
CS440/ECE448 Lecture 11:
Alpha-Beta Pruning; Limited Horizon

Slides by Mark Hasegawa-Johnson & Svetlana
Lazebnik, 2/2020
Distributed under CC-BY 4.0
(https://creativecommons.org/licenses/by/4.0/). You
are free to share and/or adapt if you give attribution.

By Karl Gottlieb von Windisch - Copper engraving from the book: Karl Gottlieb von Windisch,
Briefe über den Schachspieler des Hrn. von Kempelen, nebst drei Kupferstichen die diese
berühmte Maschine vorstellen. 1783.Original Uploader was Schaelss (talk) at 11:12, 7. Apr
2004., Public Domain, https://commons.wikimedia.org/w/index.php?curid=424092

https://creativecommons.org/licenses/by/4.0/

Minimax Search

• Minimax(node) =
§ Utility(node) if node is terminal
§ maxaction Minimax(Succ(node, action)) if player = MAX
§ minaction Minimax(Succ(node, action)) if player = MIN

3 2 2

3

Alpha-Beta Pruning

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2 £14

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2 £5

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

3

£2 2

Alpha-Beta Pruning

Key point that I find most counter-intuitive:

• If MIN discovers that, at a particular node in the tree, she can make a
move that’s REALLY REALLY GOOD for her…
• She can assume that MAX will never let her reach that node.
• … and she can prune it away from the search, and never consider it

again.

Alpha pruning: Nodes MIN can’t reach

• α is the value of the best choice for
the MAX player found so far
at any choice point above node n
• More precisely: α is the highest

number that MAX knows how to force
MIN to accept
• We want to compute the

MIN-value at n
• As we loop over n’s children,

the MIN-value decreases
• If it drops below α, MAX will never

choose n, so we can ignore n’s
remaining children

Beta pruning: Nodes MAX can’t reach

• β is the value of the best choice for
the MIN player found so far
at any choice point above node m
• More precisely: β is the lowest number

that MIN know how to force MAX to
accept
• We want to compute the

MAX-value at m
• As we loop over m’s children,

the MAX-value increases
• If it rises above β, MIN will never

choose m, so we can ignore m’s
remaining children

β

m

Alpha-beta pruning

An unexpected result:
• α is the highest number that MAX

knows how to force MIN to accept
• β is the lowest number that MIN know

how to force MAX to accept
So

𝛼 ≤ 𝛽

β

m

Alpha-beta pruning
Function action = Alpha-Beta-Search(node)

v = Min-Value(node, −∞, ∞)

return the action from node with value v

α: best alternative available to the Max player

β: best alternative available to the Min player

Function v = Min-Value(node, α, β)

if Terminal(node) return Utility(node)

v = +∞

for each action from node

v = Min(v, Max-Value(Succ(node, action), α, β))

if v ≤ α return v

β = Min(β, v)

end for

return v

node

Succ(node, action)

action

…

Alpha-beta pruning
Function action = Alpha-Beta-Search(node)

v = Max-Value(node, −∞, ∞)

return the action from node with value v

α: best alternative available to the Max player

β: best alternative available to the Min player

Function v = Max-Value(node, α, β)

if Terminal(node) return Utility(node)

v = −∞

for each action from node

v = Max(v, Min-Value(Succ(node, action), α, β))

if v ≥ β return v

α = Max(α, v)

end for

return v

node

Succ(node, action)

action

…

Alpha-beta pruning is optimal!
• Pruning does not affect final result 5

2 15 6 8

X X X X

Alpha-beta pruning: Complexity

• Amount of pruning depends on
move ordering
• Should start with the “best” moves

(highest-value for MAX or lowest-
value for MIN)

•With perfect ordering, I have to
evaluate:
• ALL OF THE GRANDCHILDREN who are

daughters of my FIRST CHILD, and
• The FIRST GRANDCHILD who is a

daughter of each of my REMAINING
CHILDREN

5

2 15 6 8

X X X X

Alpha-beta pruning: Complexity

•With perfect ordering:
• With a branching factor of 𝑏, I have to

evaluate only 2𝑏 − 1 of my
grandchildren, instead of 𝑏!.
• So the total computational complexity

is reduced from 𝑂{𝑏"} to 𝑂 𝑏
!
"

• Exponential reduction in complexity!
• Equivalently: with the same

computational power, you can search
a tree that is twice as deep.

