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Example: River Crossing Problems
https://en.wikipedia.org/wiki/River_crossing_puzzle

• A farmer has a fox, a goat, and a 
bag of beans to get across the 
river
• His boat will only carry him + 

one object
• He can’t leave the fox with the 

goat
• He can’t leave the goat with the 

bag of beans

https://en.wikipedia.org/wiki/River_crossing_puzzle


Solution
https://en.wikipedia.org/wiki/River_crossing_puzzle

fgb -----(farmer, goat)----à fGb
fGb ß-----(farmer)-----------

-----(farmer,fox)-----à FGb
Fgb ß--(farmer,goat)------

-----(farmer,beans)---à FgB
FgB ß-------(farmer)--------

-----(farmer,goat)----à FGB

https://en.wikipedia.org/wiki/River_crossing_puzzle


Example: Cargo delivery problem

• You have packages waiting for pickup at Atlanta, Boston, Charlotte, 
Denver, Edmonton, and Fairbanks
• They must be delivered to Albuquerque, Baltimore, Chicago, Des 

Moines, El Paso, and Frisco
• You have two trucks.  Each truck can hold only two packages at a 

time.



Example: Design for Disassembly
”Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products 
That Share Disassembly Operations,” Sara Behdad, Minjung Kwak, Harrison Kim and 
Deborah Thurston. J. Mech. Des 132(4), 2010, doi:10.1115/1.4001207

• Design decisions limit the 
sequence in which you can 
disassemble a product at the 
end of its life
• Problem statement: design the 

product in order to make 
disassembly as cheap as possible

http://doi:10/1.4001207


Application of planning: the Gale-Church 
alignment algorithm for machine translation



Application of planning: the Gale-Church 
alignment algorithm for machine translation



Example: Tower of Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi

Description English: This is a visualization generated with the 
walnut based on my implementation at [1] of the iterative 
algorithm described in Tower of Hanoi

Date 30 April 2015
Source I designed this using http://thewalnut.io/
Author Trixx

https://en.wikipedia.org/wiki/Tower_of_Hanoi
http://thewalnut.io/
https://thewalnut.io/visualizer/visualize/1322/342/
https://commons.wikimedia.org/wiki/Tower_of_Hanoi
http://thewalnut.io/
https://commons.wikimedia.org/wiki/User:Trixx
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The Syntax of First-Order Logic (Textbook p. 293)
𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 →

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚,…
| ¬ 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒

| 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ∧ 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒
| 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ∨ 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒

| 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ⟹ 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒
| 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ⟺ 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒

| 𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑟 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒, … 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝑇𝑒𝑟𝑚 → 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑟 → ∃ | ∀

A “sentence” is 
• an evaluated function, or 
• a negated sentence, or 
• the conjunction of 2 sentences, or 
• the disjunction of 2 sentences, or 
• an implication, or 
• an equivalence, or 
• a sentence with a quantified variable.

A “term” is an evaluated function, or a 
variable, or a constant. 

A “quantifier” is “there exists,” or “for all.”



Examples (Textbook, p. 330)
English First-Order Logic Notation
It is a crime for Americans to sell 
weapons to hostile nations.

𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 𝑥 ∧𝑊𝑒𝑎𝑝𝑜𝑛 𝑦 ∧
𝑆𝑒𝑙𝑙𝑠 𝑥, 𝑦, 𝑧 ∧ 𝐻𝑜𝑠𝑡𝑖𝑙𝑒 𝑧

⟹ 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑥)
Colonel West sold missiles to 
Ganymede.

∃𝑥,𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥)
∧ 𝑆𝑒𝑙𝑙𝑠(𝑊𝑒𝑠𝑡, 𝑥, 𝐺𝑎𝑛𝑦𝑚𝑒𝑑𝑒)

Colonel West is American. 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛(𝑊𝑒𝑠𝑡)
Ganymede is an enemy of 
America.

𝐸𝑛𝑒𝑚𝑦(𝐺𝑎𝑛𝑦𝑚𝑒𝑑𝑒, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎)

Missiles are weapons. 𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥) ⟹ 𝑊𝑒𝑎𝑝𝑜𝑛(𝑥)
An enemy of America is a hostile 
nation.

