Garlic halved horizontally = nature’s Voronoi diagram?

en.wikipedia.org/wiki/Voronoi_diagram...
Linear Classifiers

- Naïve Bayes/BoW classifiers
- Linear Classifiers in General
- Perceptron
- Differential Perceptron/Neural Net
Naïve Bayes/Bag-of-Words

• Model parameters: feature likelihoods $P(\text{word} \mid \text{class})$ and priors $P(\text{class})$

 • How do we obtain the values of these parameters?
 • Need training set of labeled samples from both classes

\[
P(\text{word} \mid \text{class}) = \frac{\text{# of occurrences of this word in docs from this class}}{\text{total # of words in docs from this class}}
\]

• This is the maximum likelihood (ML) estimate, or estimate that maximizes the likelihood of the training data:

\[
\prod_{d=1}^{D} \prod_{i=1}^{n_d} P(w_{d,i} \mid \text{class}_{d,i})
\]

d: index of training document, i: index of a word
Indexing in BoW: Types vs. Tokens

- **Indexing the training dataset: TOKENS**
 - $i =$ document token index, $1 \leq i \leq m$ (there are n document tokens in the training dataset)
 - $j =$ word token index, $1 \leq j \leq n$ (there are n word tokens in each document)

- **Indexing the dictionary: TYPES**
 - $c =$ class type, $1 \leq c \leq C$ (there are a total of C different class types)
 - $w =$ word type, $1 \leq w \leq V$ (there are a total of V words in the dictionary, i.e., V different word types)
Two Different BoW Algorithms

• **One bit per document**, per word type:
 • \(F_{iw} = 1 \) if word “w” occurs anywhere in the i’th document
 • \(F_{iw} = 0 \) otherwise

• **One bit per word** token, per word type:
 • \(F_{jw} = 1 \) if the j’th word token is “w”
 • \(F_{jw} = 0 \) otherwise

Example: “who saw who with who?”

\[
F_i,"who" = 1 \\
F_j,"who" = \{1,0,1,0,1\}
\]
Feature = One Bit Per Document

• Features:
 • $F_{iw} = 1$ if word “w” occurs anywhere in the i’th document

• Parameters:
 • $\lambda_{cw} \equiv P(F_{iw} = 1|C = c)$
 • Note this means that $P(F_{iw} = 0|C = c) = 1 - \lambda_{cw}$

• Parameter Learning:

$$\lambda_{cw} = \frac{1}{1 + \# \text{ documents containing } w} \cdot \frac{(1 + \# \text{ documents containing } w)}{(1 + \# \text{ documents containing } w) + (1 + \# \text{ documents NOT containing } w)}$$
Feature = One Bit Per Word Token

• Features:
 • $F_{jw} = 1$ if the j’th word token is word “w”

• Parameters:
 • $\lambda_{cw} \equiv P(F_{iw} = 1 | C = c) = P(W_j = w | C = c)$
 • Note this means that $P(F_{jw} = 0 | C = c) = \sum_{v \neq w} \lambda_{cv}$

• Parameter Learning:
 $$\lambda_{cw} = \frac{(1 + \# \text{ tokens of } w \text{ in the training database})}{\sum_{v=1}^{V}(1 + \# \text{ tokens of } v \text{ in the training database})}$$
Feature = One Bit Per Document

Classification:

\[C^* = \arg\max P(C=c | \text{document}) \]

\[= \arg\max P(C=c) P(\text{Document} | C=c) \]

\[= \arg\max_c \left(\pi_c \prod_{w: f_{cw} = 1} \lambda_{cw} \prod_{w: f_{cw} = 0} (1 - \lambda_{cw}) \right) \]
Feature = One Bit Per Word Token

Classification:

\[C^* = \text{argmax } P(C=c \mid \text{document}) \]

\[= \text{argmax } P(C=c) \ P(\text{Document} \mid C=c) \]

\[= \text{arg max}_c \left(\pi_c \prod_{j=1}^{n} \lambda_{cw_j} \right) \]
Feature = One Bit Per Document

Classification:

\[C^* = \arg \max_c \left(\pi_c \prod_{w=1}^{V} \left(\frac{\lambda_{cw}}{1 - \lambda_{cw}} \right)^{f_{cw}} (1 - \lambda_{cw}) \right) \]

\[C^* = \arg \max_c \left(\beta_c + \sum_{w=1}^{V} \alpha_{cw} f_{cw} \right) \]

\[\alpha_{cw} = \log \left(\frac{\lambda_{cw}}{1 - \lambda_{cw}} \right), \quad \beta_c = \log \left(\pi_c \prod_{w=1}^{V} (1 - \lambda_{cw}) \right) \]
Feature = One Bit Per Word Token

