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Learn to tell apart

» Given a set of tuples {Xj, Y;}, learn a function f which
tells us Y; for a given X;.
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» Given a set of tuples {Xj, Y;}, learn a function f which
tells us Y; for a given X;.

» X; is the feature vector, Y; is the label, f is the
classifier.

» e.g. X = (vectorized) pixel intensity, Y = image type
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What's the classifier
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What's the classifier

~ L]
N
N
~ - .
I LA
o o "0, 08° °
‘ :Q Xt -
0' \-\..“. “ “
* o ‘Q"’.. [ ]
., .:“ aﬂt
L] . o e g ° ® L]
L 0" [
et s Joeeq 2% -~
[ .‘ o o0 S
. ™ .‘,ﬁ L] \.\
. ° * o .. ~

» Simply check which side are we on.
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» Simply check which side are we on.

» Predict sgn(w’x), where w is the normal to the

boundary.



Perceptrons,

What's a perceptron SVMs, Neura

Networks

Ishan Deshpande

Linear Separability
Training Algorithm

Multi-class
X1 classification
w1
wo
Picking the best
X2 y (M
w3 BSondliinean

boundaries - the
Kernel Trick

X3

Hidden layers



QOutline

Supervised Classification

Perceptrons

Linear Separability
Training Algorithm

Multi-class classification

Support Vector Machines
Picking the best boundary

Beyond linear boundaries - the Kernel Trick
Neural Networks

Hidden layers

«O>» «Fr «=>»

« =)

DA



Finding a classifier

» Start with a random guess.
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Finding a classifier
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» Cycle through the training set. Check prediction y’ vs
actual label y.
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Finding a classifier
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» Update line with the rule:
w=wtaly —y)x
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Finding a classifier

Suppose w = (1, —1)

X1

Perceptrons,
SVMs, Neural
Networks

Ishan Deshpande

Training Algorithm



Perceptrons,

Finding a classifier SVMs, Neura

Networks
Consider (1,2) with y = 1. For this y' = —1. For a« = 1 the
new w is
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w = (3, 3) (3) Training Algorithm
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Finding a classifier

The boundary is now:
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Finding a classifier SVMs, Neura

Networks
Consider (—1,0.5) with y = 1. For this y’ = —1. We update
again:
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w=(3,3)+1x(1-(-1)) x(-1,0.5) (4)
wW = (1, 4) (5) Training Algorithm

X2
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Finding a classifier

» If the data is indeed linearly separable, it will eventually
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» If the data is indeed linearly separable, it will eventually

converge!
> If the data is NOT linearly separable, training can

diverge for a fixed a. Trenie et
» Solution: Use a = % - finds the best separator if data is

actually separable, otherwise finds the MMSE solution .
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» Solution: Use a = % - finds the best separator if data is
actually separable, otherwise finds the MMSE solution .

» Include a bias term, i.e. offset of line.

y = sgn(wx + b) (6)



Finding a classifier

» If the data is indeed linearly separable, it will eventually
converge!

> If the data is NOT linearly separable, training can
diverge for a fixed «.

» Solution: Use a = % - finds the best separator if data is
actually separable, otherwise finds the MMSE solution .

» Include a bias term, i.e. offset of line.
y = sgn(wx + b) (6)
> Use the same training algorithm with X and w as

x={x,1}, w={w,b} (7)
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Differentiable Variant

» Instead of sgn(.), use a differentiable non-linear

function, such as the sigmoid o(x) =

_1
14e—x"
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E(w) =Y (v — f(x))? (8)
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Networks
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» Instead of sgn(.), use a differentiable non-linear

function, such as the sigmoid o(x) = o=

E(w) =Y (v — f(x))? (8)

i

» Minimize

Training Algorithm

» Update via gradient descent

d
w:w—ad—WE(w) (9)



Differentiable Variant

v

v

v

Instead of sgn(.), use a differentiable non-linear

function, such as the sigmoid o(x) = H%
Minimize
E(w) = (vi— f(x))’
i
Update via gradient descent

—w—a—E
w=w adw(w)

For the sigmoid, this is:

w=w —afy — f(x))f(x)(1 - f(x))x

(10)
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Source: http://cs231n.github.io/linear-classify/
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One vs Others

» One classifier for one class.

» Predict

C = argmaxc
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One VS Others SVMs, Neural
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» One classifier for one class.

> Predict
C = argmaxc WZ:X (]_1) Multi-class

classification

» If cis misclassified as ¢’, update using

We = W, + ax (12)

W = Wy — aX (13)
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Which boundary is better? Suhte Newrs
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> Intuitively, pick the one that is equally distant from
both classes.

