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Content

• What is a CSP?  Why is it search?  Why is it special?
• Examples: Map Task, N-Queens, Crytparithmetic, Classroom 

Assignment
• Formulation as a standard search
• Backtracking Search
• Heuristics to improve backtracking search
• Tree-structured CSPs
• NP-completeness of CSP in general; the SAT problem
• Local search, e.g., hill-climbing



What is search for?
• Assumptions: single agent, 

deterministic, fully observable, 
discrete environment

• Search for planning
• The path to the goal is the important 

thing
• Paths have various costs, depths

• Search for assignment
• Assign values to variables while 

respecting certain constraints
• The goal (complete, consistent 

assignment) is the important thing



Constraint satisfaction problems (CSPs)

• Definition:
• State is defined by variables Xi with values from domain Di

• Goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables

• Solution is a complete, consistent assignment

• How does this compare to the “generic” tree search 
formulation?

• A more structured representation for states, expressed in a 
formal representation language

• Allows useful general-purpose algorithms with more power 
than standard search algorithms



Examples



Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T 
• Domains: {red, green, blue}
• Constraints: adjacent regions must have different colors

• Logical representation: WA ≠ NT
• Set representation: (WA, NT) in {(red, green), (red, blue), 

(green, red), (green, blue), (blue, red), (blue, green)}



Example: Map Coloring

• Solutions are complete and consistent assignments, e.g., 
WA = red, NT = green, Q = red, NSW = green, 
V = red, SA = blue, T = green



Example: n-queens problem

• Put n queens on an n × n board with no two queens on the same row, column, or 
diagonal



Example: N-Queens
• Variables: Xij

• Domains: {0, 1}

• Constraints:

Logic Set

i,j Xij = N (??)

𝑋𝑖𝑗⋀𝑋𝑖𝑘 = 0 (Xij, Xik)  {(0, 0), (0, 1), (1, 0)}

𝑋𝑖𝑗⋀𝑋 = 0 (Xij, Xkj)  {(0, 0), (0, 1), (1, 0)}

𝑋 ⋀𝑋 , = 0 (Xij, Xi+k, j+k)  {(0, 0), (0, 1), (1, 0)}

𝑋 ⋀𝑋 , = 0 (Xij, Xi+k, j–k)  {(0, 0), (0, 1), (1, 0)}

Xij



N-Queens: Alternative formulation

• Variables: Qi

• Domains: {1, … , N}

• Constraints:
 i, j non-threatening (Qi , Qj)

Q2

Q1

Q3

Q4



Example: Cryptarithmetic
• Variables: T, W, O, F, U, R, X, Y
• Domains: {0, 1, 2, …, 9}
• Constraints: 

O + O = R + 10 * X
W + W + X1 = U + 10 * Y
T + T + Y = O + 10 * F
Alldiff(T, W, O, F, U, R, X, Y)
T ≠ 0, F ≠ 0, X ≠ 0

X Y



Example: Sudoku

• Variables: Xij

• Domains: {1, 2, …, 9}

• Constraints:
Alldiff(Xij in the same unit)

Xij



Real-world CSPs
• Assignment problems

• e.g., who teaches what class

• Timetable problems
• e.g., which class is offered when and where?

• Transportation scheduling
• Factory scheduling

• More examples of CSPs: http://www.csplib.org/



Formulation as a standard 
search



Standard search formulation (incremental)

• States: 
• Variables and values assigned so far

• Initial state:
• The empty assignment 

• Action:
• Choose any unassigned variable and assign to it a value that does not violate 

any constraints
• Fail if no legal assignments

• Goal test:
• The current assignment is complete and satisfies all constraints



Standard search formulation (incremental)

• What is the depth of any solution (assuming n variables)? 
n (this is good)

• Given that there are m possible values for any variable, how many paths are 
there in the search tree?
n! · mn (this is bad)

• How can we reduce the branching factor?



Backtracking search



Backtracking search

• In CSP’s, variable assignments are commutative
• For example, [WA = red then NT = green] is the same as [NT = green then WA 

= red]
• We only need to consider assignments to a single variable at each level (i.e., we 

fix the order of assignments)
• Then there are only mn leaves

• Depth-first search for CSPs with single-variable assignments is called backtracking 
search



Example



Example



Example



Example



Backtracking search algorithm

• Making backtracking search efficient:
• Which variable should be assigned next?
• In what order should its values be tried?
• Can we detect inevitable failure early?



