
CS440/ECE 448 Lecture 2:
Search Intro

Slides by Svetlana Lazebnik, 9/2016

Modified by Mark Hasegawa-Johnson, 1/2020

Outline of today’s lecture

1. How to turn ANY problem into a SEARCH problem:
1. Initial state, goal state, transition model
2. Actions, path cost

2. General algorithm for solving search problems
1. First data structure: a frontier list
2. Second data structure: a search tree
3. Third data structure: a “visited states” list

Search

• We will consider the problem of designing goal-based
agents in fully observable, deterministic, discrete, static,
known environments

Start state

Goal state

Search

We will consider the problem of designing goal-based agents in
fully observable, deterministic, discrete, known environments
• The agent must find a sequence of actions that reaches the goal
• The performance measure is defined by (a) reaching the goal and (b)

how “expensive” the path to the goal is
• We are focused on the process of finding the solution; while executing

the solution, we assume that the agent can safely ignore its percepts
(static environment, open-loop system)

Search problem components
• Initial state
• Actions
• Transition model

• What state results from
performing a given action
in a given state?

• Goal state
• Path cost

• Assume that it is a sum of
nonnegative step costs

• The optimal solution is the sequence of actions that gives the
lowest path cost for reaching the goal

Initial
state

Goal
state

Knowledge Representation: State

• State = description of the world
• Must have enough detail to decide whether or not you’re currently in the

initial state
• Must have enough detail to decide whether or not you’ve reached the goal

state
• Often but not always: “defining the state” and “defining the transition model”

are the same thing

Example: Romania
• On vacation in Romania; currently in Arad
• Flight leaves tomorrow from Bucharest

• Initial state
• Arad

• Actions
• Go from one city to another

• Transition model
• If you go from city A to

city B, you end up in city B

• Goal state
• Bucharest

• Path cost
• Sum of edge costs (total distance

traveled)

State space
• The initial state, actions, and

transition model define the state
space of the problem
• The set of all states reachable from initial

state by any sequence of actions
• Can be represented as a directed graph

where the nodes are states and links
between nodes are actions

• What is the state space for the
Romania problem?

Traveling Salesman Problem
• Goal: visit every city in

the United States
• Path cost: total miles

traveled
• Initial state:

Champaign, IL
• Action: travel from one

city to another
• Transition model:

when you visit a city,
mark it as “visited.”

Complexity of the State Space
• State Space of Romania problem: size = # cities
• State space is linear in the size of the world
• A search algorithm that examines every possible state is reasonable

• State Space of Traveling Salesman problem: size = 2^(#cities)
• State space is exponential in the size of the world
• A search algorithm that examines every possible state is unreasonable

Outline of today’s lecture

1. How to turn ANY problem into a SEARCH problem:
1. Initial state, goal state, transition model
2. Actions, path cost

2. General algorithm for solving search problems
1. First data structure: frontier (a set)
2. Second data structure: a search tree (a directed graph)
3. Third data structure: explored (a dictionary)

First data structure: Frontier Set

• Frontier set = set of states that you know how to reach, but you
haven’t yet tested to see what comes next after those states
• Initially: FRONTIER = { initial_state }
• First step in the search: figure out which states you can reach from

the initial_state, add them to the FRONTIER

Search step 0 Frontier = { Arad }

Search step 1 Frontier = { Sibiu, Timisoara, Zerind }

Second data structure: Search Tree

• Tree = directed graph of nodes
• Node = (world_state, parent_node, path_cost)

Search step 0
Frontier: { Arad }

Tree: Arad, 0

Search step 1
Frontier: { Sibiu, Zerind, Timisoara }

Tree: Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75

Tree Search: Basic idea
1. SEARCH for an optimal solution
• Maintain a frontier of unexpanded states, and a tree showing all known paths
• At each step, pick a state from the frontier to expand:

• Check to see whether or not this state is the goal state. If so, DONE!
• If not, then list all of the states you can reach from this state, add them to the frontier, and add

them to the tree

2. BACK-TRACE: go back up the tree; list, in reverse order, all of the actions
you need to perform in order to reach the goal state.

