CS440/ECE448 Lecture 10: Two-Player Games

Slides by Mark Hasegawa-Johnson \& Svetlana Lazebnik, 2/2020

Distributed under CC-BY 4.0
(https://creativecommons.org/licenses/by/4.0/). You are free to share and/or adapt if you give attribution.

By Karl Gottlieb von Windisch - Copper engraving from the book: Karl Gottlieb von Windisch, Briefe über den Schachspieler des Hrn. von Kempelen, nebst drei Kupferstichen die diese berühmte Maschine vorstellen. 1783.Original Uploader was Schaelss (talk) at 11:12, 7. Apr 2004., Public Domain, https://commons.wikimedia.org/w/index.php?curid=424092

Why study games?

- Games are a traditional hallmark of intelligence
- Games are easy to formalize
- Games can be a good model of real-world competitive or cooperative activities
- Military confrontations, negotiation, auctions, etc.

Game Al: Origins

- Minimax algorithm: Ernst Zermelo, 1912
- Chess playing with evaluation function, quiescence search, selective search: Claude Shannon, 1949 (paper)
- Alpha-beta search: John McCarthy, 1956
- Checkers program that learns its own evaluation function by playing against itself: Arthur Samuel, 1956

Types of game environments

	Deterministic	Stochastic
Perfect information (fully observable)	Chess, checkers,	Backgammon, go
Imperfect information (partially observable)	Battleship	Scrabble, poker, bridge

Zero-sum Games

Alternating two-player zero-sum games

- Players take turns
- Each game outcome or terminal state has a utility for each player (e.g., 1 for win, 0 for loss)
- The sum of both players' utilities is a constant

Games vs. single-agent search

- We don't know how the opponent will act
- The solution is not a fixed sequence of actions from start state to goal state, but a strategy or policy (a mapping from state to best move in that state)

Game tree

- A game of tic-tac-toe between two players, "max" and "min"

COMPLETE MAP OF OPTIMAL TIC-TAC-TOE MOVES
YOUR MOVE IS GIVEN BY THE POSITIIN OF THE LARGEST RED SYMBOL ON THE GRID. WHEN YOUR OPPONENT PICKS A MOVE, ZOOM IN ON THE REGION OF THE GRID WHERE THEY WENT. REPEAT.

MAP FOR X:

A more abstract game tree

Minimax Search

The rules of every game

- Every possible outcome has a value (or "utility") for me.
- Zero-sum game: if the value to me is +V , then the value to my opponent is -V .
- Phrased another way:
- My rational action, on each move, is to choose a move that will maximize the value of the outcome
- My opponent's rational action is to choose a move that will minimize the value of the outcome
- Call me "Max"
- Call my opponent "Min"

Game tree search

- Minimax value of a node: the utility (for MAX) of being in the corresponding state, assuming perfect play on both sides
- Minimax strategy: Choose the move that gives the best worst-case payoff

Computing the minimax value of a node

MAX

MIN

- $\operatorname{Minimax}($ node $)=$
- Utility(node) if node is terminal
- max action Minimax(Succ(node, action)) if player = MAX
- min $_{\text {action }}$ Minimax(Succ(node, action)) if player = MIN

Optimality of minimax

- The minimax strategy is optimal against an optimal opponent
- What if your opponent is suboptimal?
- Your utility will ALWAYS BE HIGHER than if you were playing an optimal opponent!
- A different strategy may work better for a sub-optimal opponent, but it will necessarily be worse against an optimal opponent

Multi-player games; Non-zero-sum games

- More than two players. For example:
- Dog (\%) tries to maximize the number of doggie treats
- Cat () tries to maximize the number of cat treats
- Mouse ($\%$) tries to maximize the number of mouse treats
- Non-zero-sum. We can't just assume that Min's score is the opposite of Max's. Instead, utilities are now tuples. For example:
- $(\% 5,8,2)=5$ doggie treats, 8 kitty treats, 2 mouse treats
- Each player maximizes their own utility at their node

Minimax in multi-player \& non-zero-sum games
(\%2, 45, \%2)

Alpha-Beta Pruning

Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree

MAX

MIN

Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree

Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree

Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree

MAX

MIN

Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree

MAX

MIN

Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree

MAX

MIN

Alpha-Beta Pruning

Key point that I find most counter-intuitive:

- MIN needs to calculate which move MAX will make.
- MAX would never choose a suboptimal move.
- So if MIN discovers that, at a particular node in the tree, she can make a move that's REALLY REALLY GOOD for her...
- She can assume that MAX will never let her reach that node.
- ... and she can prune it away from the search, and never consider it again.