Heuristics for making 
backtracking search more 

efficient



Heuristics for making backtracking search 
more efficient
• Minimum Remaining Values (MRV)
• Most Constraining Variable (MCV)
• Least Constraining Assignment (LCA)
• Early detection of failure: Arc Consistency



Which variable should be assigned next?

• Minimum Remaining Values (MRV) Heuristic:
• Choose the variable with the fewest legal values



Which variable should be assigned next?
• Minimum Remaining Values (MRV) Heuristic:

• Choose the variable with the fewest legal values

??



Which variable should be assigned next?

• Most Constraining Variable (MCV) Heuristic:
• Choose the variable that imposes the most constraints on the remaining 

variables
• Tie-breaker among variables that have equal numbers of MRV



Which variable should be assigned next?

??

• Most Constraining Variable (MCV) Heuristic:
• Choose the variable that imposes the most constraints on the remaining 

variables
• Tie-breaker among variables that have equal numbers of MRV



Given a variable, in which order should its 
values be tried?

• Least Constraining Assignment (LCA) Heurstic:
• Try the following assignment first: to the variable you’re 

studying, the value that rules out the fewest values in the 
remaining variables



Given a variable, in which order should its 
values be tried?

• Least Constraining Assignment (LCA) Heurstic:
• Try the following assignment first: to the variable you’re 

studying, the value that rules out the fewest values in the 
remaining variables

Which assignment 
for Q should we 

choose?



Early detection of failure

Apply inference to reduce the space of possible 
assignments and detect failure early 



Early detection of failure

Apply inference to reduce the space of possible 
assignments and detect failure early 



Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values
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Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values



Constraint propagation
• Forward checking propagates information from assigned to 

unassigned variables, but doesn't provide early detection for all 
failures

• NT and SA cannot both be blue!
• Constraint propagation repeatedly enforces constraints locally



• Simplest form of propagation makes each pair of variables 
consistent:

• X Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

Consistent!
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• Simplest form of propagation makes each pair of variables 
consistent:

• X Y is consistent iff for every value of X there is some allowed value of Y
• When checking X Y, throw out any values of X for which there isn’t an 

allowed value of Y

• If X loses a value, all pairs Z  X need to be rechecked

Arc consistency
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• Simplest form of propagation makes each pair of variables 
consistent:

• X Y is consistent iff for every value of X there is some allowed value of Y
• When checking X Y, throw out any values of X for which there isn’t an 

allowed value of Y

• Arc consistency detects failure earlier than forward checking
• Can be run before or after each assignment

Arc consistency



Arc consistency algorithm AC-3



Does arc consistency always detect the lack of 
a solution?

• There exist stronger notions of consistency (path 
consistency, k-consistency), but we won’t  worry 
about them

A
B

C
D

A

B

C

D



Tree-structured CSPs



Tree-structured CSPs
• Certain kinds of CSPs can be 

solved without resorting to 
backtracking search!

• Tree-structured CSP: 
constraint graph does not 
have any loops

Source: P. Abbeel, D. Klein, L. Zettlemoyer



Algorithm for tree-structured CSPs
• Choose one variable as root, order variables from root to leaves 

such that every node's parent precedes it in the ordering

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs
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variable.
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Algorithm for tree-structured CSPs
• Choose one variable as root, order variables from root to leaves 

such that every node's parent precedes it in the ordering
• Create a graph listing all of the values that can be assigned to each 

variable.
• BACKWARD ARC CONSISTENCY: check arc consistency starting from 

the rightmost node and going backwards

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

XXX



Algorithm for tree-structured CSPs
• Choose one variable as root, order variables from root to leaves such 

that every node's parent precedes it in the ordering
• Create a graph listing all of the values that can be assigned to each 

variable.
• BACKWARD ARC CONSISTENCY: check arc consistency starting from the 

rightmost node and going backwards
• FORWARD ASSIGNMENT PHASE: select an element from the domain of 

each variable going left to right. We are guaranteed that there will be a 
valid assignment because each arc is consistent 

