Outline of today’s lecture

1. How to turn ANY problem into a SEARCH problem:
 1. Initial state, goal state, transition model
 2. Actions, path cost

2. General algorithm for solving search problems
 1. First data structure: a frontier list
 2. Second data structure: a search tree
 3. Third data structure: a “visited states” list
Search

- We will consider the problem of designing **goal-based agents** in fully observable, deterministic, discrete, static, known environments.
Search

We will consider the problem of designing goal-based agents in fully observable, deterministic, discrete, known environments.

- The agent must find a sequence of actions that reaches the goal.
- The performance measure is defined by (a) reaching the goal and (b) how “expensive” the path to the goal is.
- We are focused on the process of finding the solution; while executing the solution, we assume that the agent can safely ignore its percepts (static environment, open-loop system).
Search problem components

• **Initial state**
• **Actions**
• **Transition model**
 • What state results from performing a given action in a given state?
• **Goal state**
• **Path cost**
 • Assume that it is a sum of nonnegative *step costs*
• The **optimal solution** is the sequence of actions that gives the *lowest* path cost for reaching the goal
Knowledge Representation: State

- State = description of the world
 - Must have enough detail to decide whether or not you’re currently in the **initial state**
 - Must have enough detail to decide whether or not you’ve reached the **goal state**
 - Often but not always: “defining the state” and “defining the transition model” are the same thing
Example: Romania

- On vacation in Romania; currently in Arad
- Flight leaves tomorrow from Bucharest

- Initial state
 - Arad

- Actions
 - Go from one city to another

- Transition model
 - If you go from city A to city B, you end up in city B

- Goal state
 - Bucharest

- Path cost
 - Sum of edge costs (total distance traveled)
State space

• The initial state, actions, and transition model define the **state space** of the problem
 • The set of all states reachable from initial state by any sequence of actions
 • Can be represented as a **directed graph** where the nodes are states and links between nodes are actions

• What is the state space for the Romania problem?
Traveling Salesman Problem

- Goal: visit every city in the United States
- Path cost: total miles traveled
- Initial state: Champaign, IL
- Action: travel from one city to another
- Transition model: when you visit a city, mark it as “visited.”
Complexity of the State Space

• State Space of Romania problem: size = # cities
 • State space is linear in the size of the world
 • A search algorithm that examines every possible state is reasonable

• State Space of Traveling Salesman problem: size = 2^(#cities)
 • State space is exponential in the size of the world
 • A search algorithm that examines every possible state is unreasonable
Outline of today’s lecture

1. How to turn ANY problem into a SEARCH problem:
 1. Initial state, goal state, transition model
 2. Actions, path cost

2. General algorithm for solving search problems
 1. First data structure: frontier (a set)
 2. Second data structure: a search tree (a directed graph)
 3. Third data structure: explored (a dictionary)
First data structure: Frontier Set

• Frontier set = set of states that you know how to reach, but you haven’t yet tested to see what comes next after those states
• Initially: FRONTIER = { initial_state }
• First step in the search: figure out which states you can reach from the initial_state, add them to the FRONTIER
Search step 0 Frontier = \{ \text{Arad} \}
Search step 1

Frontier = \{ Sibiu, Timisoara, Zerind \}
Second data structure: Search Tree

• Tree = directed graph of nodes
• Node = (world_state, parent_node, path_cost)
Search step 0

Frontier: \{ Arad \}

Tree: Arad, 0
Search step 1

Frontier: \{ Sibiu, Zerind, Timisoara \}

Tree:
- Arad, 0
 - Sibiu, 140
 - Timisoara, 118
 - Zerind, 75
Tree Search: Basic idea

1. SEARCH for an optimal solution
 • Maintain a **frontier** of unexpanded states, and a **tree** showing all known paths
 • At each step, pick a state from the frontier to **expand**:
 • Check to see whether or not this state is the goal state. If so, DONE!
 • If not, then list all of the states you can reach from this state, add them to the frontier, and add them to the tree

2. BACK-TRACE: go back up the tree; list, in reverse order, all of the actions you need to perform in order to reach the goal state.

