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Minimax Search

• Minimax(node) = 
§ Utility(node) if node is terminal
§ maxaction Minimax(Succ(node, action)) if player = MAX
§ minaction Minimax(Succ(node, action)) if player = MIN
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Alpha-Beta Pruning



Alpha-beta pruning
• It is possible to compute the exact minimax decision 

without expanding every node in the game tree



Alpha-beta pruning
• It is possible to compute the exact minimax decision 

without expanding every node in the game tree

3

³3



Alpha-beta pruning
• It is possible to compute the exact minimax decision 

without expanding every node in the game tree

3

³3

£2



Alpha-beta pruning
• It is possible to compute the exact minimax decision 

without expanding every node in the game tree

3

³3

£2 £14



Alpha-beta pruning
• It is possible to compute the exact minimax decision 

without expanding every node in the game tree

3

³3

£2 £5



Alpha-beta pruning
• It is possible to compute the exact minimax decision 

without expanding every node in the game tree
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Alpha-Beta Pruning

Key point that I find most counter-intuitive:

• If MIN discovers that, at a particular node in the tree, she can make a 
move that’s REALLY REALLY GOOD for her…
• She can assume that MAX will never let her reach that node.
• … and she can prune it away from the search, and never consider it 

again.



Alpha pruning: Nodes MIN can’t reach

• α is the value of the best choice for 
the MAX player found so far 
at any choice point above node n
• More precisely: α is the highest 

number that MAX knows how to force 
MIN to accept
• We want to compute the 

MIN-value at n
• As we loop over n’s children, 

the MIN-value decreases
• If it drops below α, MAX will never 

choose n, so we can ignore n’s 
remaining children



Beta pruning: Nodes MAX can’t reach

• β is the value of the best choice for 
the MIN player found so far 
at any choice point above node m
• More precisely: β is the lowest number 

that MIN know how to force MAX to 
accept
• We want to compute the 

MAX-value at m
• As we loop over m’s children, 

the MAX-value increases
• If it rises above β, MIN will never 

choose m, so we can ignore m’s 
remaining children
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Alpha-beta pruning

An unexpected result:
• α is the highest number that MAX 

knows how to force MIN to accept
• β is the lowest number that MIN know 

how to force MAX to accept
So 

𝛼 ≤ 𝛽

β
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Alpha-beta pruning
Function action = Alpha-Beta-Search(node) 

v = Min-Value(node, −∞, ∞)

return the action from node with value v

α: best alternative available to the Max player

β: best alternative available to the Min player

Function v = Min-Value(node, α, β)

if Terminal(node) return Utility(node)

v = +∞

for each action from node

v = Min(v, Max-Value(Succ(node, action), α, β))

if v ≤ α return v

β = Min(β, v)

end for

return v

node

Succ(node, action)

action

…



Alpha-beta pruning
Function action = Alpha-Beta-Search(node) 

v = Max-Value(node, −∞, ∞)

return the action from node with value v

α: best alternative available to the Max player

β: best alternative available to the Min player

Function v = Max-Value(node, α, β)

if Terminal(node) return Utility(node)

v = −∞

for each action from node

v = Max(v, Min-Value(Succ(node, action), α, β))

if v ≥ β return v

α = Max(α, v)

end for

return v

node

Succ(node, action)

action

…



Alpha-beta pruning is optimal!
• Pruning does not affect final result 5

2 15 6 8

X X X X



Alpha-beta pruning: Complexity

• Amount of pruning depends on 
move ordering
• Should start with the “best” moves 

(highest-value for MAX or lowest-
value for MIN)

•With perfect ordering, I have to 
evaluate:
• ALL OF THE GRANDCHILDREN who are 

daughters of my FIRST CHILD, and 
• The FIRST GRANDCHILD who is a 

daughter of each of my REMAINING 
CHILDREN
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Alpha-beta pruning: Complexity

•With perfect ordering:
• With a branching factor of 𝑏, I have to 

evaluate only 2𝑏 − 1 of my 
grandchildren, instead of 𝑏!.
• So the total computational complexity 

is reduced from 𝑂{𝑏"} to 𝑂 𝑏
!
"

• Exponential reduction in complexity!
• Equivalently: with the same 

computational power, you can search 
a tree that is twice as deep.
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Limited-Horizon 
Computation



