Content

• What is a CSP? Why is it search? Why is it special?
• Examples: Map Task, N-Queens, Cryptarithmetic, Classroom Assignment
• Formulation as a standard search
• Backtracking Search
• Heuristics to improve backtracking search
• Tree-structured CSPs
• NP-completeness of CSP in general; the SAT problem
• Local search, e.g., hill-climbing
What is search for?

• Assumptions: single agent, deterministic, fully observable, discrete environment

• **Search for planning**
 • The path to the goal is the important thing
 • Paths have various costs, depths

• **Search for assignment**
 • Assign values to variables while respecting certain constraints
 • The goal (complete, consistent assignment) is the important thing
Constraint satisfaction problems (CSPs)

• Definition:
 • **State** is defined by variables X_i with values from domain D_i
 • **Goal test** is a set of constraints specifying allowable combinations of values for subsets of variables
 • **Solution** is a complete, consistent assignment

• How does this compare to the “generic” tree search formulation?
 • A more structured representation for states, expressed in a formal representation language
 • Allows useful general-purpose algorithms with more power than standard search algorithms
Examples
Example: Map Coloring

- **Variables**: WA, NT, Q, NSW, V, SA, T
- **Domains**: \{red, green, blue\}
- **Constraints**: adjacent regions must have different colors
 - Logical representation: WA \neq NT
 - Set representation: (WA, NT) in \{(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)\}
Example: Map Coloring

- **Solutions** are *complete* and *consistent* assignments, e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green
Example: n-queens problem

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
Example: N-Queens

- **Variables:** X_{ij}
- **Domains:** $\{0, 1\}$
- **Constraints:**

<table>
<thead>
<tr>
<th>Logic</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma_{ij} X_{ij} = N$</td>
<td>(??)</td>
</tr>
<tr>
<td>$X_{ij} \land X_{ik} = 0$</td>
<td>$(X_{ij}, X_{ik}) \in {(0, 0), (0, 1), (1, 0)}$</td>
</tr>
<tr>
<td>$X_{ij} \land X_{kj} = 0$</td>
<td>$(X_{ij}, X_{kj}) \in {(0, 0), (0, 1), (1, 0)}$</td>
</tr>
<tr>
<td>$X_{ij} \land X_{i+k,j+k} = 0$</td>
<td>$(X_{ij}, X_{i+k,j+k}) \in {(0, 0), (0, 1), (1, 0)}$</td>
</tr>
<tr>
<td>$X_{ij} \land X_{i+k,j-k} = 0$</td>
<td>$(X_{ij}, X_{i+k,j-k}) \in {(0, 0), (0, 1), (1, 0)}$</td>
</tr>
</tbody>
</table>
N-Queens: Alternative formulation

• Variables: Q_i
• Domains: \{1, ..., N\}
• Constraints:
 $\forall i, j$ non-threatening (Q_i, Q_j)
Example: Cryptarithmetic

• **Variables:** T, W, O, F, U, R, X, Y

• **Domains:** {0, 1, 2, ..., 9}

• **Constraints:**

 \[
 O + O = R + 10 \times X \\
 W + W + X_1 = U + 10 \times Y \\
 T + T + Y = O + 10 \times F \\
 \text{Alldiff}(T, W, O, F, U, R, X, Y) \\
 T \neq 0, F \neq 0, X \neq 0
 \]
Example: Sudoku

• **Variables:** X_{ij}

• **Domains:** \{1, 2, ..., 9\}

• **Constraints:**

 \text{Alldiff}(X_{ij} \text{ in the same unit})
Real-world CSPs

• Assignment problems
 • e.g., who teaches what class

• Timetable problems
 • e.g., which class is offered when and where?