Classification:

\[C^* = \arg \max_c \left(\pi_c \prod_{w=1}^{V} \lambda_{cw}^{s_w} \right) \]

Where \(s_w = \) number of times \(w \) occurred in the document!! So...

\[C^* = \arg \max_c \left(\beta_c + \sum_{w=1}^{V} \alpha_{cw} s_{cw} \right) \]

\[\alpha_{cw} = \log \lambda_{cw}, \quad \beta_c = \log \pi_c \]
Linear Classifiers

• Naïve Bayes/BoW classifiers
• Linear Classifiers in General
• Perceptron
• Differential Perceptron/Neural Net
Linear Classifiers in General

The function $\beta_c + \sum_{w=1}^{V} \alpha_{cw} f_{cw}$ is an affine function of the features f_{cw}. That means that its contours are all straight lines. Here is an example of such a function, plotted as variations of color in a two-dimensional space f_1 by f_2:
Linear Classifiers in General

Consider the classifier

\[C^* = 1 \quad \text{if} \quad \beta_c + \sum_{w=1}^{V} \alpha_{cw} f_{cw} > 0 \]

\[C^* = 0 \quad \text{if} \quad \beta_c + \sum_{w=1} \alpha_{cw} f_{cw} < 0 \]

This is called a “linear classifier” because the boundary between the two classes is a line. Here is an example of such a classifier, with its boundary plotted as a line in the two-dimensional space \(f_1 \) by \(f_2 \):
Linear Classifiers in General

Consider the classifier

\[C^* = \arg \max_c \left(\beta_c + \sum_{w=1}^{V} \alpha_{cw} f_{cw} \right) \]

• This is called a “multi-class linear classifier.”
• The regions \(C^* = 0, C^* = 1, C^* = 2 \) etc. are called “Voronoi regions.”
• They are regions with piece-wise linear boundaries. Here is an example from Wikipedia of Voronoi regions plotted in the two-dimensional space \(f_1 \) by \(f_2 \):
Linear Classifiers in General

When the features are binary ($f_w \in \{0, 1\}$), many (but not all!) binary functions can be re-written as linear functions. For example, the function

$$C^* = (f_1 \lor f_2)$$

can be re-written as

$$C^* = 1 \text{ iff } f_1 + f_2 - 0.5 > 0$$

Similarly, the function

$$C^* = (f_1 \land f_2)$$

can be re-written as

$$C^* = 1 \text{ iff } f_1 + f_2 - 1.5 > 0$$
Linear Classifiers in General

• Not all logical functions can be written as linear classifiers!

• Minsky and Papert wrote a book called *Perceptrons* in 1969. Although the book said many other things, the only thing most people remembered about the book was that:

 • “A linear classifier cannot learn an XOR function.”

• Because of that statement, most people gave up working on neural networks from about 1969 to about 2006.

• Minsky and Papert also proved that a two-layer neural net can learn an XOR function. But most people didn’t notice.
Linear Classifiers

Classification:

\[C^* = \arg \max_c \left(\beta_c + \sum_{w=1}^{V} \alpha_{cw} f_{cw} \right) \]

- Where \(f_{cw} \) are the features (binary, integer, or real), \(\alpha_{cw} \) are the feature weights, and \(\beta_c \) is the offset
Linear Classifiers

- Naïve Bayes/BoW classifiers
- Linear Classifiers in General
- Perceptron
- Differential Perceptron/Neural Net
• 1909: Williams discovers that the giant squid has a giant neuron (axon 1mm thick)
• 1952: Hodgkin & Huxley publish an electrical current model for the generation of binary action potentials from real-valued inputs.
1959: Rosenblatt is granted a patent for the “perceptron,” an electrical circuit model of a neuron.
Perceptron model: action potential = signum(affine function of the features)

\[C^* = \text{sgn}(\alpha_1 f_1 + \alpha_2 f_2 + \ldots + \alpha_V f_V + \beta) = \text{sgn}(\vec{w}^T \vec{x}) \]

Where \(\vec{w} = [\alpha_1, \ldots, \alpha_V, \beta]^T \)
and \(\vec{x} = [f_1, \ldots, f_V, 1]^T \)

Can incorporate bias as component of the weight vector by always including a feature with value set to 1.
Perceptron

Rosenblatt’s big innovation: the perceptron learns from examples.
- Initialize weights randomly
- Cycle through training examples in multiple passes (epochs)
- For each training example:
 - If classified correctly, do nothing
 - If classified incorrectly, update weights
Perceptron

For each training instance \mathbf{x} with label $y \in \{-1, 1\}$:

- Classify with current weights: $y' = \text{sgn}(\mathbf{w}^T \mathbf{x})$
 - Notice $y' \in \{-1, 1\}$ too.
- Update weights:
 - if $y = y'$ then do nothing
 - if $y \neq y'$ then $\mathbf{w} = \mathbf{w} + \eta y \mathbf{x}$
 - η (eta) is a “learning rate.” More about that later.
Perceptron: Proof of Convergence

- If the data are linearly separable (if there exists a \vec{w} vector such that the true label is given by $y' = \text{sgn}(\vec{w}^T \vec{x})$), then the perceptron algorithm is guaranteed to converge, even with a constant learning rate, even $\eta=1$.

