
CS440/ECE448 Lecture 3:
Search Order

Slides by Mark Hasegawa-Johnson, 1/2020
Including some slides written by Svetlana Lazebnik, 9/2016
CC-BY 4.0: You are free to: copy and redistribute the material in any medium or
format, remix, transform, and build upon the material for any purpose, even
commercially, if you give appropriate credit.

https://creativecommons.org/licenses/by/4.0/

Outline

•Uniform cost search (UCS) = slightly different
implementation of Dijkstra’s Algorithm
•Breadth-first search (BFS) = special case of UCS
•Depth-first search (DFS)

Dijkstra’s Shortest Path Algorithm
• Initialize:
• 𝑑!"= distance	from	n	to	l
• 𝑉! = ∞ for all vertices n
• Unvisited = {𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑏𝑢𝑡 𝑠𝑡𝑎𝑟𝑡}
• k = Start Node

•While Goal ∈ Unvisited
• For n ∈ Neighbor(k)
• 𝑉! = min(𝑉!, 𝑉# + 𝑑#!)

• k ← argmin
"∈%!&'(')*+

𝑉"
By Subh83 - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=14916867

Uniform Cost Search
• Initialize:
• 𝑑!"= distance	from	n	to	l
• 𝑽𝒌 = 𝟎 for start_node k, only
• Frontier = {}
• k = Start Node

•While Goal ≠ 𝒌
• For n ∈ Neighbor(k)
• Frontier ← 𝑛:min(𝑉!, 𝑉# + 𝑑#!)

• k ← argmin
"∈𝑭𝒓𝒐𝒏𝒕𝒊𝒆𝒓

𝑉"
By Subh83 - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=14916867

Dijkstra’s algorithm vs. Uniform Cost Search

• They evaluate the same nodes k, in exactly the same order.
• They give the same (minimum-cost) path as a result.
• The only difference:
• Dijkstra’s algorithm keeps track of 𝑉! for all nodes in the search space
• UCS keeps track of 𝑉! only for nodes you’ve explored

Arad, 0

Timisoara, 118Sibiu, 140

Oradea, 291 Rimnicu Vilcea, 220 Fagaras, 239

Example: Romania Frontier: { Zerind:75, Timisoara:118,
Oradea:291, Rimnicu Vilcea:220, Fagaras:239 }
Explored: { Arad:0, Sibiu:140, Zerind:75,
Timisoara:118, Oradea:291, Rimnicu
Vilcea:220, Fagaras:239 }

Zerind, 75

Why it Works

• 𝑑!" ≥ 0 means that every node on the
best path to the Goal, 𝐺, has a cost, 𝑉!,
less than or equal the cost of the goal,
𝑉! ≤ 𝑉#

Arad, 0

Sibiu, 140

RV, 220 Fagaras, 239

Why it Works

• k ← 𝑎𝑟𝑔𝑚𝑖𝑛
"∈%&'!()*&

𝑉" means that the

lowest-cost nodes are expanded first

Arad, 0

Sibiu, 140

RV, 220 Fagaras, 239

Pitesti, 317

Why it Works

• We don’t end when Goal is placed on
the Frontier, we only end when Goal is
expanded

Arad, 0

Sibiu, 140

Fagaras, 239

Pitesti, 317

RV, 220

Bucharest, 450

Why it Works

• k ← 𝑎𝑟𝑔𝑚𝑖𝑛
"∈%&'!()*&

𝑉" means that every

predecessor with a cost less than 𝑉# is
expanded before the goal is expanded

Arad, 0

Sibiu, 140

Pitesti, 317

RV, 220

Bucharest, 418

Fagaras, 239

Why it Works

• Therefore we always find the shortest
path

Arad, 0

Sibiu, 140

RV, 220

Bucharest, 418

Fagaras, 239

Pitesti, 317

Computational Considerations

• Suppose there are N world states
• k ← argmin

"∈%&'!()*&
𝑉"

• Naïve implementation: requires you to sort through the whole frontier, to find
the smallest. Complexity: O{N} per search step!!
• Better implementation: keep the frontier sorted, as a priority queue. Then

complexity is O{logN} to insert a node into the frontier, and O{1} to retrieve
the minimum.

• Frontier ← 𝑛:min(𝑉! , 𝑉+ + 𝑑+!)
• “Explored list” is a hash table (python: a dict), so that, given a world state n,

you can immediately tell (O{1}) whether or not that state has been explored.
• Each state in the “Explored list” has a pointer to corresponding state in the

Frontier, if that state is still in the frontier (O{1}).

