
Lecture 4: Search
informed by
lookahead heuristics:
Greedy Search, A*

Mark Hasegawa-Johnson, January 2020
With some slides by Svetlana Lazebnik, 9/2016
Distributed under CC-BY 3.0
Title image: By Harrison Weir - From reuseableart.com,
Public Domain,
https://commons.wikimedia.org/w/index.php?curid=47
879234

Outline of lecture

1. Search heuristics
2. Greedy best-first search: minimum h(n)
3. A* optimal search: 𝑓(𝑛) = ℎ(𝑛) + 𝑔(𝑛), where ℎ(𝑛) ≤ 𝑑(𝑛)

Review: DFS and BFS

• Depth-first search
• LIFO: expand the deepest node (farthest from START)
• Pro: only need to keep a small part of the search tree (space is 𝑂{𝑏𝑚}).
• Con: not optimal, or even complete. Time is 𝑂{𝑏!}.

• Breadth-first search
• FIFO: expand the shallowest node (closest to START)
• Pro: complete and optimal. Time is 𝑂{𝑏"}
• Con: no path is found until the best path is found. Space is 𝑂{𝑏"}.

Why don’t we just measure…

Instead of FARTHEST FROM START (DFS):
why not choose the node that’s CLOSEST TO GOAL?

Why not choose the node CLOSEST TO GOAL?

• Answer: because we don’t know
which node that is!!

• Example: which of these two is
closest to goal?

Start state

Goal state

We don’t know which state is closest to goal

• Finding the shortest path is the
whole point of the search
• If we already knew which state

was closest to goal, there would
be no reason to do the search
• Figuring out which one is closest,

in general, is a complexity 𝑂 𝑏!
problem.

Start state

Goal state

Search heuristics: estimates of distance-to-goal
• Often, even if we don’t know the

distance to the goal, we can
estimate it.
• This estimate is called a

heuristic.
• A heuristic is useful if:

1. Accurate: ℎ(𝑛) ≈ 𝑑(𝑛), where
ℎ(𝑛) is the heuristic estimate,
and 𝑑(𝑛) is the true distance to
the goal

2. Cheap: It can be computed in
complexity less than 𝑂 𝑏"

Start state

Goal state

Example heuristic: Manhattan distance

If there were no walls in the maze,
then the number of steps from
position (𝑥" , 𝑦") to the goal
position (𝑥# , 𝑦#) would be

ℎ(𝑛) = |𝑥" − 𝑥#| + |𝑦" − 𝑦#|

Start state

Goal state

𝑥
𝑥# 𝑥$

𝑦$

𝑦#

If there were no walls, this would
be the path to goal: straight down,
then straight right.

Outline of lecture

1. Search heuristics
2. Greedy best-first search: minimum h(n)
3. A* optimal search: 𝑓(𝑛) = ℎ(𝑛) + 𝑔(𝑛), where ℎ(𝑛) ≤ 𝑑(𝑛)

Greedy Best-First Search

Instead of FARTHEST FROM START (DFS):
why not choose the node whose

HEURISTIC ESTIMATE
indicates that it might be

CLOSEST TO GOAL?

Greedy Search Example

According to the Manhattan
distance heuristic, these two
nodes are equally far from the
goal, so we have to choose one at
random.

Start state

Goal state

Greedy Search Example

If our random choice goes badly,
we might end up very far from the
goal.

= states in the explored set

= states on the frontier

Start state

Goal state

The problem with Greedy Search

Having gone down a bad path, it’s
very hard to recover, because
now, the frontier node closest to
goal (according to the Manhattan
distance heuristic) is this one:

Start state

Goal state

The problem with Greedy Search

That’s not a useful path… Start state

Goal state

The problem with Greedy Search

Neither is that one… Start state

Goal state

What went wrong?