- In fact, training a perceptron is often the fastest way to find out if the data are linearly separable. If \vec{w} converges, then the data are separable; if \vec{w} diverges toward infinity, then no.

- If the data are not linearly separable, then perceptron converges iff the learning rate decreases, e.g., $\eta=1/n$ for the n’th training sample.
Perceptron: Proof of Convergence

Suppose the data are linearly separable. For example, suppose red dots are the class \(y=1 \), and blue dots are the class \(y=-1 \):
Perceptron: Proof of Convergence

• Instead of plotting \hat{x}, plot $y \times \hat{x}$. The red dots are unchanged; the blue dots are multiplied by -1.

• Since the original data were linearly separable, the new data are all in the same half of the feature space.
Perceptron: Proof of Convergence

- Remember the perceptron training rule: if any example is misclassified, then we use it to update $\vec{w} = \vec{w} + y \vec{x}$.
- So eventually, \vec{w} becomes just a weighted average of $y \vec{x}$.
- ... and the perpendicular line, $\vec{w}^T \vec{x} = 0$, is the classifier boundary.
Perceptron: Proof of Convergence

• If the data are not linearly separable, then perceptron converges iff the learning rate decreases, e.g., $\eta=1/n$ for the n’th training sample.
Implementation details

- Bias (add feature dimension with value fixed to 1) vs. no bias
- Initialization of weights: all zeros vs. random
- Learning rate decay function
- Number of epochs (passes through the training data)
- Order of cycling through training examples (random)
Multi-class perceptrons

- **One-vs-others framework**: Need to keep a weight vector \mathbf{w}_c for each class c
- Decision rule: $c = \arg\max_c \mathbf{w}_c \cdot \mathbf{x}$
- Update rule: suppose example from class c gets misclassified as c'
 - Update for c: $\mathbf{w}_c \leftarrow \mathbf{w}_c + \eta \mathbf{x}$
 - Update for c': $\mathbf{w}_{c'} \leftarrow \mathbf{w}_{c'} - \eta \mathbf{x}$
 - Update for all classes other than c and c': no change
Review: Multi-class perceptrons

- *One-vs-others* framework: Need to keep a weight vector w_c for each class c
- Decision rule: $c = \text{argmax}_c w_c \cdot x$
Linear Classifiers

• Naïve Bayes/BoW classifiers
• Linear Classifiers in General
• Perceptron
• Differential Perceptron/Neural Net
Differential Perceptron

- Also known as a “one-layer feedforward neural network,” also known as “logistic regression.” Has been re-invented many times by many different people.

- Basic idea: replace the non-differentiable decision function
 \[y' = \text{sgn}(\mathbf{w}^T \mathbf{x}) \]
 with a differentiable decision function
 \[y' = \tanh(\mathbf{w}^T \mathbf{x}) \]
Differential Perceptron

Suppose we have n training vectors, \vec{x}_1 through \vec{x}_n. Each one has an associated label $y_i \in \{-1, 1\}$. Then we replace the true error,

$$E = \frac{1}{4} \sum_{i=1}^{n} (y_i - \text{sgn}(\vec{w}^T \vec{x}_i))^2$$

with a differentiable error

$$E = \frac{1}{4} \sum_{i=1}^{n} (y_i - \tanh(\vec{w}^T \vec{x}_i))^2$$
Differential Perceptron

And then the weights get updated according to

\[w_k = w_k - \eta \frac{\partial E}{\partial w_k} \]
Differentiable Multi-class perceptrons

Same idea works for multi-class perceptrons. We replace the non-differentiable decision rule $c = \text{argmax}_c \mathbf{w}_c \cdot \mathbf{x}$ with the differentiable decision rule $c = \text{softmax}_c \mathbf{w}_c \cdot \mathbf{x}$, where the softmax function is defined as

$$P(c \mid \mathbf{x}) = \frac{\exp(\mathbf{w}_c \cdot \mathbf{x})}{\sum_{k=1}^C \exp(\mathbf{w}_k \cdot \mathbf{x})}$$
Summary

You now know SEVEN!! different types of linear classifiers:

• One bit per document Naïve Bayes
• One bit per word token Naïve Bayes
• Linear classifier can implement some logical functions, like AND and OR, but not others, like XOR
• Perceptron
• Multi-class Perceptron
• Differentiable Perceptron
• Differentiable Multi-class perceptron