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Outline of lecture

1. Search heuristics
2. Greedy best-first search: minimum h(n)
3. A* optimal search: 𝑓(𝑛) = ℎ(𝑛) + 𝑔(𝑛), where ℎ(𝑛) ≤ 𝑑(𝑛)



Review: DFS and BFS

• Depth-first search
• LIFO: expand the deepest node (farthest from START)
• Pro: only need to keep a small part of the search tree (space is 𝑂{𝑏𝑚}).
• Con: not optimal, or even complete.  Time is 𝑂{𝑏!}. 

• Breadth-first search
• FIFO: expand the shallowest node (closest to START)
• Pro: complete and optimal.  Time is 𝑂{𝑏"}
• Con: no path is found until the best path is found. Space is 𝑂{𝑏"}.



Why don’t we just measure…

Instead of FARTHEST FROM START (DFS): 
why not choose the node that’s CLOSEST TO GOAL?



Why not choose the node CLOSEST TO GOAL?

• Answer: because we don’t know 
which node that is!!

• Example: which of these two is 
closest to goal?

Start state

Goal state



We don’t know which state is closest to goal

• Finding the shortest path is the 
whole point of the search
• If we already knew which state 

was closest to goal, there would 
be no reason to do the search
• Figuring out which one is closest, 

in general, is a complexity 𝑂 𝑏!
problem.

Start state

Goal state



Search heuristics: estimates of distance-to-goal
• Often, even if we don’t know the 

distance to the goal, we can 
estimate it.
• This estimate is called a 

heuristic.
• A heuristic is useful if:

1. Accurate: ℎ(𝑛) ≈ 𝑑(𝑛), where 
ℎ(𝑛) is the heuristic estimate, 
and 𝑑(𝑛) is the true distance to 
the goal

2. Cheap: It can be computed in 
complexity less than 𝑂 𝑏"

Start state

Goal state



Example heuristic: Manhattan distance

If there were no walls in the maze, 
then the number of steps from 
position (𝑥" , 𝑦") to the goal 
position (𝑥# , 𝑦#) would be

ℎ(𝑛) = |𝑥" − 𝑥#| + |𝑦" − 𝑦#|

Start state

Goal state

𝑥
𝑥# 𝑥$

𝑦$

𝑦#

If there were no walls, this would 
be the path to goal: straight down, 
then straight right.
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Greedy Best-First Search

Instead of FARTHEST FROM START (DFS): 
why not choose the node whose

HEURISTIC ESTIMATE
indicates that it might be 

CLOSEST TO GOAL?



Greedy Search Example

According to the Manhattan 
distance heuristic, these two 
nodes are equally far from the 
goal, so we have to choose one at 
random.

Start state

Goal state



Greedy Search Example

If our random choice goes badly, 
we might end up very far from the 
goal.

= states in the explored set

= states on the frontier

Start state

Goal state



The problem with Greedy Search

Having gone down a bad path, it’s 
very hard to recover, because 
now, the frontier node closest to 
goal (according to the Manhattan 
distance heuristic) is this one:

Start state

Goal state



The problem with Greedy Search

That’s not a useful path… Start state

Goal state



The problem with Greedy Search

Neither is that one… Start state

Goal state



What went wrong?
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The problem with Greedy Search
Among nodes on the frontier, this 
one seems closest to goal (smallest 
ℎ(𝑛), where ℎ(𝑛) ≤ 𝑑(𝑛)).  

But it’s also farthest from the start.  
Let’s say 𝑔(𝑛) = total path cost so far.

So the total distance from start to 
goal, going through node 𝑛, is

𝑐(𝑛) = 𝑔 𝑛 + 𝑑 𝑛 ≥ 𝑔 𝑛 + ℎ(𝑛)

Start state

Goal state



The problem with Greedy Search
Of these three nodes, this one has 
the smallest 𝑔 𝑛 + ℎ(𝑛).

So if we want to find the lowest-
cost path, then it would be better 
to try that node, instead of this 
one.

Start state

Goal state



A* notation
• 𝑐(𝑛) = cost of the total path 

(START,…,n,…,GOAL).
• 𝑑(𝑛) = distance of the remaining 

partial path (n,…,GOAL).
• 𝑔(𝑛) = gone-already on the path 

so far, (START,…,n).

• ℎ(𝑛) = heuristic, ℎ(𝑛) ≤ 𝑑(𝑛).

𝑐(𝑛) = 𝑔 𝑛 + 𝑑 𝑛 ≥ 𝑔 𝑛 + ℎ(𝑛)

Start state

Goal state



Smart Greedy Search
In fact, let’s back up.  Already, at 
this point in the search, this node 
has the smallest 𝑔 𝑛 + ℎ(𝑛).

Start state

Goal state



A* Search
• Idea: avoid expanding paths that are already expensive
• The evaluation function f(n) is the estimated total cost of the 

path through node n to the goal:

f(n) = g(n) + h(n)

g(n): cost so far to reach n (path cost)
h(n): estimated cost from n to goal (heuristic)

• This is called A* search if and only if the heuristic, h(n), is 
admissible.  The word “admissible” just means that ℎ(𝑛) ≤
𝑑(𝑛), and therefore, 𝑓(𝑛) ≤ 𝑐(𝑛).



Admissible heuristic

• Suppose we’ve found one path to 𝐺; the path goes through node 𝑚.  Since 
we’ve calculated the whole path, we know its total path cost to be 𝑐 𝑚 .
• For every other node, 𝑛, we don’t know 𝑐(𝑛), but we know 𝑓(𝑛) = 𝑔(𝑛) +
ℎ(𝑛), and we know that 

𝑐 𝑛 ≥ 𝑓 𝑛
• Therefore we know that 

𝐼𝐹 𝑓 𝑛 ≥ 𝑐 𝑚
𝑇𝐻𝐸𝑁 𝑐(𝑛) ≥ 𝑐(𝑚)

• So if 𝑓 𝑛 ≥ 𝑐 𝑚 for every node n that’s still in the frontier, then we know 
that m is the best path.
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A* Search

Definition: A* SEARCH
• If ℎ 𝑛 is admissible (𝑑(𝑛) ≥ ℎ 𝑛 ), and 
• if the frontier is a priority queue sorted according to 𝑔 𝑛 + ℎ(𝑛), 

then 
• the FIRST path to goal uncovered by the tree search, path 𝑚, is 

guaranteed to be the SHORTEST path to goal 
(ℎ 𝑛 + 𝑔 𝑛 ≥ 𝑐(𝑚) for every node 𝑛 that is not on path 𝑚)
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BFS vs. A* Search
The heuristic h(n)=Manhattan distance favors nodes on the main diagonal.  Those nodes 
all have the same g(n)+h(n), so A* evaluates them first.
Note: Manhattan distance isn’t an admissible heuristic if you can take diagonal steps.  It 
must be using 8-direction Manhattan distance, or else Euclidean distance. 

Source: Wikipedia

http://en.wikipedia.org/wiki/File:Astar_progress_animation.gif

