

Lecture 5: The "animal kingdom" of heuristics: Admissible, Consistent, zero, Relaxed, Dominant

Mark Hasegawa-Johnson, January 2020 With some slides by Svetlana Lazebnik, 9/2016 Distributed under CC-BY 3.0

Title image: By Harrison Weir - From reuseableart.com, Public Domain, https://commons.wikimedia.org/w/index.php?curid=47 879234

Outline of lecture

- 1. Admissible heuristics
- 2. Consistent heuristics
- 3. The zero heuristic: Dijkstra's algorithm
- 4. Relaxed heuristics
- 5. Dominant heuristics

A* Search

Definition: A* SEARCH

- If h(n) is admissible $(d(n) \ge h(n))$, and
- if the frontier is a priority queue sorted according to g(n) + h(n), then
- the FIRST path to goal uncovered by the tree search, path $m_{\rm r}$ is guaranteed to be the SHORTEST path to goal

 $(h(n) + g(n) \ge c(m))$ for every node n that is not on path m)

Frontier

S: g(n)+h(n)=2, parent=none

Explored Set

Select from the frontier: S

Frontier

A: g(n)+h(n)=5, parent=S

B: g(n)+h(n)=2, parent=S

Explored Set

S

Select from the frontier: B

Frontier

A: g(n)+h(n)=5, parent=S

C: g(n)+h(n)=4, parent=B

Explored Set

S, B

Select from the frontier: C

Frontier

A: g(n)+h(n)=5, parent=S

G: g(n)+h(n)=6, parent=C

Explored Set

S, B, C

Select from the frontier: A

Frontier

G: g(n)+h(n)=6, parent=C

 Now we would place C in the frontier, with parent=A and h(n)+g(n)=3, except that C was already in the explored set!

Explored Set S, B, C

Select from the frontier: Would be C, but instead it's G

Return the path S,B,C,G

Path cost = 6

OOPS

Bad interaction between A* and the explored set: Three possible solutions

- 1. Don't use an explored set
 - This option is OK for any finite state space, as long as you check for loops.
- 2. Nodes on the explored set are tagged by their h(n)+g(n). If you find a node that's <u>already in the explored set</u>, test to see if the <u>new h(n)+g(n) is smaller</u> than the old one.
 - If so, put the node back on the frontier
 - If not, leave the node off the frontier
- 3. Use a heuristic that's not only admissible, but also consistent.

Outline of lecture

- 1. Admissible heuristics
- 2. Consistent heuristics
- 3. The zero heuristic: Dijkstra's algorithm
- 4. Relaxed heuristics
- 5. Dominant heuristics

Consistent (monotonic) heuristic

$$g(m) \qquad d(m) - d(p)$$

$$g(n) \qquad d(n) - d(p)$$

$$\geq h(n) - h(p)$$

Definition: A consistent heuristic is one for which, for every pair of nodes in the graph, $d(n) - d(p) \ge h(n) - h(p)$.

In words: the <u>distance between any pair of nodes</u> is **greater than or equal to** the <u>difference in their heuristics</u>.

A* with an inconsistent heuristic

Frontier

A: g(n)+h(n)=5, parent=S

C: g(n)+h(n)=4, parent=B

Explored Set

S, B

Select from the frontier: C

A* with a **consistent** heuristic

Frontier

A: g(n)+h(n)=2, parent=S

C: g(n)+h(n)=4, parent=B

Explored Set

S, B

Select from the frontier: A

A* with a **consistent** heuristic

Frontier

•

C: g(n)+h(n)=2, parent=A

Explored Set

S, B, <u>A</u>

Select from the frontier: C

A* with a **consistent** heuristic

Frontier

•

G: g(n)+h(n)=5, parent=C

Explored Set

S, B, <u>A,</u> C

Select from the frontier: G

Bad interaction between A* and the explored set: Three possible solutions

1. Don't use an explored set.

This works for the MP!

2. If you find a node that's already in the explored set, test to see if the new h(n)+g(n) is smaller than the old one.

Most students find that this is the most computationally efficient solution to the multi-dots problem.