5

2 15 6 8

X X X X

Limited-Horizon
Computation

Games vs. single-agent search
• We don’t know how the opponent will act
• The solution is not a fixed sequence of actions from start state

to goal state, but a strategy or policy (a mapping from state to
best move in that state)

Computational complexity…
• In order to decide how to move at node 𝑛, we need to

search all possible sequences of moves, from 𝑛 until the
end of the game

Computational complexity…
• The branching factor, search depth, and number of

terminal configurations are huge
• In chess, branching factor ≈ 35 and depth ≈ 100, giving

a search tree of 𝟑𝟓𝟏𝟎𝟎 ≈ 𝟏𝟎𝟏𝟓𝟒 nodes
• Number of atoms in the observable universe ≈ 1080

• This rules out searching all the way to the end of the
game

Limited-horizon computing
• Cut off search at a certain depth (called the “horizon”)
• With a 10 gigaflops laptop = 10! operations/second, you can compute a

tree of about 10! ≈ 35", i.e., your horizon is just 6 moves.
• Blue Waters has 13.3 petaflops = 1.3×10#", so it can compute a tree of

about 10#" ≈ 35##, i.e., the entire Blue Waters supercomputer, playing
chess, can only search a game tree with a horizon of about 11 moves into
the future.

• Obvious fact: after 11 moves, nobody has won the game yet (usually)…

• so you don’t know the TRUE value of any node at a horizon of just 11
moves.

Limited-horizon computing

The solution implemented by every chess-playing program ever
written:
• Search out to a horizon of 𝑚 moves (thus, a tree of size 𝑏$).

• For each of those 𝑏$ terminal states 𝑆% (0 ≤ 𝑖 < 𝑏$), use some kind of
evaluation function to estimate the probability of winning, 𝑝 𝑆% .

• Then use minimax or alpha-beta to propagate those 𝑝 𝑆% back to the
start node, so you can choose the best move to make in the starting
node.

• At the next move, push the tree one step farther into the future, and
repeat the process.

Evaluation functions
How can we estimate the evaluation function?
• Use a neural net (or maybe just a logistic regression) to estimate 𝑝 𝑆%

from a training database of human vs. human games.
• … or by playing two computers against one another.

• Most of the possible game boards in chess have never occurred in the
history of the universe. Therefore we need to approximate 𝑝 𝑆% by
computing some useful features of 𝑆% whose values we have observed,
somewhere in the history of the universe.
• Example features: # rooks remaining, position of the queen, relative

positions of the queen & king, # steps in the shortest path from the
knight to the queen.

Cutting off search

• Horizon effect: you may incorrectly estimate the value of a state by
overlooking an event that is just beyond the depth limit
• For example, a damaging move by the opponent that can be delayed but not

avoided

• Possible remedies
• Quiescence search: do not cut off search at positions that are unstable – for

example, are you about to lose an important piece?
• Singular extension: a strong move that should be tried when the normal

depth limit is reached

Chess playing systems
• Baseline system: 200 million node evaluations per move,

minimax with a decent evaluation function and quiescence
search
• 5-ply ≈ human novice

• Add alpha-beta pruning
• 10-ply ≈ typical PC, experienced player

• Deep Blue: 30 billion evaluations per move, singular
extensions, evaluation function with 8000 features,
large databases of opening and endgame moves
• 14-ply ≈ Garry Kasparov

• More recent state of the art (Hydra, ca. 2006): 36 billion
evaluations per second, advanced pruning techniques
• 18-ply ≈ better than any human alive?

http://en.wikipedia.org/wiki/Hydra_(chess)

Summary

• A zero-sum game can be expressed as a minimax tree
• Alpha-beta pruning finds the correct solution. In the best case, it has

half the exponent of minimax (can search twice as deeply with a given
computational complexity).
• Limited-horizon search is always necessary (you can’t search to the

end of the game), and always suboptimal.
• Estimate your utility, at the end of your horizon, using some type of learned

utility function
• Quiescence search: don’t cut off the search in an unstable position (need

some way to measure “stability”)
• Singular extension: have one or two “super-moves” that you can test at the

end of your horizon