Outline of lecture

1. Search heuristics
2. Greedy best-first search: minimum h(n)
3. A* optimal search: 𝑓(𝑛) = ℎ(𝑛) + 𝑔(𝑛), where ℎ(𝑛) ≤ 𝑑(𝑛)

The problem with Greedy Search
Among nodes on the frontier, this
one seems closest to goal (smallest
ℎ(𝑛), where ℎ(𝑛) ≤ 𝑑(𝑛)).

But it’s also farthest from the start.
Let’s say 𝑔(𝑛) = total path cost so far.

So the total distance from start to
goal, going through node 𝑛, is

𝑐(𝑛) = 𝑔 𝑛 + 𝑑 𝑛 ≥ 𝑔 𝑛 + ℎ(𝑛)

Start state

Goal state

The problem with Greedy Search
Of these three nodes, this one has
the smallest 𝑔 𝑛 + ℎ(𝑛).

So if we want to find the lowest-
cost path, then it would be better
to try that node, instead of this
one.

Start state

Goal state

A* notation
• 𝑐(𝑛) = cost of the total path

(START,…,n,…,GOAL).
• 𝑑(𝑛) = distance of the remaining

partial path (n,…,GOAL).
• 𝑔(𝑛) = gone-already on the path

so far, (START,…,n).

• ℎ(𝑛) = heuristic, ℎ(𝑛) ≤ 𝑑(𝑛).

𝑐(𝑛) = 𝑔 𝑛 + 𝑑 𝑛 ≥ 𝑔 𝑛 + ℎ(𝑛)

Start state

Goal state

Smart Greedy Search
In fact, let’s back up. Already, at
this point in the search, this node
has the smallest 𝑔 𝑛 + ℎ(𝑛).

Start state

Goal state

A* Search
• Idea: avoid expanding paths that are already expensive
• The evaluation function f(n) is the estimated total cost of the

path through node n to the goal:

f(n) = g(n) + h(n)

g(n): cost so far to reach n (path cost)
h(n): estimated cost from n to goal (heuristic)

• This is called A* search if and only if the heuristic, h(n), is
admissible. The word “admissible” just means that ℎ(𝑛) ≤
𝑑(𝑛), and therefore, 𝑓(𝑛) ≤ 𝑐(𝑛).

Admissible heuristic

• Suppose we’ve found one path to 𝐺; the path goes through node 𝑚. Since
we’ve calculated the whole path, we know its total path cost to be 𝑐 𝑚 .
• For every other node, 𝑛, we don’t know 𝑐(𝑛), but we know 𝑓(𝑛) = 𝑔(𝑛) +
ℎ(𝑛), and we know that

𝑐 𝑛 ≥ 𝑓 𝑛
• Therefore we know that

𝐼𝐹 𝑓 𝑛 ≥ 𝑐 𝑚
𝑇𝐻𝐸𝑁 𝑐(𝑛) ≥ 𝑐(𝑚)

• So if 𝑓 𝑛 ≥ 𝑐 𝑚 for every node n that’s still in the frontier, then we know
that m is the best path.

S
n

m
G

𝑐 𝑚

≥ ℎ 𝑛𝑔 𝑛

A* Search

Definition: A* SEARCH
• If ℎ 𝑛 is admissible (𝑑(𝑛) ≥ ℎ 𝑛), and
• if the frontier is a priority queue sorted according to 𝑔 𝑛 + ℎ(𝑛),

then
• the FIRST path to goal uncovered by the tree search, path 𝑚, is

guaranteed to be the SHORTEST path to goal
(ℎ 𝑛 + 𝑔 𝑛 ≥ 𝑐(𝑚) for every node 𝑛 that is not on path 𝑚)

S
n

m
G

𝑐 𝑚

≥ ℎ 𝑛𝑔 𝑛

BFS vs. A* Search
The heuristic h(n)=Manhattan distance favors nodes on the main diagonal. Those nodes
all have the same g(n)+h(n), so A* evaluates them first.
Note: Manhattan distance isn’t an admissible heuristic if you can take diagonal steps. It
must be using 8-direction Manhattan distance, or else Euclidean distance.

Source: Wikipedia

http://en.wikipedia.org/wiki/File:Astar_progress_animation.gif