3. Use a consistent heuristic.

Do this too. Consistent: heuristic difference <= actual distance between two nodes. It's easy to do, because 0 <= d.

Outline of lecture

- 1. Admissible heuristics
- 2. Consistent heuristics
- 3. The zero heuristic: Dijkstra's algorithm
- 4. Relaxed heuristics
- 5. Dominant heuristics

The trivial case: h(n)=0

- A heuristic is <u>admissible</u> if and only if $d(n) \ge h(n)$ for every n.
- A heuristic is **consistent** if and only if $d(n, p) \ge h(n) h(p)$ for every n and p.

• Both criteria are satisfied by h(n) = 0.

Dijkstra = A^* with h(n)=0

- Suppose we choose h(n) = 0
- Then the frontier is a priority queue sorted by g(n) + h(n) = g(n)
- In other words, the first node we pull from the queue is the one that's closest to START!! (The one with minimum g(n)).
- So this is just Dijkstra's algorithm!

Outline of lecture

- 1. Admissible heuristics
- 2. Consistent heuristics
- 3. The zero heuristic: Dijkstra's algorithm
- 4. Relaxed heuristics
- 5. Dominant heuristics

Designing heuristic functions

Now we start to see things that actually resemble the multi-dot problem...

• Heuristics for the 8-puzzle

desired location of each tile)

```
h_1(n) = number of misplaced tiles

h_2(n) = total Manhattan distance (number of squares from
```


• Are h_1 and h_2 admissible?

Heuristics from relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Heuristics from subproblems

This is also a trick that many students find useful for the multi-dot problem.

- Let $h_3(n)$ be the cost of getting a subset of tiles (say, 1,2,3,4) into their correct positions
- Can precompute and save the exact solution cost for every possible subproblem instance – pattern database
- If the subproblem is O{9^4}, and the full problem is O{9^9}, then you can solve as many as 9^5 subproblems without increasing the complexity of the problem!!

Outline of lecture

- 1. Admissible heuristics
- 2. Consistent heuristics
- 3. The zero heuristic: Dijkstra's algorithm
- 4. Relaxed heuristics
- 5. Dominant heuristics

Dominance

- If h_1 and h_2 are both admissible heuristics and $h_2(n) \ge h_1(n)$ for all n, (both admissible) then h_2 dominates h_1
- Which one is better for search?
 - A* search expands every node with $f(n) < C^*$ or $h(n) < C^* g(n)$
 - Therefore, A* search with h_1 will expand more nodes = h_1 is more computationally expensive.

Dominance

 Typical search costs for the 8-puzzle (average number of nodes expanded for different solution depths):

• d=12 BFS expands 3,644,035 nodes $A^*(h_1)$ expands 227 nodes $A^*(h_2)$ expands 73 nodes

• d=24 BFS expands 54,000,000,000 nodes $A^*(h_1)$ expands 39,135 nodes $A^*(h_2)$ expands 1,641 nodes

Combining heuristics

- Suppose we have a collection of admissible heuristics $h_1(n)$, $h_2(n)$, ..., $h_m(n)$, but none of them dominates the others
- How can we combine them?

```
h(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}
```

All search strategies. C*=cost of best path.

Algorithm	Complete?	Optimal?	Time complexity	Space complexity	Implement the Frontier as a
BFS	Yes	If all step costs are equal	O(b^d)	O(b^d)	Queue
DFS	No	No	O(b^m)	O(bm)	Stack
UCS	Yes	Yes	Number of nodes w/ g(n) ≤ C*	Number of nodes w/ g(n) ≤ C*	Priority Queue sorted by g(n)
Greedy	No	No	Worst case: O(b^m) Best case: O(bd)	Worse case: O(b^m) Best case: O(bd)	Priority Queue sorted by h(n)
A *	Yes	Yes	Number of nodes w/ g(n)+h(n) ≤ C*	Number of nodes w/ g(n)+h(n) ≤ C*	Priority Queue sorted by h(n)+g(n)