Games vs. single-agent search
• We don’t know how the opponent will act
• The solution is not a fixed sequence of actions from start state 

to goal state, but a strategy or policy (a mapping from state to 
best move in that state)



Computational complexity…
• In order to decide how to move at node 𝑛, we need to 

search all possible sequences of moves, from 𝑛 until the 
end of the game



Computational complexity…
• The branching factor, search depth, and number of 

terminal configurations are huge
• In chess, branching factor ≈ 35 and depth ≈ 100, giving 

a search tree of 𝟑𝟓𝟏𝟎𝟎 ≈ 𝟏𝟎𝟏𝟓𝟒 nodes
• Number of atoms in the observable universe ≈ 1080

• This rules out searching all the way to the end of the 
game



Limited-horizon computing
• Cut off search at a certain depth (called the “horizon”) 
• With a 10 gigaflops laptop = 10! operations/second, you can compute a 

tree of about 10! ≈ 35", i.e., your horizon is just 6 moves.
• Blue Waters has 13.3 petaflops = 1.3×10#", so it can compute a tree of 

about 10#" ≈ 35##, i.e., the entire Blue Waters supercomputer, playing 
chess, can only search a game tree with a horizon of about 11 moves into 
the future.

• Obvious fact: after 11 moves, nobody has won the game yet (usually)…

• so you don’t know the TRUE value of any node at a horizon of just 11 
moves.



Limited-horizon computing

The solution implemented by every chess-playing program ever 
written:
• Search out to a horizon of 𝑚 moves (thus, a tree of size 𝑏$).

• For each of those 𝑏$ terminal states 𝑆% (0 ≤ 𝑖 < 𝑏$), use some kind of 
evaluation function to estimate the probability of winning, 𝑝 𝑆% .

• Then use minimax or alpha-beta to propagate those 𝑝 𝑆% back to the 
start node, so you can choose the best move to make in the starting 
node.

• At the next move, push the tree one step farther into the future, and 
repeat the process.



Evaluation functions
How can we estimate the evaluation function?
• Use a neural net (or maybe just a logistic regression) to estimate 𝑝 𝑆%

from a training database of human vs. human games.
• … or by playing two computers against one another.

• Most of the possible game boards in chess have never occurred in the 
history of the universe.  Therefore we need to approximate 𝑝 𝑆% by 
computing some useful features of 𝑆% whose values we have observed, 
somewhere in the history of the universe.
• Example features: # rooks remaining, position of the queen, relative 

positions of the queen & king, # steps in the shortest path from the 
knight to the queen.



Cutting off search

• Horizon effect: you may incorrectly estimate the value of a state by 
overlooking an event that is just beyond the depth limit
• For example, a damaging move by the opponent that can be delayed but not 

avoided

• Possible remedies
• Quiescence search: do not cut off search at positions that are unstable – for 

example, are you about to lose an important piece?
• Singular extension: a strong move that should be tried when the normal 

depth limit is reached



Chess playing systems
• Baseline system: 200 million node evaluations per move, 

minimax with a decent evaluation function and quiescence 
search
• 5-ply ≈ human novice

• Add alpha-beta pruning
• 10-ply ≈ typical PC, experienced player

• Deep Blue: 30 billion evaluations per move, singular 
extensions, evaluation function with 8000 features, 
large databases of opening and endgame moves
• 14-ply ≈ Garry Kasparov

• More recent state of the art (Hydra, ca. 2006): 36 billion 
evaluations per second, advanced pruning techniques
• 18-ply ≈ better than any human alive?

http://en.wikipedia.org/wiki/Hydra_(chess)


Summary

• A zero-sum game can be expressed as a minimax tree
• Alpha-beta pruning finds the correct solution.  In the best case, it has 

half the exponent of minimax (can search twice as deeply with a given 
computational complexity).
• Limited-horizon search is always necessary (you can’t search to the 

end of the game), and always suboptimal.
• Estimate your utility, at the end of your horizon, using some type of learned 

utility function
• Quiescence search: don’t cut off the search in an unstable position (need 

some way to measure “stability”)
• Singular extension: have one or two “super-moves” that you can test at the 

end of your horizon