𝐸𝑛𝑒𝑚𝑦(𝑥, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎)
⟹ 𝐻𝑜𝑠𝑡𝑖𝑙𝑒(𝑥)



Automatic Theorem Proving

Can we prove the theorem: 

𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑊𝑒𝑠𝑡)?

First-Order Logic Notation
𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 𝑥 ∧𝑊𝑒𝑎𝑝𝑜𝑛 𝑦 ∧
𝑆𝑒𝑙𝑙𝑠 𝑥, 𝑦, 𝑧 ∧ 𝐻𝑜𝑠𝑡𝑖𝑙𝑒 𝑧

⟹ 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑥)
∃𝑥,𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥)

∧ 𝑆𝑒𝑙𝑙𝑠(𝑊𝑒𝑠𝑡, 𝑥, 𝐺𝑎𝑛𝑦𝑚𝑒𝑑𝑒)
𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛(𝑊𝑒𝑠𝑡)

𝐸𝑛𝑒𝑚𝑦(𝐺𝑎𝑛𝑦𝑚𝑒𝑑𝑒, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎)
𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥) ⟹ 𝑊𝑒𝑎𝑝𝑜𝑛(𝑥)

𝐸𝑛𝑒𝑚𝑦(𝑥, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎)
⟹ 𝐻𝑜𝑠𝑡𝑖𝑙𝑒(𝑥)



Actions that a Theorem Prover can Take
• Universal Instantiation: 
• given the sentence ∀𝑥, 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥), 
• for any known constant 𝐶, 
• it is possible to generate the sentence 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐶).

• Existential Instantiation: 
• given the proposition ∃𝑥, 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥), 
• if no known constant 𝐴 is known to satisfy 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐴), then 
• it is possible to define a new, otherwise unspecified constant 𝐵, and
• to generate the sentence 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐵).

• Generalized Modus Ponens:
• Given the sentence 𝑝!(𝑥!)⋀ 𝑝"(𝑥")⋀…⋀ 𝑝#(𝑥#) ⟹ 𝑞(𝑥!, … , 𝑥#), and
• given the sentences 𝑝!(𝐶!), … , 𝑝#(𝐶#) for any constants 𝐶!, … , 𝐶#,
• it is possible to generate the sentence 𝑞(𝐶!, … , 𝐶#)



Automatic Theorem Proving Example
• Existential Instantiation: 

• Input: ∃𝑥,𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥) ∧ 𝑆𝑒𝑙𝑙𝑠(𝑊𝑒𝑠𝑡, 𝑥, 𝐺𝑎𝑛𝑦𝑚𝑒𝑑𝑒)
• Output: 𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑀) ∧ 𝑆𝑒𝑙𝑙𝑠(𝑊𝑒𝑠𝑡,𝑀, 𝐺𝑎𝑛𝑦𝑚𝑒𝑑𝑒)

• Generalized Modus Ponens:
• Input:    𝑀𝑖𝑠𝑠𝑖𝑙𝑒 𝑀 and 𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥) ⟹ 𝑊𝑒𝑎𝑝𝑜𝑛(𝑥)
• Output: 𝑊𝑒𝑎𝑝𝑜𝑛(𝑀)

• Generalized Modus Ponens:
• Input:    𝐸𝑛𝑒𝑚𝑦(𝐺𝑎𝑛𝑦𝑚𝑒𝑑𝑒, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎) and 𝐸𝑛𝑒𝑚𝑦(𝑥, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎) ⟹ 𝐻𝑜𝑠𝑡𝑖𝑙𝑒(𝑥)
• Output: 𝐻𝑜𝑠𝑡𝑖𝑙𝑒(𝐺𝑎𝑛𝑦𝑚𝑒𝑑𝑒)

• Generalized Modus Ponens:
• Input:   𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 𝑥 ∧𝑊𝑒𝑎𝑝𝑜𝑛 𝑦 ∧ 𝑆𝑒𝑙𝑙𝑠 𝑥, 𝑦, 𝑧 ∧ 𝐻𝑜𝑠𝑡𝑖𝑙𝑒 𝑧 ⟹ 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑥)
and
𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 𝑊𝑒𝑠𝑡 ,𝑊𝑒𝑎𝑝𝑜𝑛 𝑀 , 𝑆𝑒𝑙𝑙𝑠 𝑊𝑒𝑠𝑡,𝑀, 𝐺𝑎𝑛𝑦𝑚𝑒𝑑𝑒 , 𝐻𝑜𝑠𝑡𝑖𝑙𝑒(𝐺𝑎𝑛𝑦𝑚𝑒𝑑𝑒)

• Output: 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑊𝑒𝑠𝑡)



Automatic Theorem Proving as Search

• State = the set of all currently known sentences
• Action = generate a new sentence
• Goal State = a set of sentences that includes the target sentence

(Question to ponder: how do you disprove a target sentence?)