Outline

•Uniform cost search (UCS) = slightly different
implementation of Dijkstra’s Algorithm
•Breadth-first search (BFS) = special case of UCS
•Depth-first search (DFS)

Breadth-first search (BFS) = special case of UCS

• … when every step has exactly the
same cost, 𝑑!" = 1
• Example: solving a maze S

G

BFS Computational Savings

• Frontier doesn’t have to be a priority
queue
• It can just be a regular first-in, first-out

(FIFO) queue
• Example: Frontier = {S}

S

G

BFS Computational Savings

• Frontier doesn’t have to be a priority
queue
• It can just be a regular first-in, first-out

(FIFO) queue
• Example: Frontier = {A,B}
• Pop A from the queue, expand it

A S B

G

BFS Computational Savings

• Frontier doesn’t have to be a priority
queue
• It can just be a regular first-in, first-out

(FIFO) queue
• Example: Frontier = {B,C}
• Pop B from the queue, expand it

A S B

C G

BFS Computational Savings

• Frontier doesn’t have to be a priority
queue
• It can just be a regular first-in, first-out

(FIFO) queue
• Example: Frontier = {C,D}
• Pop C from the queue, expand it

A S B

C D G

BFS Computational Savings

• Frontier doesn’t have to be a priority
queue
• It can just be a regular first-in, first-out

(FIFO) queue
• Example: Frontier = {D,E}
• Pop D from the queue, expand it

A S B

C D G

E

BFS Computational Savings

• Frontier doesn’t have to be a priority
queue
• It can just be a regular first-in, first-out

(FIFO) queue
• Example: Frontier = {E,G}
• Pop E from the queue, expand it

A S B

C D G

E

BFS Computational Savings

• Frontier doesn’t have to be a priority
queue
• It can just be a regular first-in, first-out

(FIFO) queue
• Example: Frontier = {G,F}
• Pop G from the queue, expand it

A S B

C D G

E F

BFS Computational Savings

• Frontier doesn’t have to be a priority
queue
• It can just be a regular first-in, first-out

(FIFO) queue
• Example: G expanded, we learn that

it’s the goal, we found the best path

A S B

C D G

E F

Analysis of search strategies

• Strategies are evaluated along the following criteria:
• Completeness: does it always find a solution if one exists?
• Optimality: does it always find a least-cost solution?
• Time complexity: number of nodes generated
• Space complexity: maximum number of nodes in memory

• Time and space complexity are measured in terms of
• b: maximum branching factor of the search tree
• d: depth of the optimal solution
• m: maximum length of any path in the state space (may be

infinite)

Properties of breadth-first search
• Complete?

Yes (if branching factor b is finite).
Even w/o explored-set checking, it still works!

• Optimal?
Yes – if cost = 1 per step (uniform cost search will fix this)

• Time?
Number of nodes in a b-ary tree of depth d: O(bd)
(d is the depth of the optimal solution)

• Space?
O(bd)

• Space is the bigger problem (more than time)

Properties of uniform-cost search
• Complete?

Yes (if branching factor b is finite).
Even w/o explored-set checking, it still works!

• Optimal?
Yes – even if cost ≠ 1 per step

• Time?
Number of nodes in a b-ary tree of depth d: O(bd)
(d is the depth of the optimal solution)

• Space?
O(bd)

• Space is the bigger problem (more than time)

Outline

•Uniform cost search (UCS) = slightly different
implementation of Dijkstra’s Algorithm
•Breadth-first search (BFS) = special case of UCS
•Depth-first search (DFS)

Depth-first search
• Expand deepest unexpanded node (BFS: shallowest)
• Implementation: Frontier is a last-in-first-out (LIFO) stack (BFS:FIFO)

Example state space
graph for a tiny search

problem

Example from P. Abbeel and D. Klein

Depth-first search
Frontier:
Step 0: {S}
Step 1: {d,e,p}
Step 2: {b,c,e,p} – FIFO
Step 3: {a,c,e,p}
Step 4: {c,e,p}

S

d e p

b c

a

e

Example from P. Abbeel and D. Klein

The reason DFS is useful: Space
When we know that Sdba is
a dead end, we can remove
it from the tree!

S

d e p

b c

a

e

Example from P. Abbeel and D. Klein

Breadth-first search
Computational complexity:
(s,
d,e,p,
b,c,e,h,r,q,
a,a,h,r,p,q,f,
p,q,f,q,c,G)

Space complexity:
We have to store the whole
tree!

Example from P. Abbeel and D. Klein

Depth-first search

Computational
complexity: here are the

nodes we expanded

S

b c e

rh

f

Gc

Space complexity: here’s
the part of the tree that
we still have in memory

d e p

Example from P. Abbeel and D. Klein

Analysis of search strategies

• Strategies are evaluated along the following criteria:
• Completeness: does it always find a solution if one exists?
• Optimality: does it always find a least-cost solution?
• Time complexity: number of nodes generated
• Space complexity: maximum number of nodes in memory

• Time and space complexity are measured in terms of
• b: maximum branching factor of the search tree
• d: depth of the optimal solution
• m: maximum length of any path in the state space (may be

infinite)

Properties of depth-first search
• Complete? (always finds a solution if one exists?)

Fails in infinite-depth spaces
Fails if there are loops (unless you keep an “Explored Set”)

• Optimal? (always finds an optimal solution?)
No – returns the first solution it finds

• Time? (how long does it take, in terms of b, d, m?)
O(bm) (remember BFS was O(bd))
Terrible if m is much larger than d

• Space? (how much storage space?)
O(bm), i.e., linear space!
The frontier doesn’t need to keep track of failed paths, only

the currently active path

Comparison of Search Strategies

Algorithm Complete? Optimal? Time
complexity

Space
complexity

Implement the
Frontier as a…

BFS Yes If all step costs are
equal O(bd) O(bd) Queue

DFS No No O(bm) O(bm) Stack

UCS Yes Yes
Number of nodes

w/
𝑉! ≤ 𝑉"

Number of nodes
w/

𝑉! ≤ 𝑉"

Priority Queue
sorted by 𝑉!

