
Lecture 5: The ”animal
kingdom” of heuristics:
Admissible, Consistent,
zero, Relaxed,
Dominant

Mark Hasegawa-Johnson, January 2020
With some slides by Svetlana Lazebnik, 9/2016
Distributed under CC-BY 3.0
Title image: By Harrison Weir - From reuseableart.com,
Public Domain,
https://commons.wikimedia.org/w/index.php?curid=47
879234

Outline of lecture

1. Admissible heuristics
2. Consistent heuristics
3. The zero heuristic: Dijkstra’s algorithm
4. Relaxed heuristics
5. Dominant heuristics

A* Search

Definition: A* SEARCH
• If ℎ 𝑛 is admissible (𝑑(𝑛) ≥ ℎ 𝑛), and
• if the frontier is a priority queue sorted according to 𝑔 𝑛 + ℎ(𝑛),

then
• the FIRST path to goal uncovered by the tree search, path 𝑚, is

guaranteed to be the SHORTEST path to goal
(ℎ 𝑛 + 𝑔 𝑛 ≥ 𝑐(𝑚) for every node 𝑛 that is not on path 𝑚)

S
n

m
G

𝑐 𝑚

≥ ℎ 𝑛𝑔 𝑛

Bad interaction between A* and the explored set

Frontier
S: g(n)+h(n)=2, parent=none

Explored Set

Select from the frontier: S

Bad interaction between A* and the explored set

Frontier
A: g(n)+h(n)=5, parent=S
B: g(n)+h(n)=2, parent=S

Explored Set
S

Select from the frontier: B

Bad interaction between A* and the explored set

Frontier
A: g(n)+h(n)=5, parent=S
C: g(n)+h(n)=4, parent=B

Explored Set
S, B

Select from the frontier: C

Bad interaction between A* and the explored set

Frontier
A: g(n)+h(n)=5, parent=S
G: g(n)+h(n)=6, parent=C

Explored Set
S, B, C

Select from the frontier: A

Bad interaction between A* and the explored set

Frontier
G: g(n)+h(n)=6, parent=C
• Now we would place C in the

frontier, with parent=A and
h(n)+g(n)=3, except that C was
already in the explored set!

Explored Set
S, B, C

Select from the frontier: Would be C,
but instead it’s G

Bad interaction between A* and the explored set

Return the path S,B,C,G
Path cost = 6

OOPS

Bad interaction between A* and the explored set:
Three possible solutions

1. Don’t use an explored set

• This option is OK for any finite state space, as long as you check for loops.

2. Nodes on the explored set are tagged by their h(n)+g(n). If you find a node

that’s already in the explored set, test to see if the new h(n)+g(n) is smaller

than the old one.

• If so, put the node back on the frontier

• If not, leave the node off the frontier

3. Use a heuristic that’s not only admissible, but also consistent.

Outline of lecture

1. Admissible heuristics
2. Consistent heuristics
3. The zero heuristic: Dijkstra’s algorithm
4. Relaxed heuristics
5. Dominant heuristics

Consistent (monotonic) heuristic

Definition: A consistent heuristic is one for which, for every pair of nodes
in the graph, 𝑑 𝑛 − 𝑑(𝑝) ≥ ℎ 𝑛 − ℎ 𝑝 .

In words: the distance between any pair of nodes is greater than or equal
to the difference in their heuristics.

S
n

m
p

g 𝑚

𝑑 𝑛 − 𝑑(𝑝)
≥ ℎ 𝑛 − ℎ(𝑝)

𝑔 𝑛

𝑑 𝑚 − 𝑑(𝑝)

A* with an inconsistent heuristic

Frontier
A: g(n)+h(n)=5, parent=S
C: g(n)+h(n)=4, parent=B

Explored Set
S, B

Select from the frontier: C

A* with a consistent heuristic

Frontier
A: g(n)+h(n)=2, parent=S
C: g(n)+h(n)=4, parent=B

Explored Set
S, B

Select from the frontier: A

h=1

A* with a consistent heuristic

Frontier
.
C: g(n)+h(n)=2, parent=A

Explored Set
S, B, A

Select from the frontier: C

h=1

A* with a consistent heuristic

Frontier
.
G: g(n)+h(n)=5, parent=C

Explored Set
S, B, A, C

Select from the frontier: G

h=1

Bad interaction between A* and the explored set:
Three possible solutions
1. Don’t use an explored set.