Picking the best
boundary

Support vectors = Margin

A Tutorial on Support Vector Machines for Pattern
Recognition


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Which boundary is better?

» Perpendicular distance of support vectors from the

boundary is:

(14)
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» Suppose we require, for all support vectors, that :

)wa + b‘ =1 (15)



Which boundary is better?

» Perpendicular distance of support vectors from the

boundary is:
‘wa + b‘
wi (4
» Suppose we require, for all support vectors, that :
)wa + b‘ =1 (15)

> The margin is then ”%”
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Which boundary is better?

» Formulated as:

subject to:

miny p §WTW

yi(w'x; +b) > 1

(16)

(17)
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Which boundary is better?

» Formulated as: 1
miny, p §WTW (16)

subject to:
vi(wTx; +b) > 1 (17)

> Eq. 16 ensures maximum margin, while Eq. 17 ensures
correct classification.
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Which boundary is better?

» Formulated as:

1
miny. p §WTW (16)

subject to:
vi(wTx; +b) > 1 (17)

> Eq. 16 ensures maximum margin, while Eq. 17 ensures
correct classification.

» The classifier is of the form:
w=>ajyx (18)

and
y=> aiyix/x+b (19)

where «; are learned weights.
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Which boundary is better?

» This can be relaxed if the data is not actually separable

miny p

2

1
wiw+ C Z max(0,1 — y;(w”x; + b)) (20)
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Which boundary is better?

» This can be relaxed if the data is not actually separable

1
minws Sww-+C Y max(0,1- yi(w'x; + b)) (20)

» C allows you to give weight to one over the other.
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Which boundary is better?

» This can be relaxed if the data is not actually separable

miny p

» C allows you to give weight to one over the other.

2

1
wiw+ C Z max(0,1 — y;(w”x; + b)) (20)

» Here we judge classification accuracy with the ‘hinge’

loss

max(0,1 — y;(w”x; + b))

Hinge Loss

Margin

(21)
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What if the data is not linearly separable?

» Try mapping it to a space where it is! Use a ¢ such

that

Input Space

Feature Space
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https://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and
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What if the data is not linearly separable?
The kernel trick

» Eqg. 19 will be rewritten as:

y= Z a,-yigb(x,')Tqb(x) +b

(22)
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» Eqg. 19 will be rewritten as:

y =Y aiyig(xi)Té(x) + b (22)
i
> Instead of explicitly defining ¢, we can also define a
K(x,x’) such that Bt e,
Kernel Trick
y = aiyiK(xi,x)+ b (23)
i

Note: K must satisfy Mercer's conditions. Examples
include polynomial kernels (1 +x"x’)9, Gaussian
kernels exp( St (x-x") T (x-x’))



QOutline

Supervised Classification

Perceptrons
Linear Separability
Training Algorithm

Multi-class classification

Support Vector Machines
Picking the best boundary

Beyond linear boundaries - the Kernel Trick
Neural Networks

Hidden layers

«O>» «Fr «=>»

« =)

nae



Can we learn this transformation?

» Stacks of perceptrons can learn non-linear functions.

e.g. Consider a simple 1-d scenario

4

3

i
L ]
oy
[ ]
l..h

3,
R

.-.l 5_ °

—_— e e e g ————— -

|
]

Perceptrons,
SVMs, Neural
Networks

Ishan Deshpande

Hidden layers



Combine several perceptron units

x1 > 27
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Combine several perceptron units

x1 > 27
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Multi-layer perceptron SVhte: Nerl

Networks

wj; represents weight to perceptron i in the hidden layer from
input j, and w; represents weight of perceptron iin the
hidden layer to the output. Then:

yi = sgn(z wijx;) (24)

Ishan Deshpande

y = sgn(Z wj X ;) (25)

Q Hidden layers
W11
w12



How do we train this monster?

» Use differentiable perceptrons.
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» Use differentiable perceptrons.
» Minimize
E(w) = (vi — f(x))° (26)

using gradient descent.
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How do we train this monster?

» Use differentiable perceptrons.
» Minimize
E(w) = (vi — f(x))° (26)
1
using gradient descent.
» Use chain rule to recursively compute gradients from
output layer to input - pass information backwards.

d d d
E Y1

E(w) = (d71 w)) (27)

dwiq dwiy
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How powerful is this hidden layer?
http://playground.tensorflow.org/

3 hidden neurons 6 hidden neurons 20 hidden neurons

eura € T

Hidden layers
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 http://playground.tensorflow.org/ 
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