ECE 448, Lecture /:
Constraint Satisfaction Problems

Slides by Svetlana Lazebnik, 9/2016
Modifiedy by Mark Hasegawa-Johnson, 9/2017

Content

 What is a CSP? Why is it search? Why is it special?

* Examples: Map Task, N-Queens, Crytparithmetic, Classroom
Assignment

* Formulation as a standard search

e Backtracking Search

* Heuristics to improve backtracking search

* Tree-structured CSPs

* NP-completeness of CSP in general; the SAT problem
* Local search, e.g., hill-climbing

What is search for?

* Assumptions: single agent,
deterministic, fully observable,
discrete environment

 Search for planning
* The path to the goal is the important
thing
* Paths have various costs, depths

* Search for assignment

* Assign values to variables while
respecting certain constraints

* The goal (complete, consistent
assignment) is the important thing

Constraint satisfaction problems (CSPs)

* Definition:
e State is defined by variables X; with values from domain D,

* Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

* Solution is a complete, consistent assignment

* How does this compare to the “generic” tree search
formulation?

* A more structured representation for states, expressed in a
formal representation language

* Allows useful general-purpose algorithms with more power
than standard search algorithms

Examples

Example: Map Coloring

Morthern

\ Territory

Western Queansland

Australia

Australia

South
New South Wales

Victoria

Tasmania

* Variables: WA, NT, Q, NSW, V, SA, T

* Domains: {red, green, blue}

* Constraints: adjacent regions must have different colors

* Logical representation: WA # NT

» Set representation: (WA, NT) in {(red, green), (red, blue),
(green, red), (green, blue), (blue, red), (blue, green)}

Example: Map Coloring

=
=

&

Tasm"a

* Solutions are complete and consistent assignments, e.g.,
WA =red, NT = green, Q = red, NSW = green,
V =red, SA =blue, T = green

Example: n-queens problem

e Put n queens on an n X n board with no two queens on the same row, column, or
diagonal

Example: N-Queens

* Variables: X;;

* Domains: {0, 1}

* Constraints:

Logic Set
5, X; =N (??)
Xij/\Xik =0 (X[:/'I Xik) € {(Or O)I (0) 1)1 (11 O)}
Xl]/\Xk] =0 (X/jl ij) € {(Or O)I (OI 1)/ (11 O)}

Xij/\Xi+k,j+k = 0 (XU’I Xi+k,j+k) € {(Or O)I (0) 1)1 (11 O)}

Xij/\Xi+k,j—k =0 (X[:/'I Xi+k,j—k) € {(Or O)I (0) 1)1 (11 O)}

N-Queens: Alternative formulation

* Variables: Q,
 Domains: {1, ..., N}

* Constraints:
V i, j non-threatening (Q;, Q))

Example: Cryptarithmetic

e Variables: T W, O,F U, R, X, Y
 Domains: {0, 1, 2, ..., 9}

* Constraints:
O+0=R+10*X
W+W+X,=U+10*Y
T+T+Y=0+10*F
Alldiff(T, W, O, F, U, R, X, Y)
T#0,F#0,X#0

M|+

ol 4 x

Cl& & <

A0 O

Example: Sudoku

* Variables: X;;
* Domains: {1, 2, ..., 9}

* Constraints:
Alldiff(X;; in the same unit)

i

| |-

~I N[00 |

Real-world CSPs

e Assignment problems
* e.g., who teaches what class

* Timetable problems
* e.g., which class is offered when and where?

* Transportation scheduling
* Factory scheduling

* More examples of CSPs: http://www.csplib.org/

Formulation as a standard
search

Standard search formulation (incremental)

* States:
e Variables and values assigned so far

* Initial state:
* The empty assignment
* Action:

* Choose any unassigned variable and assign to it a value that does not violate
any constraints

* Fail if no legal assignments

* Goal test:
* The current assignment is complete and satisfies all constraints

Standard search formulation (incremental)

* What is the depth of any solution (assuming n variables)?
n (this is good)

e Given that there are m possible values for any variable, how many paths are
there in the search tree?

n!-m" (this is bad)

« How can we reduce the branching factor?

Backtracking search

Backtracking search

* In CSP’s, variable assignments are commutative
* For example, [WA =red then NT = green] is the same as [NT = green then WA
= red]
* We only need to consider assignments to a single variable at each level (i.e., we
fix the order of assignments)
* Then there are only m" leaves

» Depth-first search for CSPs with single-variable assignments is called backtracking
search

Example

Example

N

i i

¢ &L ¢

Example

N

/,/’I\

oSl ool o
.