• Transportation scheduling

• Factory scheduling

• More examples of CSPs: http://www.csplib.org/
Formulation as a standard search
Standard search formulation (incremental)

- **States:**
 - Variables and values assigned so far
- **Initial state:**
 - The empty assignment
- **Action:**
 - Choose any unassigned variable and assign to it a value that does not violate any constraints
 - Fail if no legal assignments
- **Goal test:**
 - The current assignment is complete and satisfies all constraints
Standard search formulation (incremental)

• What is the depth of any solution (assuming n variables)?
 n (this is good)

• Given that there are m possible values for any variable, how many paths are there in the search tree?
 $n! \cdot m^n$ (this is bad)

• How can we reduce the branching factor?
Backtracking search
Backtracking search

• In CSP’s, variable assignments are **commutative**
 • For example, \([WA = \text{red} \text{ then } NT = \text{green}]\) is the same as \([NT = \text{green} \text{ then } WA = \text{red}]\)

• We only need to consider assignments to a single variable at each level (i.e., we fix the order of assignments)
 • Then there are only \(m^n\) leaves

• Depth-first search for CSPs with single-variable assignments is called **backtracking search**
Example
Example
Example
Example
Backtracking search algorithm

function **RECURSIVE-BACKTRACKING**(assignment, csp)
 if assignment is complete then return assignment
 \(var \leftarrow \text{SELECT-UNASSIGNED-VARIABLE}(\text{VARIABLES}[csp], \text{assignment}, csp) \)
 for each \(value \) in \(\text{ORDER-DOMAIN-VALUES}(var, \text{assignment}, csp) \)
 if value is consistent with assignment given CONSTRAINTS[csp]
 add \{var = value\} to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result \neq \text{failure} then return result
 remove \{var = value\} from assignment
 return failure

• Making backtracking search efficient:
 • Which variable should be assigned next?
 • In what order should its values be tried?
 • Can we detect inevitable failure early?
Heuristics for making backtracking search more efficient
Heuristics for making backtracking search more efficient

• Minimum Remaining Values (MRV)
• Most Constraining Variable (MCV)
• Least Constraining Assignment (LCA)
• Early detection of failure: Arc Consistency
Which variable should be assigned next?

- **Minimum Remaining Values (MRV) Heuristic:**
 - Choose the variable with the fewest legal values
Which variable should be assigned next?

- **Minimum Remaining Values (MRV) Heuristic:**
 - Choose the variable with the fewest legal values
Which variable should be assigned next?

- **Most Constraining Variable (MCV) Heuristic:**
 - Choose the variable that imposes the most constraints on the remaining variables
 - Tie-breaker among variables that have equal numbers of MRV
Which variable should be assigned next?

- **Most Constraining Variable (MCV) Heuristic:**
 - Choose the variable that imposes the most constraints on the remaining variables
 - Tie-breaker among variables that have equal numbers of MRV
Given a variable, in which order should its values be tried?

- **Least Constraining Assignment (LCA) Heuristic:**
 - Try the following assignment first: to the variable you’re studying, the value that rules out the fewest values in the remaining variables
Given a variable, in which order should its values be tried?

- **Least Constraining Assignment (LCA) Heuristic:**
 - Try the following assignment first: to the variable you’re studying, the value that rules out the fewest values in the remaining variables.

Which assignment for Q should we choose?
Early detection of failure

function RECURSIVE-BACKTRACKING(assignment, csp)
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
 if value is consistent with assignment given CONSTRAINTS[csp]
 add \{var = value\} to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result \neq failure then return result
 remove \{var = value\} from assignment
 return failure

Apply inference to reduce the space of possible assignments and detect failure early
Early detection of failure

Apply *inference* to reduce the space of possible assignments and detect failure early
Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values
Early detection of failure: Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Early detection of failure:
Forward checking
• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values
Early detection of failure: Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Early detection of failure: Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Early detection of failure: Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Constraint propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures

- NT and SA cannot both be blue!

- **Constraint propagation** repeatedly enforces constraints *locally*
Arc consistency

• Simplest form of propagation makes each pair of variables consistent:
 • $X \rightarrow Y$ is consistent iff for every value of X there is some allowed value of Y
Arc consistency

• Simplest form of propagation makes each pair of variables consistent:
 • $X \rightarrow Y$ is consistent iff for every value of X there is some allowed value of Y
Arc consistency

• Simplest form of propagation makes each pair of variables consistent:
 • $X \rightarrow Y$ is consistent iff for every value of X there is some allowed value of Y
 • When checking $X \rightarrow Y$, throw out any values of X for which there isn’t an allowed value of Y

• If X loses a value, all pairs $Z \rightarrow X$ need to be rechecked
Arc consistency