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs



Algorithm for tree-structured CSPs
• If n is the number of variables and m is the domain 

size, what is the running time of this algorithm?
• O(nm2): we have to check arc consistency once for every 

node in the graph (every node has one parent), which 
involves looking at pairs of domain values



Nearly tree-structured CSPs

• Cutset conditioning: find a subset of variables whose 
removal makes the graph a tree, instantiate that set in 
all possible ways, prune the domains of the remaining 
variables and try to solve the resulting tree-structured 
CSP

• Cutset size c gives runtime O(mc (n – c)m2)
Source: P. Abbeel, D. Klein, L. Zettlemoyer



NP-Completeness and the 
SAT Problem



Algorithm for tree-structured CSPs
• Running time is O(nm2) 

(n is the number of variables, m is the domain size)
• We have to check arc consistency once for every node in the 

graph (every node has one parent), which involves looking at 
pairs of domain values

• What about backtracking search for general CSPs?
• Worst case O(mn)

• Can we do better?



Computational complexity of CSPs
• The satisfiability (SAT) problem:

• Given a Boolean formula, is there an assignment of the variables 
that makes it evaluate to true?

• SAT is NP-complete
• NP: a class of decision problems for which 

• the “yes” answer can be verified in polynomial time
• no known algorithm can find a “yes” answer, from scratch, in polynomial 

time 
• An NP-complete problem is in NP and every other problem in NP 

can be efficiently reduced to it (Cook, 1971)
• Other NP-complete problems: graph coloring, 

n-puzzle, generalized sudoku
• It is not known whether P = NP, i.e., no efficient algorithms for 

solving SAT in general are known



Local search, e.g., hill 
climbing



Local search for CSPs
• Start with “complete” states, i.e., all variables assigned 
• Allow states with unsatisfied constraints
• Attempt to improve states by reassigning variable values
• Hill-climbing search:

• In each iteration, randomly select any conflicted variable and choose 
value that violates the fewest constraints

• I.e., attempt to greedily minimize total number of violated constraints

h = number of conflicts



Local search for CSPs
• Start with “complete” states, i.e., all variables assigned 
• Allow states with unsatisfied constraints
• Attempt to improve states by reassigning variable values
• Hill-climbing search:

• In each iteration, randomly select any conflicted variable and choose 
value that violates the fewest constraints

• I.e., attempt to greedily minimize total number of violated constraints
• Problem: local minima

h = 1



CSP in computer vision:
Line drawing interpretation

An example polyhedron:

Domains: +, –, , 

Variables: edges

David Waltz, 1975

Desired output:



CSP in computer vision:
Line drawing interpretation

Four vertex types:

Constraints imposed by each vertex type:

David Waltz, 1975



CSP in computer vision: 4D Cities

G. Schindler, F. Dellaert, and S.B. Kang, Inferring Temporal Order of Images From 3D Structure, 
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2007. 

1. When was each photograph taken?
2. When did each building first appear?
3. When was each building removed?

Set of Photographs:
Set of Objects:

Buildings

http://www.cc.gatech.edu/~phlosoft/



CSP in computer vision: 4D Cities

• Goal: reorder images (columns) to have as few violations as possible

observed missing occluded

Columns: images
Rows: points

Violates constraints:

Satisfies constraints:



CSP in computer vision: 4D Cities
• Goal: reorder images (columns) to have as few violations as possible
• Local search: start with random ordering of columns, swap columns or 

groups of columns to reduce the number of conflicts

• Can also reorder the rows to group together points that appear and 
disappear at the same time – that gives you buildings



Summary
• CSPs are a special kind of search problem:

• States defined by values of a fixed set of variables
• Goal test defined by constraints on variable values

• Backtracking = depth-first search where successor states are 
generated by considering assignments to a single variable

• Variable ordering and value selection heuristics can help significantly
• Forward checking prevents assignments that guarantee later failure
• Constraint propagation (e.g., arc consistency) does additional work to 

constrain values and detect inconsistencies

• Complexity of CSPs
• NP-complete in general (exponential worst-case running time)
• Efficient solutions possible for special cases (e.g., tree-structured CSPs)

• Alternatives to backtracking search: local search