Example

o
il e
.- ¢ ¢
Pl W
<.
e g

PSRN

Backtracking search algorithm

function RECURSIVE-BACKTRACKING(assignment, csp)
if assignment is complete then return assignment

var+— SELECT-UNASSIGNED-VARIABLE(VARIABLES|csp], assignment, csp)

for each value in| ORDER-DOMAIN-VALUES(var, assignment, csp)
if value is consistent with assignment given CONSTRAINTS[csp]
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING (assignment, csp)
if result # failure then return result

remove {var = value} from assignment
return failure

* Making backtracking search efficient:
* Which variable should be assigned next?
* In what order should its values be tried?
e Can we detect inevitable failure early?

Heuristics for making
backtracking search more
efficient

Heuristics for making backtracking search
more efficient

* Minimum Remaining Values (MRV)

* Most Constraining Variable (MCV)

* Least Constraining Assignment (LCA)

* Early detection of failure: Arc Consistency

Which variable should be assigned next?

 Minimum Remaining Values (MRV) Heuristic:
* Choose the variable with the fewest legal values

Which variable should be assigned next?

 Minimum Remaining Values (MRV) Heuristic:

* Choose the variable with the fewest legal values

??

=

SO

e
o o

/\

"

T Ty

B

o=

New South Wales

Victoria

Tasmania

Which variable should be assigned next?

* Most Constraining Variable (MCV) Heuristic:

* Choose the variable that imposes the most constraints on the remaining
variables

* Tie-breaker among variables that have equal numbers of MRV

Which variable should be assigned next?

* Most Constraining Variable (MCV) Heuristic:

* Choose the variable that imposes the most constraints on the remaining
variables

* Tie-breaker among variables that have equal numbers of MRV

o L \ Nortem
W, et Queensiand
. ¢ \ Rt ——
//\

Victoria

Tasmania

Given a variable, in which order should its
values be tried?

* Least Constraining Assignment (LCA) Heurstic:

* Try the following assignment first: to the variable you’re
studying, the value that rules out the fewest values in the
remaining variables

Given a variable, in which order should its
values be tried?

* Least Constraining Assignment (LCA) Heurstic:

* Try the following assignment first: to the variable you’re
studying, the value that rules out the fewest values in the

remaining variables
Which assignment
for Q should we
choose?

N
<

Morthern

Territory
Queansland

Western
Australia

South
Australia

New South Wales

Victoria

Tasmania

Early detection of failure

function RECURSIVE-BACKTRACKING(assignment, csp)
if assignment is complete then return assignment
var+— SELECT-UNASSIGNED-VARIABLE(VARIABLES|[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
if value is consistent with assignment given CONSTRAINTS[¢sp]
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING (assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

Apply inference to reduce the space of possible
assignments and detect failure early

Early detection of failure

NT
e
ESW ey

Apply inference to reduce the space of possible
assignments and detect failure early

Early detection of failure:
Forward checking

» Keep track of remaining legal values for unassigned variables

* Terminate search when any variable has no legal values

Early detection of failure:
Forward checking

» Keep track of remaining legal values for unassigned variables

* Terminate search when any variable has no legal values

WA%

V

WA NT Q NSW v SA T
LI I L LI

Early detection of failure:
Forward checking

» Keep track of remaining legal values for unassigned variables

* Terminate search when any variable has no legal values

NT| g —ref
WA Ty
NSW
v

WA NT (o] NSW v SA T

Early detection of failure:
Forward checking

» Keep track of remaining legal values for unassigned variables

* Terminate search when any variable has no legal values

WA%—F‘\—L‘ -
vV

WA NT Q NSW v SA T
memEmeEEeE[eeE[EeE[EeE][E D H]
[— AL 1| 1]

Early detection of failure:
Forward checking

» Keep track of remaining legal values for unassigned variables

* Terminate search when any variable has no legal values

iR

WA Q NSW v SA T
memEmeEEeE[eeE[EeE[EeE][E D H]
[— AL 1| 1]

Early detection of failure:
Forward checking

» Keep track of remaining legal values for unassigned variables

* Terminate search when any variable has no legal values

R

Wa NT Q NSW v SA T
M E[EeEE e E[EEE[EEE[EE N[N S N]
[— | EErEErE[E] H[ENE]
[— 1 i[m m[me] E[EEE]

Constraint propagation

* Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for all
failures

e

WA NT (#] NSW v SA T
T IR I eI e
[— EErE[EEE[E Y] H[ENE]
[— | 1 ijm EmEN| A1

* NT and SA cannot both be blue!