3. ACT: the agent reads off the sequence of necessary actions, in order, and does them.
Search Tree

- “What if” tree of sequences of actions and outcomes
- The root node corresponds to the starting state
- The children of a node correspond to the **successor states** of that node’s state
- A path through the tree corresponds to a sequence of actions
 - A solution is a path ending in the goal state
- Nodes vs. states
 - A state is a representation of the world, while a node is a data structure that is part of the search tree
 - Node has to keep pointer to parent, path cost, possibly other info
Nodes vs. States

- **State** = description of the world
 - Must have enough detail to decide whether or not you’re currently in the initial state
 - Must have enough detail to decide whether or not you’ve reached the goal state
 - Often but not always: “defining the state” and “defining the transition model” are the same thing

- **Node** = a point in the search tree
 - Knows the ID of its STATE
 - Knows the ID of its PARENT NODE
 - Knows the COST of the path
Search step 1

Frontier: { Sibiu, Zerind, Timisoara }

Tree:

- Arad, 0
 - Sibiu, 140
 - Timisoara, 118
 - Zerind, 75
Search step 2
Expand Sibiu

Frontier: { Sibiu, Zerind, Timisoara }

Tree:
- Arad, 0
- Timisoara, 118
- Zerind, 75

Sibiu, 140
Search step 2
Expanded Sibiu

Frontier: { Zerind, Timisoara, Oradea, Arad, Rimnicu Vilcea, Fagaras }

Tree:
Tree Search: Computational Complexity

Without an EXPLORED set

• \(b \) = “branching factor” = max # states you can reach from any given state
• \(d \) = “depth” = # layers in the tree (# moves that you have made)
• Without an explored set: complexity = \(O(b^d) \)

Solution: keep track of the states you have explored

• When you expand a state, you get the list of its possible child states
• ONLY IF a child state is not already explored, put it on the frontier, and put it on the explored set.
• Result: complexity = \(\min(O(b^d), O(\# \text{ possible world states})) \)
Search step 0

Frontier: \{ Arad \}
Explored: \{ Arad \}

Tree:

Arad, 0
Search step 1

Frontier: { Sibiu, Zerind, Timisoara }
Explored: { Arad, Sibiu, Zerind, Timisoara }

Arad, 0
Sibiu, 140
Timisoara, 118
Zerind, 75
Search step 2

Frontier: { Zerind, Timisoara, Oradea, Rimnicu Vilcea, Fagaras }

Explored: { Arad, Sibiu, Zerind, Timisoara, Oradea, Rimnicu Vilcea, Fagaras }

Oradea, 291
Sibiu, 140
Rimnicu Vilcea, 220
Fagaras, 239

Arad, 0
Timisoara, 118
Zerind, 75
Search step 3: expand Zerind

Frontier: \{ Zerind, Timisoara, Oradea, Rimnicu Vilcea, Fagaras \}

Explored: \{ Arad, Sibiu, Zerind, Timisoara, Oradea, Rimnicu Vilcea, Fagaras \}
Search step 3: we can reach Oradea with a total path cost of only $\boxed{75+71=146}$.
Third data structure: Explored Dictionary

• Explored = dictionary mapping from state ID to path cost
• If we find a new path to the same state, with HIGHER COST, then we ignore it
• If we find a new path to the same state, with LOWER COST, then we expand the new path
Search step 3: we can reach Oradea with a total path cost of only \(75+71=146\)
Search step 3: expanded Zerind

Frontier: { Timisoara: 118, Oradea: **146**, Rimnicu Vilcea: 220, Fagaras: 239 }

Tree Search: Basic idea

At each step, pick a state from the frontier to **expand**:

1. Check to see whether or not this state is the goal state. If so, DONE! If not, then for each child:
2. Check to see whether this child is already in the explored set with a LOWER COST. If so, ignore it. If not:
3. Add it to the frontier, to the tree, and to the explored dict.

Complexity = \(\min(O\{b^d\}, O\{\text{# possible world states}\}) \).

Next time: how can we limit \(d \)?