Forward Chaining
•What’s Special About Theorem Proving: 
• A state, at level n, can be generated by the combination of 

several states at level n-1.
• Definition: Forward Chaining is a search algorithm in which 

each action 
• generates a new sentence, 
• by combining as many different preceding states as 

necessary.



Example: Forward Chaining to prove 𝑞!

𝑝!, 𝑝", 𝑝! ⟹ 𝑞!, 𝑝" ⟹ 𝑞", 𝑞! ∧ 𝑞" ⟹ 𝑞#

𝑝!, 𝑝", 𝑝! ⟹ 𝑞!, 𝑝" ⟹ 𝑞", 𝑞! ∧ 𝑞" ⟹ 𝑞#, 𝑞!

𝑝!, 𝑝", 𝑝! ⟹ 𝑞!, 𝑝" ⟹ 𝑞", 𝑞! ∧ 𝑞" ⟹ 𝑞#, 𝑞"

𝑝!, 𝑝", 𝑝! ⟹ 𝑞!, 𝑝" ⟹ 𝑞", 𝑞! ∧ 𝑞" ⟹ 𝑞#, 𝑞!, 𝑞", 𝑞#

Initial State

Search ”Tree” Level 1

Search ”Tree” Level 2:
Goal Achieved



Backward Chaining
•What Else is Special About Theorem Proving: 
• The ”Goal State” is defined to be any set of sentences that 

includes the target sentence
• Definition: Backward Chaining is a search algorithm in which
• State = {set of known sentences}, {set of desired 

sentences}
• Action = apply a known sentence, backward, to a target 

sentence, in order to generate a new set of desired 
sentences 
• Goal = all “desired sentences” are part of the set of 

“known sentences”



Example: Backward Chaining to prove 𝑞!
KNOWN: 𝑝!, 𝑝", 𝑝! ⟹ 𝑞!, 𝑝" ⟹ 𝑞", 𝑞! ∧ 𝑞" ⟹ 𝑞#

DESIRED: {𝑞#}

DESIRED: 𝑞!, 𝑞"

Initial State

Search Tree Level 1

Search Tree Level 2DESIRED: 𝑝!, 𝑞" DESIRED: 𝑞!, 𝑝"

DESIRED: 𝑝!, 𝑝" DESIRED: 𝑝!, 𝑝" Search Tree Level 3:
Goal Achieved
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Search review

• A search problem is defined by:
• Initial state
• Goal state
• Actions
• Transition model
• Cost



A representation for planning
• STRIPS (Stanford Research Institute Problem Solver): classical 

planning framework from the 1970s
• States are specified as conjunctions of predicates

• Start state: At(home) Ù Sells(SM, Milk) Ù Sells(SM, Bananas) Ù Sells(HW, drill)
• Goal state: At(home) Ù Have(Milk) Ù Have(Banana) Ù Have(drill)

• Actions are described in terms of preconditions and effects:
• Go(x, y)

• Precond: At(x)
• Effect: ¬At(x) Ù At(y)

• Buy(x, store)
• Precond: At(store) Ù Sells(store, x)
• Effect: Have(x)

• Planning is “just” a search problem

http://en.wikipedia.org/wiki/STRIPS


Planning as Theorem Proving

•A planning action is like a “𝑝 ⟹ 𝑞” statement.
• In order to be applied, it requires certain input sentences to be 

true.  For example, the action “put the goat in the boat” requires, 
as its precondition, that the boat is empty.
• The result of the action is the generation of an output sentence.  

For example: “the goat is now in the boat.”
• The initial state is a set of sentences that are initially true.
• The goal state is a set of sentences that we want to “prove.”



Important differences between Planning and 
Theorem Proving, #1: Negating your preconditions
•A planning action may NEGATE some of its 

preconditions.
• Example: the action “put the goat in the boat” requires, as its 

precondition, the sentence ¬Boat(goat).
• It generates, as its output, the sentence: Boat(goat).