* Constraint propagation repeatedly enforces constraints locally

Arc consistency

* Simplest form of propagation makes each pair of variables
consistent:

* X 2>VYis consistent iff for every value of X there is some allowed value of Y

LR

WA NT Q NSW v SA T
1 1 m mimnE]| H(ED N

\é/

Consistent!

Arc consistency

* Simplest form of propagation makes each pair of variables
consistent:

* X 2>VYis consistent iff for every value of X there is some allowed value of Y

R

WA NT Q NSW v sA T
1 1 m mmnnE] EEnE|

~

Arc consistency

* Simplest form of propagation makes each pair of variables
consistent:

* X 2>VYis consistent iff for every value of X there is some allowed value of Y

* When checking X =Y, throw out any values of X for which there isn’t an
allowed value of Y

0

WA NT Q NSW v SA T
[—| 1 m EImnnu] L]

\9_/

* If X loses a value, all pairs Z > X need to be rechecked

Arc consistency

* Simplest form of propagation makes each pair of variables
consistent:

* X 2>VYis consistent iff for every value of X there is some allowed value of Y

* When checking X =Y, throw out any values of X for which there isn’t an
allowed value of Y

T

WA NT Q NSW v SA T
[— | 1 m X[monu] H[ED]

~—

* If X loses a value, all pairs Z > X need to be rechecked

Arc consistency

* Simplest form of propagation makes each pair of variables
consistent:

* X 2>VYis consistent iff for every value of X there is some allowed value of Y

* When checking X =Y, throw out any values of X for which there isn’t an
allowed value of Y

T

WA NT Q NSW v SA T
[—| 1 m wDx o u| L]

~—

* If X loses a value, all pairs Z > X need to be rechecked

Arc consistency

* Simplest form of propagation makes each pair of variables
consistent:
* X 2>VYis consistent iff for every value of X there is some allowed value of Y

* When checking X =Y, throw out any values of X for which there isn’t an
allowed value of Y

T

WA NT Q NSW Vv SA T

(] w] o D] m[Esn]
/ B

N

Arc consistency

* Simplest form of propagation makes each pair of variables
consistent:
* X 2>VYis consistent iff for every value of X there is some allowed value of Y

* When checking X =Y, throw out any values of X for which there isn’t an
allowed value of Y

T

WA NT Q NSW v SA T
1 M| m Mxem] X/mbn]
~

e Arc consistency detects failure earlier than forward checking

e Can be run before or after each assignment

Arc consistency algorithm AC-3

function AC-3(c¢sp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, Xy, ..., X,,}
local variables: gueue, a queue of arcs, initially all the arcs in csp

while gueue is not empty
(Xi, X;) — REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[X)] do
add (X, X,) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed «— false
for each z in DOMAIN[.X}]
if no value y in DOMAIN[X] allows (z,7) to satisfy the constraint X; «— X
then delete « from DOMAIN[X;]; removed — true
return removed

Does arc consistency always detect the lack of
a solution?

mEm B

N R -
) =

H B C

* There exist stronger notions of consistency (path
consistency, k-consistency), but we won’t worry
about them

Tree-structured CSPs

Tree-structured CSPs

 Certain kinds of CSPs can be
solved without resorting to
backtracking search!

* Tree-structured CSP:
constraint graph does not
have any loops

Source: P. Abbeel, D. Klein, L. Zettlemoyer

Algorithm for tree-structured CSPs

* Choose one variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

http://cs188ai.wikia.com/wiki/Tree Structure CSPs

Algorithm for tree-structured CSPs

* Choose one variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

* Create a graph listing all of the values that can be assigned to each
variable.

http://cs188ai.wikia.com/wiki/Tree Structure CSPs

Algorithm for tree-structured CSPs

* Choose one variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

* Create a graph listing all of the values that can be assigned to each
variable.

 BACKWARD ARC CONSISTENCY: check arc consistency starting from
the rightmost node and going backwards

O
l!'ﬁi-

http://cs188ai.wikia.com/wiki/Tree Structure CSPs

Algorithm for tree-structured CSPs

Choose one variable as root, order variables from root to leaves such
that every node's parent precedes it in the ordering

Create a graph listing all of the values that can be assigned to each
variable.

BACKWARD ARC CONSISTENCY: check arc consistency starting from the
rightmost node and going backwards

FORWARD ASSIGNMENT PHASE: select an element from the domain of
each variable going left to right. We are guaranteed that there will be a
valid assignment because each arc is consistent

http://cs188ai.wikia.com/wiki/Tree Structure CSPs

Algorithm for tree-structured CSPs

* If nis the number of variables and m is the domain
size, what is the running time of this algorithm?