This works for the MP!
2. If you find a node that’s already in the explored set, test to see if

the new h(n)+g(n) is smaller than the old one.
Most students find that this is the most computationally efficient

solution to the multi-dots problem.
3. Use a consistent heuristic.

Do this too. Consistent: heuristic difference <= actual distance
between two nodes. It’s easy to do, because 0 <= d.

Outline of lecture

1. Admissible heuristics
2. Consistent heuristics
3. The zero heuristic: Dijkstra’s algorithm
4. Relaxed heuristics
5. Dominant heuristics

The trivial case: h(n)=0

• A heuristic is admissible if and only if 𝑑(𝑛) ≥
ℎ 𝑛 for every 𝑛.
• A heuristic is consistent if and only if 𝑑 𝑛, 𝑝 ≥
ℎ 𝑛 − ℎ 𝑝 for every 𝑛 and 𝑝.

• Both criteria are satisfied by ℎ 𝑛 = 0.

Dijkstra = A* with h(n)=0

• Suppose we choose ℎ 𝑛 = 0
• Then the frontier is a priority queue sorted by

𝑔 𝑛 + ℎ 𝑛 = 𝑔(𝑛)
• In other words, the first node we pull from the queue is the

one that’s closest to START!! (The one with minimum 𝑔 𝑛).
• So this is just Dijkstra’s algorithm!

Outline of lecture

1. Admissible heuristics
2. Consistent heuristics
3. The zero heuristic: Dijkstra’s algorithm
4. Relaxed heuristics
5. Dominant heuristics

Designing heuristic functions
Now we start to see things that actually resemble the multi-dot problem…

• Heuristics for the 8-puzzle
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance (number of squares from

desired location of each tile)

h1(start) = 8
h2(start) = 3+1+2+2+2+3+3+2 = 18

• Are h1 and h2 admissible?

Heuristics from relaxed problems

• A problem with fewer restrictions on the actions is
called a relaxed problem
• The cost of an optimal solution to a relaxed problem

is an admissible heuristic for the original problem
• If the rules of the 8-puzzle are relaxed so that a tile

can move anywhere, then h1(n) gives the shortest
solution
• If the rules are relaxed so that a tile can move to any

adjacent square, then h2(n) gives the shortest solution

Heuristics from subproblems
This is also a trick that many students find useful for the multi-dot problem.

• Let h3(n) be the cost of getting a subset of tiles
(say, 1,2,3,4) into their correct positions
• Can precompute and save the exact solution cost for every possible subproblem

instance – pattern database
• If the subproblem is O{9^4}, and the full problem is O{9^9}, then you can solve as

many as 9^5 subproblems without increasing the complexity of the problem!!

Outline of lecture

1. Admissible heuristics
2. Consistent heuristics
3. The zero heuristic: Dijkstra’s algorithm
4. Relaxed heuristics
5. Dominant heuristics

Dominance
• If h1 and h2 are both admissible heuristics and
h2(n) ≥ h1(n) for all n, (both admissible) then
h2 dominates h1
• Which one is better for search?
• A* search expands every node with f(n) < C* or

h(n) < C* – g(n)
• Therefore, A* search with h1 will expand more nodes =

h1 is more computationally expensive.

Dominance

• Typical search costs for the 8-puzzle (average number of nodes expanded for
different solution depths):

• d=12 BFS expands 3,644,035 nodes
A*(h1) expands 227 nodes
A*(h2) expands 73 nodes

• d=24 BFS expands 54,000,000,000 nodes
A*(h1) expands 39,135 nodes
A*(h2) expands 1,641 nodes

Combining heuristics

• Suppose we have a collection of admissible heuristics h1(n), h2(n), …,
hm(n), but none of them dominates the others
• How can we combine them?

h(n) = max{h1(n), h2(n), …, hm(n)}

All search strategies. C*=cost of best path.
Algorithm Complete? Optimal? Time

complexity
Space

complexity
Implement the
Frontier as a…

BFS Yes If all step costs are
equal O(b^d) O(b^d) Queue

DFS No No O(b^m) O(bm) Stack

UCS Yes Yes
Number of nodes

w/
g(n) ≤ C*

Number of nodes
w/

g(n) ≤ C*

Priority Queue
sorted by g(n)

Greedy No No
Worst case:

O(b^m)
Best case: O(bd)

Worse case:
O(b^m)

Best case: O(bd)

Priority Queue
sorted by h(n)

A* Yes Yes
Number of nodes

w/
g(n)+h(n) ≤ C*

Number of nodes
w/

g(n)+h(n) ≤ C*

Priority Queue
sorted by
h(n)+g(n)

