
Planning (Chapter 10)
Slides by Svetlana Lazebnik, 9/2016
with modifications by Mark Hasegawa-Johnson, 9/2017

http://en.wikipedia.org/wiki/Rube_Goldberg_machine



Planning
• Problem: I’m at home and I need milk, bananas, 

and a drill.
• How is planning different from regular search?

• States and action sequences typically have complex internal structure
• State space and branching factor are huge
• Multiple subgoals at multiple levels of resolution

• Examples of planning applications
• Scheduling of tasks in space missions
• Logistics planning for the army
• Assembly lines, industrial processes
• Robotics
• Games, storytelling





A representation for planning
• STRIPS (Stanford Research Institute Problem Solver): classical 

planning framework from the 1970s
• States are specified as conjunctions of predicates

• Start state: At(home)  Sells(SM, Milk)  Sells(SM, Bananas)  Sells(HW, drill)
• Goal state: At(home)  Have(Milk)  Have(Banana)  Have(drill)

• Actions are described in terms of preconditions and effects:
• Go(x, y)

• Precond: At(x)
• Effect: ¬At(x)  At(y)

• Buy(x, store)
• Precond: At(store)  Sells(store, x)
• Effect: Have(x)

• Planning is “just” a search problem





Algorithms for planning
• Forward (progression) state-space search: starting with the start 

state, find all applicable actions (actions for which preconditions are 
satisfied), compute the successor state based on the effects, keep 
searching until goals are met

• Can work well with good heuristics

https://www.youtube.com/watch?v=QLNSkFnBYuM



Algorithms for planning
• Forward (progression) state-space search: starting with the start 

state, find all applicable actions (actions for which preconditions are 
satisfied), compute the successor state based on the effects, keep 
searching until goals are met

• Can work well with good heuristics

• Backward (regression) relevant-states search: to achieve a goal, 
what must have been true in the previous state?



Forward chaining = start with what you 
already have, and then learn the next step



Forward-chaining: each step in the search is 
one application of modus ponens
• In forward-chaining, we start from a state, P, that the search process 

has already achieved
• We then check to see whether it is possible to apply modus ponens: 

given the current state P, is there any operaƟon P→Q available?



Backward chaining = start with the goal state, 
and search backward



Forward-chaining: each step in the search is 
one application of modus ponens
• In backward-chaining, we start from a state, Q, that we want to 

achieve
• We then check to see whether it is possible to apply modus ponens in 

order to generate Q from any other state, P:



Heuristics for planning: means-ends analysis



Challenges of planning: “Sussman anomaly”

Start state: Goal state:

On(A,B)
On(B,C)

Let’s try to achieve 
On(A,B):

Let’s try to achieve 
On(B,C):

http://en.wikipedia.org/wiki/Sussman_Anomaly



• Shows the limitations of non-interleaved planners that 
consider subgoals in sequence and try to satisfy them 
one at a time

• If you try to satisfy subgoal X and then subgoal Y, X might undo 
some preconditions for Y, or Y might undo some effects of X

• More powerful planning approaches must interleave the 
steps towards achieving multiple subgoals

http://en.wikipedia.org/wiki/Sussman_Anomaly

Challenges of planning: “Sussman anomaly”



Situation space planning vs. plan space 
planning

• Situation space planners: each node in the search 
space represents a world state, arcs are actions in the 
world

• Plans are sequences of actions from start to finish
• Must be totally ordered

• Plan space planners: nodes are (incomplete) plans, 
arcs are transformations between plans

• Actions in the plan may be partially ordered
• Principle of least commitment: avoid ordering plan steps 

unless absolutely necessary



Partial order planning
• Task: put on socks and shoes

Partial order plan
Total order (linear) plans



Partial Order Planning Example

Finish

Sells(SM, Bananas)

Have(Milk) Have(Bananas)

Start

At(Home)Sells(SM, Milk)

Start: empty plan

Action: find flaw in the plan and modify plan to fix the flaw



Partial Order Planning Example

Finish

Buy(x1, Milk) Buy(x2, Bananas)

Go(x3, SM)

At(x2)

Sells(SM, Bananas)

Have(Milk) Have(Bananas)

Have(Bananas)Have(Milk)

Sells(x1, Milk) Sells(x2, Bananas)

At(SM)

Sells(SM, Milk)

At(x1)

Start

x1 = SM
x2 = SM
x3 = Home

At(Home)

At(x3)



Application of planning: Automated 
storytelling

https://research.cc.gatech.edu/inc/mark-riedl



Application of planning: Automated 
storytelling

• Applications
• Personalized experience in games
• Automatically generating training scenarios (e.g., for the 

army)
• Therapy for kids with autism
• Computational study of creativity

https://research.cc.gatech.edu/inc/mark-riedl



Application of planning: the Gale-Church 
alignment algorithm



Application of planning: the Gale-Church 
alignment algorithm



Complexity of planning
• Planning is PSPACE-complete

• The length of a plan can be exponential in the number of 
“objects” in the problem!

• Example: towers of Hanoi



Complexity of planning
• Planning is PSPACE-complete

• The length of a plan can be exponential in the number of 
“objects” in the problem!

• So is game search
• Archetypal PSPACE-complete problem: quantified boolean

formula (QBF)
• Example: is this formula true?

x1x2 x3x4 (x1x3x4)(x2x3x4)
• Compare to SAT:

x1 x2 x3 x4 (x1x3x4)(x2x3x4)
• Relationship between SAT and QBF is akin to the relationship 

between puzzles and games



Real-world planning

• Resource constraints
• Instead of “static,” the world is “semidynamic:” we can’t think forever

• Actions at different levels of granularity: hierarchical planning
• In order to make the depth of the search smaller, we might convert the world 

from “fully observable” to “partially observable”

• Contingencies: actions failing
• Instead of being “deterministic,” maybe the world is “stochastic”

• Incorporating sensing and feedback
• Possibly necessary to address stochastic or multi-agent environments


