CS440/ECE 448 Lecture 2:
Slides by Svetlana Lazebnik, 9/2016 SearCh ‘ntrO

Modified by Mark Hasegawa-Johnson, 1/2020

N \ (
PENASY ¢ k
I,' -.I‘ K:/ . 7..// —— — ) y
\1 \ . ) "\r\—_-f - \ ) ) \
; “ — 1 )\
| A \\{ Lj K / \\T \ - #3?7 {
[ LA~ MRS =V S7at
/7/ / |}—:,f T SN — rl’ -~ 7'{‘ \ J'" ﬁ__ 'JY \
\l A /—m,—f-{ - N/ - ’J_/" F}K”yr (f /
\ —~— . VA f// \ 7 .J“"(J
) ) TP AFY o
\ ~ \ ( ~ ,j\ ) ) !
e _
1 - _
\[ BRI = N [ _/‘/ \ % ””K y <‘;-(f4 /\
\\ N L — ¢ N\ C |
2V —: \‘{ | /‘: / \ \ /’ \ ’// Pa
e, / | Feden S 8N ;5\—
?\_/‘\-\, -\ 3 /A_/__ d I % l"'._ / '/ \ T
N s - ‘r\ TR 17 / \'.
N~ ]\ \1 l 1 / \,
S— / .\ \ - ",, \




Outline of today’s lecture

1. How to turn ANY problem into a SEARCH problem:
1. |Initial state, goal state, transition model
2. Actions, path cost

2. General algorithm for solving search problems
1. First data structure: a frontier list
2. Second data structure: a search tree
3. Third data structure: a “visited states” list



Search

* We will consider the problem of designing goal-based
agents in fully observable, deterministic, discrete, static,
known environments

Start state

4

€= Goal state



Search

We will consider the problem of designing goal-based agents in
fully observable, deterministic, discrete, known environments
* The agent must find a sequence of actions that reaches the goal

* The performance measure is defined by (a) reaching the goal and (b)
how “expensive” the path to the goal is

* We are focused on the process of finding the solution; while executing
the solution, we assume that the agent can safely ignore its percepts
(static environment, open-loop system)



Search problem components

e |nitial state Initial
. state
* Actions ‘

* Transition model

* What state results from
performing a given action
in a given state?

e Goal state
e Path cost
e Assume that it is a sum of Goal
nonnegative step costs @ ..

* The optimal solution is the sequence of actions that gives the
lowest path cost for reaching the goal



Knowledge Representation: State

e State = description of the world
* Must have enough detail to decide whether or not you’re currently in the

initial state
* Must have enough detail to decide whether or not you’ve reached the goal
state

* Often but not always: “defining the state” and “defining the transition model”
are the same thing



Example: Romania

* On vacation in Romania; currently in Arad
Flight leaves tomorrow from Bucharest

Initial state
 Arad

"] Oradea

Actions 75
* Go from one city to another  Aradf}

Transition model

* If you go from city A to
city B, you end up in city B

113

Jimisoara

* Goal state
e Bucharest ,
' Hirsova
* Path cost I Mehadia "
* Sum of edge costs (total distance Dobreu; L
traveled) D raiove - L



State space

e The initial state, actions, and
transition model define the state
space of the problem

* The set of all states reachable from initial
state by any sequence of actions

* Can be represented as a directed graph
where the nodes are states and links
between nodes are actions

 What is the state space for the
Romania problem?

HCraiova




Traveling Salesman Problem

e Goal: visit every city in /& P
the United States

/)

e Path cost: total miles {
traveled r;
* |nitial state: (L
/7/

Champaign, IL
* Action: travel from one '\\
city to another S

* Transition model:
when you visit a city,
mark it as “visited.”




Complexity of the State Space

* State Space of Romania problem: size = # cities
 State space is linear in the size of the world
* A search algorithm that examines every possible state is reasonable

» State Space of Traveling Salesman problem: size = 2*(#cities)
 State space is exponential in the size of the world
* A search algorithm that examines every possible state is unreasonable



Outline of today’s lecture

2. General algorithm for solving search problems
1. First data structure: frontier (a set)
2. Second data structure: a search tree (a directed graph)
3. Third data structure: explored (a dictionary)



First data structure: Frontier Set

* Frontier set = set of states that you know how to reach, but you
haven’t yet tested to see what comes next after those states

* Initially: FRONTIER = { initial _state }

* First step in the search: figure out which states you can reach from
the initial_state, add them to the FRONTIER



Search Step O Frontier = { Arad }

Jimisoara

Lugoj

Hirsova

Mehadia
25

120

Eforie



Sea rCh Step 1 Frontier = { Sibiu, Timisoara, Zerind }

Jimisoara

Hirsova

26

Eforie



Second data structure: Search Tree

* Tree = directed graph of nodes
* Node = ( world_state, parent_node, path_cost )



Frontier: { Arad }

Search step O

Jimisoara

Hirsova

26

Eforie




Frontier: { Sibiu, Zerind, Timisoara }

Search step 1

Tree: Arad, O

=] Oradea
Neam

Sibiu, 140 Timisoara, 118 Zerind, 75

;o»-.

