
ECE 448, Lecture 7:
Constraint Satisfaction Problems

Slides by Svetlana Lazebnik, 9/2016
Modifiedy by Mark Hasegawa-Johnson, 9/2017

Content

• What is a CSP? Why is it search? Why is it special?
• Examples: Map Task, N-Queens, Crytparithmetic, Classroom

Assignment
• Formulation as a standard search
• Backtracking Search
• Heuristics to improve backtracking search
• Tree-structured CSPs
• NP-completeness of CSP in general; the SAT problem
• Local search, e.g., hill-climbing

What is search for?
• Assumptions: single agent,

deterministic, fully observable,
discrete environment

• Search for planning
• The path to the goal is the important

thing
• Paths have various costs, depths

• Search for assignment
• Assign values to variables while

respecting certain constraints
• The goal (complete, consistent

assignment) is the important thing

Constraint satisfaction problems (CSPs)

• Definition:
• State is defined by variables Xi with values from domain Di

• Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

• Solution is a complete, consistent assignment

• How does this compare to the “generic” tree search
formulation?

• A more structured representation for states, expressed in a
formal representation language

• Allows useful general-purpose algorithms with more power
than standard search algorithms

Examples

Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: {red, green, blue}
• Constraints: adjacent regions must have different colors

• Logical representation: WA ≠ NT
• Set representation: (WA, NT) in {(red, green), (red, blue),

(green, red), (green, blue), (blue, red), (blue, green)}

Example: Map Coloring

• Solutions are complete and consistent assignments, e.g.,
WA = red, NT = green, Q = red, NSW = green,
V = red, SA = blue, T = green

Example: n-queens problem

• Put n queens on an n × n board with no two queens on the same row, column, or
diagonal

Example: N-Queens
• Variables: Xij

• Domains: {0, 1}

• Constraints:

Logic Set

i,j Xij = N (??)

𝑋𝑖𝑗⋀𝑋𝑖𝑘 = 0 (Xij, Xik) {(0, 0), (0, 1), (1, 0)}

𝑋𝑖𝑗⋀𝑋 = 0 (Xij, Xkj) {(0, 0), (0, 1), (1, 0)}

𝑋 ⋀𝑋 , = 0 (Xij, Xi+k, j+k) {(0, 0), (0, 1), (1, 0)}

𝑋 ⋀𝑋 , = 0 (Xij, Xi+k, j–k) {(0, 0), (0, 1), (1, 0)}

Xij

N-Queens: Alternative formulation

• Variables: Qi

• Domains: {1, … , N}

• Constraints:
 i, j non-threatening (Qi , Qj)

Q2

Q1

Q3

Q4

Example: Cryptarithmetic
• Variables: T, W, O, F, U, R, X, Y
• Domains: {0, 1, 2, …, 9}
• Constraints:

O + O = R + 10 * X
W + W + X1 = U + 10 * Y
T + T + Y = O + 10 * F
Alldiff(T, W, O, F, U, R, X, Y)
T ≠ 0, F ≠ 0, X ≠ 0

X Y

Example: Sudoku

• Variables: Xij

• Domains: {1, 2, …, 9}

• Constraints:
Alldiff(Xij in the same unit)

Xij

Real-world CSPs
• Assignment problems

• e.g., who teaches what class

• Timetable problems
• e.g., which class is offered when and where?

• Transportation scheduling
• Factory scheduling

• More examples of CSPs: http://www.csplib.org/

Formulation as a standard
search

Standard search formulation (incremental)

• States:
• Variables and values assigned so far

• Initial state:
• The empty assignment

• Action:
• Choose any unassigned variable and assign to it a value that does not violate

any constraints
• Fail if no legal assignments

• Goal test:
• The current assignment is complete and satisfies all constraints

Standard search formulation (incremental)

• What is the depth of any solution (assuming n variables)?
n (this is good)

• Given that there are m possible values for any variable, how many paths are
there in the search tree?
n! · mn (this is bad)

• How can we reduce the branching factor?

Backtracking search

Backtracking search

• In CSP’s, variable assignments are commutative
• For example, [WA = red then NT = green] is the same as [NT = green then WA

= red]
• We only need to consider assignments to a single variable at each level (i.e., we

fix the order of assignments)
• Then there are only mn leaves

• Depth-first search for CSPs with single-variable assignments is called backtracking
search

Example

Example

Example

Example

Backtracking search algorithm

• Making backtracking search efficient:
• Which variable should be assigned next?
• In what order should its values be tried?
• Can we detect inevitable failure early?