• No action can combine two world states that contain 
contradictory sentences.  For example, you can’t combine 
the states {p,q} and {p,¬q} to get the state {p,q,¬q}.



Algorithms for planning: Forward Chaining

Starting with the start state, find all applicable actions 
(actions for which preconditions are satisfied), compute the 
successor state based on the effects, keep searching until 
goals are met
• Can work well with good heuristics



Forward-Chaining Example: Fox, Goat & Beans
𝐿𝑒𝑓𝑡 𝐹𝑜𝑥 , 𝐿𝑒𝑓𝑡 𝐺𝑜𝑎𝑡 , 𝐿𝑒𝑓𝑡(𝐵𝑒𝑎𝑛𝑠)

𝐵𝑜𝑎𝑡 𝐹𝑜𝑥 ,
𝐿𝑒𝑓𝑡 𝐺𝑜𝑎𝑡 ,
𝐿𝑒𝑓𝑡(𝐵𝑒𝑎𝑛𝑠)

𝐿𝑒𝑓𝑡 𝐹𝑜𝑥 ,
𝐵𝑜𝑎𝑡 𝐺𝑜𝑎𝑡 ,
𝐿𝑒𝑓𝑡(𝐵𝑒𝑎𝑛𝑠)

𝐿𝑒𝑓𝑡 𝐹𝑜𝑥 ,
𝐿𝑒𝑓𝑡 𝐺𝑜𝑎𝑡 ,
𝐵𝑜𝑎𝑡(𝐵𝑒𝑎𝑛𝑠)

X X

𝐿𝑒𝑓𝑡 𝐹𝑜𝑥 ,
𝐿𝑒𝑓𝑡 𝐺𝑜𝑎𝑡 ,
𝐿𝑒𝑓𝑡(𝐵𝑒𝑎𝑛𝑠)

𝐿𝑒𝑓𝑡 𝐹𝑜𝑥 ,
𝑅𝑖𝑔ℎ𝑡 𝐺𝑜𝑎𝑡 ,
𝐿𝑒𝑓𝑡(𝐵𝑒𝑎𝑛𝑠)

… …



Algorithms for planning: Backward Chaining

Starting with the goal state (a set of target sentences), 
• find all applicable actions (actions that would generate a 

sentence in the goal state).  
• For each, generate the predecessor state as a new set of 

target sentences. 
• Keep searching until all target sentences are in the initial 

state.



Backward-Chaining Example: Fox, Goat & Beans
𝑅𝑖𝑔ℎ𝑡 𝐹𝑜𝑥 , 𝑅𝑖𝑔ℎ𝑡 𝐺𝑜𝑎𝑡 , 𝑅𝑖𝑔ℎ𝑡(𝐵𝑒𝑎𝑛𝑠)

𝐵𝑜𝑎𝑡 𝐹𝑜𝑥 ,
𝑅𝑖𝑔ℎ𝑡 𝐺𝑜𝑎𝑡 ,
𝑅𝑖𝑔ℎ𝑡(𝐵𝑒𝑎𝑛𝑠)

𝑅𝑖𝑔ℎ𝑡 𝐹𝑜𝑥 ,
𝐵𝑜𝑎𝑡 𝐺𝑜𝑎𝑡 ,
𝑅𝑖𝑔ℎ𝑡(𝐵𝑒𝑎𝑛𝑠)

𝑅𝑖𝑔ℎ𝑡 𝐹𝑜𝑥 ,
𝑅𝑖𝑔ℎ𝑡 𝐺𝑜𝑎𝑡 ,
𝐵𝑜𝑎𝑡(𝐵𝑒𝑎𝑛𝑠)X X

𝑅𝑖𝑔ℎ𝑡 𝐹𝑜𝑥 ,
𝑅𝑖𝑔ℎ𝑡 𝐺𝑜𝑎𝑡 ,
𝑅𝑖𝑔ℎ𝑡(𝐵𝑒𝑎𝑛𝑠)

𝑅𝑖𝑔ℎ𝑡 𝐹𝑜𝑥 ,
𝐿𝑒𝑓𝑡 𝐺𝑜𝑎𝑡 ,
𝑅𝑖𝑔ℎ𝑡(𝐵𝑒𝑎𝑛𝑠)

… …
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A* Heuristics by Constraint Relaxation

• Heuristics from Constraint Relaxation: The heuristic h(n) is the 
number of steps it would take to get from n to G, if problem 
constraints were relaxed --- this guarantees that h(n) is admissible
• ℎ!(𝑛) dominates ℎ"(𝑛) (ℎ!(𝑛) ≥ ℎ"(𝑛)) if ℎ!(𝑛) is computed by 

relaxing fewer constraints.