92

Sibiu 99 Fagams

113 o r MVaslui
Timisoara Rimnicu Vilcea
. 142
Pitesti \=>!!

- )

h Hirsova
101 . Urziceni
LT 6
138 Bucharest
~ Q0

Craiova Eforie

" Giurgiu



Tree Search: Basic idea

1. SEARCH for an optimal solution
* Maintain a frontier of unexpanded states, and a tree showing all known paths

e At each step, pick a state from the frontier to expand:

* Check to see whether or not this state is the goal state. If so, DONE!
* If not, then list all of the states you can reach from this state, add them to the frontier, and add

them to the tree
2. BACK-TRACE: go back up the tree; list, in reverse order, all of the actions
you need to perform in order to reach the goal state.

3. ACT: the agent reads off the sequence of necessary actions, in order,
and does them.



Search Tree

* “What if” tree of sequences of actions and Starting
outcomes state

* The root node corresponds to the starting state Action /™

* The children of a node correspond to the Successor
successor states of that node’s state state () (.

* A path through the tree corresponds to a

sequence of actions Q Q
* Asolution is a path ending in the goal state

* Nodes vs. states cee oeee osoese

* A state is a representation of the world,
while a node is a data structure that is ‘ Goal state
part of the search tree

* Node has to keep pointer to parent, path cost, possibly
other info



Nodes vs. States

e State = description of the world Starting

* Must have enough detail to decide iy
whether or not you’re currently in the Action
initial state Successor

* Must have enough detail to decide state () @
whether or not you’ve reached the goal
state vee

* Often but not always: “defining the () ()
state” and “defining the transition
model” are the same thing ses ses sse

* Node = a point in the search tree
* Knows the ID of its STATE @ coalstate

* Knows the ID of its PARENT NODE
* Knows the COST of the path

———



Frontier: { Sibiu, Zerind, Timisoara }

Search step 1

Tree: Arad, O

=] Oradea
Neam

Sibiu, 140 Timisoara, 118 Zerind, 75

;o»-.

92

Sibiu 99 Fagams

113 o r MVaslui
Timisoara Rimnicu Vilcea
. 142
Pitesti \=>!!

- )

h Hirsova
101 . Urziceni
LT 6
138 Bucharest
~ Q0

Craiova Eforie

" Giurgiu



Sea rch Step 2 Frontier: { Sibiu, Zerind, Timisoara }
Expand Sibiu e At O

=] Oradea
Nea m

Sibiu, 140 Timisoara, 118 Zerind, 75

AradlY

92

Sibiu oo Fagamas

113

20 MVaslui

Rimnicu Vilcea

JTimisoara —
4 142
: : 211
Lugo j Pitesti
1
% Hirsova
Mehadia : Jrziceni
I! | %
138 Bucharest
120
= N %
Craiova Eforie

" Giurgiu



Frontier: { Zerind, Timisoara, Oradea, Arad,

Sea rCh Step 2 Rimnicu Vilcea, Fagaras }
Expanded Sibiu e o
7] Oradea
Neam
Sibiu, 140 Timisoara, 118 Zerind, 75

Aradl

Sibiv . ~Fagar
-‘
Timisoara HimnicuViloe
NEAN

Oradea, 291 Arad, 280 Fagaras, 239

M Mehadia
75

Dobreta 120

" Giurgiu



Tree Search: Computational Complexity

Without an EXPLORED set

* b ="“branching factor” = max # states you can reach from any given state
* d = “depth” = # layers in the tree (# moves that you have made)
* Without an explored set: complexity = O{b"d}

Solution: keep track of the states you have explored
 When you expand a state, you get the list of its possible child states

* ONLY IF a child state is not already explored, put it on the frontier, and put it on the
explored set.

e Result: complexity = min(O{b"d}, O{# possible world states})



Frontier: { Arad }
Explored: { Arad }

Search step O

Tree:

Jimisoara

Hirsova

26

Eforie




Frontier: { Sibiu, Zerind, Timisoara }

Seg rCh Step 1 Explored: { Arad, Sibiu, Zerind, Timisoara }

Arad, O

-] Oradea
Nea m

Sibiu, 140 Timisoara, 118 Zerind, 75

AradlY
Q2

Sibiu 99 Fagamas

113

20 Vaslui

Rimnicu Vilcea

Jimisoara —
: 142
; FoN 211
8]
% Hirsova
Mehadia : Urziceni
Ll 26
133 Bucharest
120
u AN %0

Craiova Eforie

M Giurgiu



Frontier: { Zerind, Timisoara, Oradea,
Rimnicu Vilcea, Fagaras }

Sea rCh ste P 2 Explored: { Arad, Sibiu, Zerind, Timisoara,

Oradea, Rimnicu Vilcea, Fagaras }

=] Oradea

Neamt Arad, O
. 87
:
Sibiu, 140 Timisoara, 118 Zerind, 75
Oradea, 291 Rimnicu Vilcea, 220 Fagaras, 239

JLugoj
70 o3

Hirsova
M ehadia _ Urziceni
7 26
Dobreta [ 120
Efo rie

" Giurgiu



Frontier: { Zerind, Timisoara, Oradea,

Seg rch Step 3: Rimnicu Vilcea, Fagaras }
. Explored: { Arad, Sibiu, Zerind, Timisoara,
expa N d Ze rin d Oradea, Rimnicu Vilcea, Fagaras }
=] Oradea

N"‘t Arad, O
151 <4
:
o Sibiu, 140 Timisoara, 118 Zerind, 75
\ Rimaisn\ilaas) A
Oradea, 291 Rimnicu Vilcea, 220 Fagaras, 239
70 - 03 .
Hirsova
M Mehadia 101 : Urziceni
7 138 == %0
Dobreta 120

~Craiova
M Giurgiu



Frontier: { Zerind, Timisoara, Oradea,

Seq rch Step 3: Rimnicu Vilcea, Fagaras }
Explored: { Arad, Sibiu, Zerind, Timisoara,
We Can reacn Oradea Oradea, Rimnicu Vilcea, Fagaras }
with a total path cost
of only 75+71=146 3" _ Arad, 0
v
Sibiv Sibiu, 140 Timisoara, 118 Zerind, 75

h‘.

Oradea, 291 Rimnicu V|Icea 220 Fagaras, 239
B Lugo]

\ Hirsova
M Mehadia : Urziceni

4, 25
Dobreta o ]

~ICraiova Efo rie

o 11

Ar l 140

113




Third data structure: Explored Dictionary

* Explored = dictionary mapping from state ID to path cost

* If we find a new path to the same state, with HIGHER COST, then we
ignore it

* If we find a new path to the same state, with LOWER COST, then we
expand the new path



Frontier: { Zerind:75, Timisoara:118,
Search Step 3: Oradea:291, Rimnicu Vilcea:220, Fagaras:239 }

Explored: { Arad:0, Sibiu:140, Zerind:75,
we Can redcn Oradea Timisoara:118, Oradea:291, Rimnicu

with a total path cost Vilcea:220, Fagaras:239 }

of only 75+71=146  'g" _ Arad, O
A -‘ T 1J1 - h /
o Sibiu, 11('ﬁmisoara, 118 Zerind, 75
\ Al lilan L

Oradea, 291 Rimnicu Vilcea, 220 Fagaras, 239

JLugoj
° - Hirsova
(IMehadia 101 \ 4 iceni
7 138 =/ ¥
Dobreta [ 120
~ICraiova Efo rie

" Giurgiu



Frontier: { Timisoara:118, Oradea:146, Rimnicu

Search ste o 3: Vilcea:220, Fagaras:239 }
Explored: { Arad:0, Sibiu:140, Zerind:75,

expa 1 ded Zerl nd Timisoara:118, Oradea:146, Rimnicu
Vilcea:220, Fagaras:239 }

Neamt Arad, 0
. 87

=] Oradea

1

75
Arad}

Sibiu Sibiu, 140 Tlmlsoara 118 Zerind, 75

m *

Rimnicu V|Icea 220 Fagaras, 239 Oradea, 146

113

Jimisoara

Lugoj

Hirsova
Mehadia :
4 26
. s - *Bucharest
Dobreta %0
~ICraiova Efo rie

M Giurgiu



Tree Search: Basic idea

At each step, pick a state from the frontier to expand:

1. Check to see whether or not this state is the goal state. If so, DONE! If
not, then for each child:

2. Check to see whether this child is already in the explored set with a
LOWER COST. If so, ignore it. If not:

3. Add it to the frontier, to the tree, and to the explored dict.

Complexity = min(O{b"d}, O{# possible world states}).
Next time: how can we limit d?