Heuristics for making
backtracking search more

efficient

Heuristics for making backtracking search
more efficient
• Minimum Remaining Values (MRV)
• Most Constraining Variable (MCV)
• Least Constraining Assignment (LCA)
• Early detection of failure: Arc Consistency

Which variable should be assigned next?

• Minimum Remaining Values (MRV) Heuristic:
• Choose the variable with the fewest legal values

Which variable should be assigned next?
• Minimum Remaining Values (MRV) Heuristic:

• Choose the variable with the fewest legal values

??

Which variable should be assigned next?

• Most Constraining Variable (MCV) Heuristic:
• Choose the variable that imposes the most constraints on the remaining

variables
• Tie-breaker among variables that have equal numbers of MRV

Which variable should be assigned next?

??

• Most Constraining Variable (MCV) Heuristic:
• Choose the variable that imposes the most constraints on the remaining

variables
• Tie-breaker among variables that have equal numbers of MRV

Given a variable, in which order should its
values be tried?

• Least Constraining Assignment (LCA) Heurstic:
• Try the following assignment first: to the variable you’re

studying, the value that rules out the fewest values in the
remaining variables

Given a variable, in which order should its
values be tried?

• Least Constraining Assignment (LCA) Heurstic:
• Try the following assignment first: to the variable you’re

studying, the value that rules out the fewest values in the
remaining variables

Which assignment
for Q should we

choose?

Early detection of failure

Apply inference to reduce the space of possible
assignments and detect failure early

Early detection of failure

Apply inference to reduce the space of possible
assignments and detect failure early

Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

Constraint propagation
• Forward checking propagates information from assigned to

unassigned variables, but doesn't provide early detection for all
failures

• NT and SA cannot both be blue!
• Constraint propagation repeatedly enforces constraints locally

• Simplest form of propagation makes each pair of variables
consistent:

• X Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

Consistent!

• Simplest form of propagation makes each pair of variables
consistent:

• X Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

• Simplest form of propagation makes each pair of variables
consistent:

• X Y is consistent iff for every value of X there is some allowed value of Y
• When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

• If X loses a value, all pairs Z X need to be rechecked

Arc consistency

Arc consistency
• Simplest form of propagation makes each pair of variables

consistent:
• X Y is consistent iff for every value of X there is some allowed value of Y
• When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

• If X loses a value, all pairs Z X need to be rechecked

Arc consistency
• Simplest form of propagation makes each pair of variables

consistent:
• X Y is consistent iff for every value of X there is some allowed value of Y
• When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

• If X loses a value, all pairs Z X need to be rechecked

• Simplest form of propagation makes each pair of variables
consistent:

• X Y is consistent iff for every value of X there is some allowed value of Y
• When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

Arc consistency

• Simplest form of propagation makes each pair of variables
consistent:

• X Y is consistent iff for every value of X there is some allowed value of Y
• When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

• Arc consistency detects failure earlier than forward checking
• Can be run before or after each assignment

Arc consistency

Arc consistency algorithm AC-3

Does arc consistency always detect the lack of
a solution?

• There exist stronger notions of consistency (path
consistency, k-consistency), but we won’t worry
about them

A
B

C
D

A

B

C

D

Tree-structured CSPs

Tree-structured CSPs
• Certain kinds of CSPs can be

solved without resorting to
backtracking search!

• Tree-structured CSP:
constraint graph does not
have any loops

Source: P. Abbeel, D. Klein, L. Zettlemoyer

Algorithm for tree-structured CSPs
• Choose one variable as root, order variables from root to leaves

such that every node's parent precedes it in the ordering

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

Algorithm for tree-structured CSPs
• Choose one variable as root, order variables from root to leaves

such that every node's parent precedes it in the ordering
• Create a graph listing all of the values that can be assigned to each

variable.