* O(nm?): we have to check arc consistency once for every
node in the graph (every node has one parent), which
involves looking at pairs of domain values

Nearly tree-structured CSPs
() (v
5 ‘o) X
@‘@ — ®
&

O, @

* Cutset conditioning: find a subset of variables whose
removal makes the graph a tree, instantiate that set in
all possible ways, prune the domains of the remaining
variables and try to solve the resulting tree-structured

CSP
* Cutset size c gives runtime O(m°¢ (n — c)m?)

Source: P. Abbeel, D. Klein, L. Zettlemoyer

NP-Completeness and the
SAT Problem

Algorithm for tree-structured CSPs

* Running time is O(nm?)
(n is the number of variables, m is the domain size)

* We have to check arc consistency once for every node in the
graph (every node has one parent), which involves looking at
pairs of domain values

* What about backtracking search for general CSPs?
* Worst case O(m”)

e Can we do better?

Computational complexity of CSPs

e The satisfiability (SAT) problem:

* Given a Boolean formula, is there an assignment of the variables
that makes it evaluate to true?

(06 ¥ X 32 G | Bl B e Wi M) e e

e SAT is NP-complete

* NP: a class of decision problems for which
* the “yes” answer can be verified in polynomial time

* no known algorithm can find a “yes” answer, from scratch, in polynomial
time

 An NP-complete problem is in NP and every other problem in NP
can be efficiently reduced to it (Cook, 1971)

* Other NP-complete problems: graph coloring,
n-puzzle, generalized sudoku

 |tis not known whether P = NP, i.e., no efficient algorithms for
solving SAT in general are known

Local search, e.g., hill
climbing

Local search for CSPs

e Start with “complete” states, i.e., all variables assigned
* Allow states with unsatisfied constraints
* Attempt to improve states by reassigning variable values

* Hill-climbing search:

* In each iteration, randomly select any conflicted variable and choose
value that violates the fewest constraints

* |.e., attempt to greedily minimize total number of violated constraints

h = number of conflicts

Local search for CSPs

e Start with “complete” states, i.e., all variables assigned

* Allow states with unsatisfied constraints

* Attempt to improve states by reassigning variable values

* Hill-climbing search:

* In each iteration, randomly select any conflicted variable and choose

value that violates the fewest constraint

S

* |.e., attempt to greedily minimize total number of violated constraints

* Problem: local minima

.:.I I.
o

.
W
.

CSP in computer vision:
Line drawing interpretation

An example polyhedron:

Variables: edges

Domains: +, —, >, <
Desired output:

| +

David Waltz, 1975

CSP in computer vision:
Line drawing interpretation

\\ Constraints imposed by each vertex type:

+ 1 21 2 1 2 1 2 1 2 1 2
- L Rpl HGET gl Thedl el TSy
J 1 2 1 2 1 2 1 2 1 2

S A I I
Four vertex types: 3 3 3 3 3
1 21 21 21 2
Lo SR I R
3 3 3 3
1 21 21 412

AITOW - -
T Arrow /% 3 3 3

David Waltz, 1975

CSP in computer vision: 4D Cities

1. When was each photograph taken?
2. When did each building first appear?
3. When was each building removed?
Set of Photographs:
Set of Objects:
Buildings

G. Schindler, F. Dellaert, and S.B. Kang, Inferring Temporal Order of Images From 3D Structure,
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

http://www.cc.gatech.edu/~phlosoft/

CSP in computer vision: 4D Cities

. observed . missing occluded

Columns: images
Rows: points

Satisfies constraints:

Violates constraints:

* Goal: reorder images (columns) to have as few violations as possible

CSP in computer vision: 4D Cities

* Goal: reorder images (columns) to have as few violations as possible

* Local search: start with random ordering of columns, swap columns or
groups of columns to reduce the number of conflicts

e Can also reorder the rows to group together points that appear and
disappear at the same time — that gives you buildings

summary

* CSPs are a special kind of search problem:
 States defined by values of a fixed set of variables
* Goal test defined by constraints on variable values

* Backtracking = depth-first search where successor states are
generated by considering assignments to a single variable

» Variable ordering and value selection heuristics can help significantly
* Forward checking prevents assignments that guarantee later failure
* Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies
e Complexity of CSPs
* NP-complete in general (exponential worst-case running time)
* Efficient solutions possible for special cases (e.g., tree-structured CSPs)

* Alternatives to backtracking search: local search