Alpha-beta pruning

- α is the value of the best choice for the MAX player found so far at any choice point above node n
- More precisely: α is the highest number that MAX knows how to force MIN to accept
- We want to compute the MIN-value at n
- As we loop over n's children, the MIN-value decreases
- If it drops below α, MAX will never choose n, so we can ignore n 's remaining children

Alpha-beta pruning

- $\boldsymbol{\beta}$ is the value of the best choice for the MIN player found so far at any choice point above node n
- More precisely: $\boldsymbol{\beta}$ is the lowest number that MIIN know how to force MAX to accept
- We want to compute the MAX-value at m
- As we loop over m's children, the MAX-value increases
- If it rises above $\boldsymbol{\beta}$, MIN will never choose m, so we can ignore m 's remaining children

Alpha-beta pruning

An unexpected result:

- α is the highest number that MAX knows how to force MIN to accept
- $\boldsymbol{\beta}$ is the lowest number that MIN know how to force MAX to accept
So

$$
\alpha \leq \beta
$$

Alpha-beta pruning

Function action $=$ Alpha-Beta-Search $($ node $)$

$v=$ Min-Value(node, $-\infty, \infty$)
return the action from node with value v
α : best alternative available to the Max player
B: best alternative available to the Min player

Function $v=$ Min-Value(node, α, b)
if Terminal(node) return Utility(node)

$v=+\infty$
for each action from node
$v=\operatorname{Min}(v, \operatorname{Max-Value}(\operatorname{Succ}($ node, action), $\alpha, 6))$
if $v \leq \alpha$ return v
$b=\operatorname{Min}(b, v)$
end for
return v

Alpha-beta pruning

Function action $=$ Alpha-Beta-Search(node)

$v=$ Max-Value(node, $-\infty, \infty$)
return the action from node with value v
action
b: best alternative available to the Min player

Function $v=$ Max-Value(node, α, b)
if Terminal(node) return Utility(node)
Succ(node, action)
$v=-\infty$
for each action from node
$v=\operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(\operatorname{Succ}($ node, action $), \alpha, b))$
if $v \geq b$ return v
$\alpha=\operatorname{Max}(\alpha, v)$
end for
return v

Alpha-beta pruning

- Pruning does not affect final result
- Amount of pruning depends on move ordering
- Should start with the "best" moves (highest-value for MAX or lowest-value for MIN)
- For chess, can try captures first, then threats, then forward moves, then backward moves
- Can also try to remember "killer moves" from other branches of the tree
- With perfect ordering, the time to find the best move is reduced to $O\left(b^{m / 2}\right)$ from $O\left(b^{m}\right)$
- Depth of search is effectively doubled

Limited-Horizon Computation

Games vs. single-agent search

- We don't know how the opponent will act
- The solution is not a fixed sequence of actions from start state to goal state, but a strategy or policy (a mapping from state to best move in that state)

Games vs. single-agent search

- We don't know how the opponent will act
- The solution is not a fixed sequence of actions from start state to goal state, but a strategy or policy (a mapping from state to best move in that state)
- Efficiency is critical to playing well
- The time to make a move is limited
- The branching factor, search depth, and number of terminal configurations are huge
- In chess, branching factor ≈ 35 and depth ≈ 100, giving a search tree of 10^{154} nodes
- Number of atoms in the observable universe $\approx 10^{80}$
- This rules out searching all the way to the end of the game

Evaluation function

- Cut off search at a certain depth and compute the value of an evaluation function for a state instead of its minimax value
- The evaluation function may be thought of as the probability of winning from a given state or the expected value of that state
- A common evaluation function is a weighted sum of features:

$$
\operatorname{Eval}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)
$$

- For chess, w_{k} may be the material value of a piece (pawn = 1 , knight $=3$, rook $=5$, queen $=9$) and $f_{k}(s)$ may be the advantage in terms of that piece
- Evaluation functions may be learned from game databases or by having the program play many games against itself

Cutting off search

- Horizon effect: you may incorrectly estimate the value of a state by overlooking an event that is just beyond the depth limit
- For example, a damaging move by the opponent that can be delayed but not avoided
- Possible remedies
- Quiescence search: do not cut off search at positions that are unstable - for example, are you about to lose an important piece?
- Singular extension: a strong move that should be tried when the normal depth limit is reached

Advanced techniques

- Transposition table to store previously expanded states
- Forward pruning to avoid considering all possible moves
- Lookup tables for opening moves and endgames

Chess playing systems

- Baseline system: 200 million node evalutions per move (3 min), minimax with a decent evaluation function and quiescence search
- 5-ply \approx human novice
- Add alpha-beta pruning
- 10-ply \approx typical PC, experienced player
- Deep Blue: 30 billion evaluations per move, singular extensions, evaluation function with 8000 features, large databases of opening and endgame moves
- 14 -ply \approx Garry Kasparov
- More recent state of the art (Hydra, ca. 2006): 36 billion evaluations per second, advanced pruning techniques
- $\quad 18$-ply \approx better than any human alive?

Summary

- A zero-sum game can be expressed as a minimax tree
- Alpha-beta pruning finds the correct solution. In the best case, it has half the exponent of minimax (can search twice as deeply with a given computational complexity).
- Limited-horizon search is always necessary (you can't search to the end of the game), and always suboptimal.
- Estimate your utility, at the end of your horizon, using some type of learned utility function
- Quiescence search: don't cut off the search in an unstable position (need some way to measure "stability")
- Singular extension: have one or two "super-moves" that you can test at the end of your horizon