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

Algorithm for tree-structured CSPs
• Choose one variable as root, order variables from root to leaves

such that every node's parent precedes it in the ordering
• Create a graph listing all of the values that can be assigned to each

variable.
• BACKWARD ARC CONSISTENCY: check arc consistency starting from

the rightmost node and going backwards

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

XXX

Algorithm for tree-structured CSPs
• Choose one variable as root, order variables from root to leaves such

that every node's parent precedes it in the ordering
• Create a graph listing all of the values that can be assigned to each

variable.
• BACKWARD ARC CONSISTENCY: check arc consistency starting from the

rightmost node and going backwards
• FORWARD ASSIGNMENT PHASE: select an element from the domain of

each variable going left to right. We are guaranteed that there will be a
valid assignment because each arc is consistent

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

Algorithm for tree-structured CSPs
• If n is the number of variables and m is the domain

size, what is the running time of this algorithm?
• O(nm2): we have to check arc consistency once for every

node in the graph (every node has one parent), which
involves looking at pairs of domain values

Nearly tree-structured CSPs

• Cutset conditioning: find a subset of variables whose
removal makes the graph a tree, instantiate that set in
all possible ways, prune the domains of the remaining
variables and try to solve the resulting tree-structured
CSP

• Cutset size c gives runtime O(mc (n – c)m2)
Source: P. Abbeel, D. Klein, L. Zettlemoyer

NP-Completeness and the
SAT Problem

Algorithm for tree-structured CSPs
• Running time is O(nm2)

(n is the number of variables, m is the domain size)
• We have to check arc consistency once for every node in the

graph (every node has one parent), which involves looking at
pairs of domain values

• What about backtracking search for general CSPs?
• Worst case O(mn)

• Can we do better?

Computational complexity of CSPs
• The satisfiability (SAT) problem:

• Given a Boolean formula, is there an assignment of the variables
that makes it evaluate to true?

• SAT is NP-complete
• NP: a class of decision problems for which

• the “yes” answer can be verified in polynomial time
• no known algorithm can find a “yes” answer, from scratch, in polynomial

time
• An NP-complete problem is in NP and every other problem in NP

can be efficiently reduced to it (Cook, 1971)
• Other NP-complete problems: graph coloring,

n-puzzle, generalized sudoku
• It is not known whether P = NP, i.e., no efficient algorithms for

solving SAT in general are known

Local search, e.g., hill
climbing

Local search for CSPs
• Start with “complete” states, i.e., all variables assigned
• Allow states with unsatisfied constraints
• Attempt to improve states by reassigning variable values
• Hill-climbing search:

• In each iteration, randomly select any conflicted variable and choose
value that violates the fewest constraints

• I.e., attempt to greedily minimize total number of violated constraints

h = number of conflicts

Local search for CSPs
• Start with “complete” states, i.e., all variables assigned
• Allow states with unsatisfied constraints
• Attempt to improve states by reassigning variable values
• Hill-climbing search:

• In each iteration, randomly select any conflicted variable and choose
value that violates the fewest constraints

• I.e., attempt to greedily minimize total number of violated constraints
• Problem: local minima

h = 1

CSP in computer vision:
Line drawing interpretation

An example polyhedron:

Domains: +, –, ,

Variables: edges

David Waltz, 1975

Desired output:

CSP in computer vision:
Line drawing interpretation

Four vertex types:

Constraints imposed by each vertex type:

David Waltz, 1975

CSP in computer vision: 4D Cities

G. Schindler, F. Dellaert, and S.B. Kang, Inferring Temporal Order of Images From 3D Structure,
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

1. When was each photograph taken?
2. When did each building first appear?
3. When was each building removed?

Set of Photographs:
Set of Objects:

Buildings

http://www.cc.gatech.edu/~phlosoft/

CSP in computer vision: 4D Cities

• Goal: reorder images (columns) to have as few violations as possible

observed missing occluded

Columns: images
Rows: points

Violates constraints:

Satisfies constraints:

CSP in computer vision: 4D Cities
• Goal: reorder images (columns) to have as few violations as possible
• Local search: start with random ordering of columns, swap columns or

groups of columns to reduce the number of conflicts

• Can also reorder the rows to group together points that appear and
disappear at the same time – that gives you buildings

Summary
• CSPs are a special kind of search problem:

• States defined by values of a fixed set of variables
• Goal test defined by constraints on variable values

• Backtracking = depth-first search where successor states are
generated by considering assignments to a single variable

• Variable ordering and value selection heuristics can help significantly
• Forward checking prevents assignments that guarantee later failure
• Constraint propagation (e.g., arc consistency) does additional work to

constrain values and detect inconsistencies

• Complexity of CSPs
• NP-complete in general (exponential worst-case running time)
• Efficient solutions possible for special cases (e.g., tree-structured CSPs)

• Alternatives to backtracking search: local search