3. ACT: the agent reads off the sequence of necessary actions, in order,
and does them.

Search Tree
• “What if” tree of sequences of actions and

outcomes

• The root node corresponds to the starting state

• The children of a node correspond to the
successor states of that node’s state

• A path through the tree corresponds to a
sequence of actions
• A solution is a path ending in the goal state

• Nodes vs. states
• A state is a representation of the world,

while a node is a data structure that is
part of the search tree
• Node has to keep pointer to parent, path cost, possibly

other info

… … …
…

Starting
state

Successor
state

Action

Goal state

Nodes vs. States
• State = description of the world
• Must have enough detail to decide

whether or not you’re currently in the
initial state
• Must have enough detail to decide

whether or not you’ve reached the goal
state
• Often but not always: “defining the

state” and “defining the transition
model” are the same thing

• Node = a point in the search tree
• Knows the ID of its STATE
• Knows the ID of its PARENT NODE
• Knows the COST of the path

… … …
…

Starting
state

Successor
state

Action

Goal state

Search step 1
Frontier: { Sibiu, Zerind, Timisoara }

Tree: Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75

Search step 2
Expand Sibiu

Frontier: { Sibiu, Zerind, Timisoara }

Tree: Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75

Search step 2
Expanded Sibiu Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Arad, 280 Rimnicu Vilcea, 220 Fagaras, 239

Frontier: { Zerind, Timisoara, Oradea, Arad,
Rimnicu Vilcea, Fagaras }

Tree:

Tree Search: Computational Complexity
Without an EXPLORED set
• b = “branching factor” = max # states you can reach from any given state
• d = “depth” = # layers in the tree (# moves that you have made)
• Without an explored set: complexity = O{b^d}

Solution: keep track of the states you have explored
• When you expand a state, you get the list of its possible child states
• ONLY IF a child state is not already explored, put it on the frontier, and put it on the

explored set.
• Result: complexity = min(O{b^d}, O{# possible world states})

Search step 0
Frontier: { Arad }
Explored: { Arad }

Tree: Arad, 0

Search step 1
Frontier: { Sibiu, Zerind, Timisoara }
Explored: { Arad, Sibiu, Zerind, Timisoara }

Arad, 0

Sibiu, 140 Timisoara, 118 Zerind, 75

Search step 2
Frontier: { Zerind, Timisoara, Oradea,
Rimnicu Vilcea, Fagaras }
Explored: { Arad, Sibiu, Zerind, Timisoara,
Oradea, Rimnicu Vilcea, Fagaras }

Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Rimnicu Vilcea, 220 Fagaras, 239

Search step 3:
expand Zerind

Frontier: { Zerind, Timisoara, Oradea,
Rimnicu Vilcea, Fagaras }
Explored: { Arad, Sibiu, Zerind, Timisoara,
Oradea, Rimnicu Vilcea, Fagaras }

Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Rimnicu Vilcea, 220 Fagaras, 239

Frontier: { Zerind, Timisoara, Oradea,
Rimnicu Vilcea, Fagaras }
Explored: { Arad, Sibiu, Zerind, Timisoara,
Oradea, Rimnicu Vilcea, Fagaras }

Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Rimnicu Vilcea, 220 Fagaras, 239

Search step 3:
we can reach Oradea
with a total path cost
of only 75+71=146

Third data structure: Explored Dictionary

• Explored = dictionary mapping from state ID to path cost
• If we find a new path to the same state, with HIGHER COST, then we

ignore it
• If we find a new path to the same state, with LOWER COST, then we

expand the new path

Arad, 0

Timisoara, 118 Zerind, 75Sibiu, 140

Oradea, 291 Rimnicu Vilcea, 220 Fagaras, 239

Search step 3:
we can reach Oradea
with a total path cost
of only 75+71=146

Frontier: { Zerind:75, Timisoara:118,
Oradea:291, Rimnicu Vilcea:220, Fagaras:239 }
Explored: { Arad:0, Sibiu:140, Zerind:75,
Timisoara:118, Oradea:291, Rimnicu
Vilcea:220, Fagaras:239 }

Arad, 0

Timisoara, 118Sibiu, 140

Rimnicu Vilcea, 220 Fagaras, 239

Search step 3:
expanded Zerind

Frontier: { Timisoara:118, Oradea:146, Rimnicu
Vilcea:220, Fagaras:239 }
Explored: { Arad:0, Sibiu:140, Zerind:75,
Timisoara:118, Oradea:146, Rimnicu
Vilcea:220, Fagaras:239 }

Oradea, 146

Zerind, 75

Tree Search: Basic idea
At each step, pick a state from the frontier to expand:
1. Check to see whether or not this state is the goal state. If so, DONE! If

not, then for each child:
2. Check to see whether this child is already in the explored set with a

LOWER COST. If so, ignore it. If not:
3. Add it to the frontier, to the tree, and to the explored dict.

Complexity = min(O{b^d}, O{# possible world states}).
Next time: how can we limit d?