First heuristic: number of goal sentences left 
to achieve
Heuristic #1:  Count the number of actions necessary to 
generate all of the sentences in the goal state that aren’t 
already true.
•What got relaxed: we ignore action pre-requisites.

Example: 6 people on left side of the river, we want 6 people 
on the right side, we have a 2-person boat.  Minimum # 
actions: h(n) = 3.



Second heuristic: planning graph
A planning graph is a trellis whose stages are:
• Action stages (𝐴6): list all of the actions whose pre-

requisites are available in “Sentences stage” 𝑆6
• Sentence stages (𝑆678): list all of the sentences that were 

available in 𝑆6, plus any new sentences that could have 
been generated by any action in 𝐴6

And within each stage, we have:
•Mutex links: If ALL actions that generate output sentence 𝑝

also generate ¬𝑞, then the sentences 𝑝 and 𝑞 become 
mutex (mutually exclusive).



Example planning graph

• 𝐴$ has only two possible actions: 
• Do nothing: reproduces the initial state, {Have(Cake), ¬Eaten(Cake)} 
• Eat(Cake): generates {¬Have(Cake), Eaten(Cake)}

• Therefore, at 𝑆!, Have(Cake) is mutex with Eaten(Cake)
• 𝐴!: Bake(Cake) → Have(Cake), without generating ¬Eaten(Cake), so…
• 𝑆!: Have(Cake) and Eaten(Cake) are no longer mutex.



Convergence of the Planning Graph

• # of mutex links is monotonically non-increasing: If a pair of 
sentences are not mutex at stage 𝑆%, then they are also not 
mutex at 𝑆%&!
• # possible actions is monotonically non-decreasing: If an action 

is possible at stage 𝐴%, then it is also possible at 𝐴%&!



Heuristic #2: Number of stages until target sentences are 
non-mutex

Heuristic:  # stages between the current stage and the first stage at 
which all of the goal-state sentences are no longer mutex



Planning and Theorem Proving

• Examples
• Automatic Theorem Proving: forward-chaining, backward-chaining
• Planning: forward-chaining, backward-chaining
• Admissible Heuristics for Planning and Theorem Proving
• Number of Steps
• Planning Graph

• Computational Complexity



Complexity
• Planning is PSPACE-complete > NP-complete
• The computational complexity of finding a plan is exponential
• The length of the plan is exponential

• Space necessary to represent it
• Time necessary to implement it

• The only thing that’s polynomial: the amount of space necessary 
to represent the world state while finding or implementing a plan

• Example: towers of Hanoi

http://en.wikipedia.org/wiki/PSPACE-complete


Complexity of planning
• Planning is PSPACE-complete
• The length of a plan can be exponential in the number of 

“objects” in the problem!
• So is game search

• Archetypal PSPACE-complete problem: quantified boolean
formula (QBF)
• Example: is this formula true?

$x1"x2 $x3"x4 (x1Ú¬x3Úx4)Ù(¬x2Úx3Ú¬x4)
• Compare to SAT:

$x1 $x2 $x3 $x4 (x1Ú¬x3Úx4)Ù(¬x2Úx3Ú¬x4)
• Relationship between SAT and QBF is akin to the relationship 

between puzzles and games

http://en.wikipedia.org/wiki/PSPACE-complete


Real-world planning

• Resource constraints
• Instead of “static,” the world is “semidynamic:” we can’t think forever

• Actions at different levels of granularity: hierarchical planning
• In order to make the depth of the search smaller, we might convert the world 

from “fully observable” to “partially observable”

• Contingencies: actions failing
• Instead of being “deterministic,” maybe the world is “stochastic”

• Incorporating sensing and feedback
• Possibly necessary to address stochastic or multi-agent environments


