
p(A Ù B) = p(A, B) = p(A) p(B)
• In other words, p(A | B) = p(A) and p(B | A) = p(B)
• This is an important simplifying assumption for modeling, 

e.g., Toothache and Weather can be assumed to be 
independent?

• Are two mutually exclusive events independent?
• No!  Quite the opposite!  If you know A happened, then 

you know that B _didn’t_ happen!! 
p(A Ú B) = p(A) + p(B)



Toothache: Boolean 
variable indicating 

whether the patient 
has a toothache

By William Brassey Hole(Died:1917)

Cavity: Boolean 
variable indicating 

whether the 
patient has a cavity Catch: whether the 

dentist’s probe 
catches in the cavity

Independence ≠ Conditional Independence

By Aduran, CC-SA 3.0

By Dozenist, CC-SA 3.0



These Events are not Independent

• If the patient has a toothache, then it’s likely he has a cavity.  Having a cavity 
makes it more likely that the probe will catch on something.

𝑃(𝐶𝑎𝑡𝑐ℎ|𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) > 𝑃(𝐶𝑎𝑡𝑐ℎ)

• If the probe catches on something, then it’s likely that the patient has a cavity.  If 
he has a cavity, then he might also have a toothache.

𝑃(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒|𝐶𝑎𝑡𝑐ℎ) > 𝑃(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

• So Catch and Toothache are not independent



…but they are Conditionally Independent

• Here are some reasons the probe might not catch, despite having a cavity:

• The dentist might be really careless

• The cavity might be really small

• Those reasons have nothing to do with the toothache!

𝑃 𝐶𝑎𝑡𝑐ℎ 𝐶𝑎𝑣𝑖𝑡𝑦, 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 = 𝑃(𝐶𝑎𝑡𝑐ℎ|𝐶𝑎𝑣𝑖𝑡𝑦)

• Catch and Toothache are conditionally independent given knowledge of Cavity

Dependent Dependent

Conditionally Dependent given knowledge of Cavity



…but they are Conditionally Independent

These	statements	are	all	equivalent:
𝑃 𝐶𝑎𝑡𝑐ℎ 𝐶𝑎𝑣𝑖𝑡𝑦, 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 = 𝑃 𝐶𝑎𝑡𝑐ℎ 𝐶𝑎𝑣𝑖𝑡𝑦

𝑃 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 𝐶𝑎𝑣𝑖𝑡𝑦, 𝐶𝑎𝑡𝑐ℎ = 𝑃(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒|𝐶𝑎𝑣𝑖𝑡𝑦)

𝑃 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, 𝐶𝑎𝑡𝑐ℎ 𝐶𝑎𝑣𝑖𝑡𝑦 = 𝑃(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒|𝐶𝑎𝑣𝑖𝑡𝑦) 𝑃 𝐶𝑎𝑡𝑐ℎ 𝐶𝑎𝑣𝑖𝑡𝑦

…and they all mean that Catch and Toothache are conditionally independent 
given knowledge of Cavity

Dependent Dependent

Conditionally Dependent given knowledge of Cavity
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Classification using probabilities

• Suppose you know that you have a toothache.
• Should you conclude that you have a cavity?
• Goal: make a decision that minimizes your probability of error.
• Equivalent: make a decision that maximizes the probability of being 

correct.  This is called a MAP (maximum a posteriori) decision.  You 
decide that you have a toothache if and only if

𝑃 𝐶𝑎𝑣𝑖𝑡𝑦 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 > 𝑃(¬𝐶𝑎𝑣𝑖𝑡𝑦|𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)



Bayesian Decisions

• What if we don’t know 𝑃 𝐶𝑎𝑣𝑖𝑡𝑦 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 ?  Instead, we only know 
𝑃 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 𝐶𝑎𝑣𝑖𝑡𝑦 , 𝑃(𝐶𝑎𝑣𝑖𝑡𝑦), and 𝑃(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)?
• Then we choose to believe we have a Cavity if and only if

𝑃 𝐶𝑎𝑣𝑖𝑡𝑦 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 > 𝑃(¬𝐶𝑎𝑣𝑖𝑡𝑦|𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

Which can be re-written as

𝑃 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 𝐶𝑎𝑣𝑖𝑡𝑦 𝑃(𝐶𝑎𝑣𝑖𝑡𝑦)
𝑃(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

>
𝑃 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 ¬𝐶𝑎𝑣𝑖𝑡𝑦 𝑃(¬𝐶𝑎𝑣𝑖𝑡𝑦)

𝑃(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)
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