- Simplest form of propagation makes each pair of variables consistent:
 - $X \rightarrow Y$ is consistent iff for every value of X there is some allowed value of Y
 - When checking $X \rightarrow Y$, throw out any values of X for which there isn’t an allowed value of Y

- If X loses a value, all pairs $Z \rightarrow X$ need to be rechecked
Arc consistency

• Simplest form of propagation makes each pair of variables consistent:
 • $X \rightarrow Y$ is consistent iff for every value of X there is some allowed value of Y
 • When checking $X \rightarrow Y$, throw out any values of X for which there isn’t an allowed value of Y

• If X loses a value, all pairs $Z \rightarrow X$ need to be rechecked
Arc consistency

- Simplest form of propagation makes each pair of variables consistent:
 - $X \rightarrow Y$ is consistent iff for every value of X there is some allowed value of Y
 - When checking $X \rightarrow Y$, throw out any values of X for which there isn’t an allowed value of Y
Arc consistency

- Simplest form of propagation makes each pair of variables consistent:
 - $X \rightarrow Y$ is consistent iff for every value of X there is some allowed value of Y
 - When checking $X \rightarrow Y$, throw out any values of X for which there isn’t an allowed value of Y

- Arc consistency detects failure earlier than forward checking
- Can be run before or after each assignment
Arc consistency algorithm AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \(\{X_1, X_2, \ldots, X_n\} \)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty
 \((X_i, X_j)\leftarrow\text{Remove-First}(queue)\)
 if Remove-Inconsistent-Values(\(X_i, X_j\)) then
 for each \(X_k\) in Neighbors[\(X_i\)] do
 add \((X_k, X_i)\) to queue

function Remove-Inconsistent-Values(\(X_i, X_j\)) returns true iff succeeds
removed \leftarrow false

for each \(x\) in Domain[\(X_i]\]
 if no value \(y\) in Domain[\(X_j]\] allows \((x,y)\) to satisfy the constraint \(X_i \leftrightarrow X_j\)
 then delete \(x\) from Domain[\(X_i\)]; removed \leftarrow true

return removed
Does arc consistency always detect the lack of a solution?

- There exist stronger notions of consistency (path consistency, k-consistency), but we won’t worry about them.
Tree-structured CSPs
Tree-structured CSPs

- Certain kinds of CSPs can be solved without resorting to backtracking search!

- *Tree-structured CSP*: constraint graph does not have any loops

Source: P. Abbeel, D. Klein, L. Zettlemoyer
Algorithm for tree-structured CSPs

• Choose one variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs
Algorithm for tree-structured CSPs

• Choose one variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering
• Create a graph listing all of the values that can be assigned to each variable.

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs
Algorithm for tree-structured CSPs

• Choose one variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering
• Create a graph listing all of the values that can be assigned to each variable.
• BACKWARD ARC CONSISTENCY: check arc consistency starting from the rightmost node and going backwards

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs
Algorithm for tree-structured CSPs

- Choose one variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering.
- Create a graph listing all of the values that can be assigned to each variable.
- BACKWARD ARC CONSISTENCY: check arc consistency starting from the rightmost node and going backwards.
- FORWARD ASSIGNMENT PHASE: select an element from the domain of each variable going left to right. We are guaranteed that there will be a valid assignment because each arc is consistent.

[Diagram of tree-structured CSPs]

[Link to further reading]
http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs
Algorithm for tree-structured CSPs

• If \(n \) is the number of variables and \(m \) is the domain size, what is the running time of this algorithm?
 • \(O(nm^2) \): we have to check arc consistency once for every node in the graph (every node has one parent), which involves looking at pairs of domain values
Nearly tree-structured CSPs

- **Cutset conditioning:** find a subset of variables whose removal makes the graph a tree, instantiate that set in all possible ways, prune the domains of the remaining variables and try to solve the resulting tree-structured CSP

- Cutset size c gives runtime $O(m^c (n - c)m^2)$

Source: P. Abbeel, D. Klein, L. Zettlemoyer
NP-Completeness and the SAT Problem
Algorithm for tree-structured CSPs

- Running time is $O(nm^2)$
 (n is the number of variables, m is the domain size)
 - We have to check arc consistency once for every node in the graph (every node has one parent), which involves looking at pairs of domain values
- What about backtracking search for general CSPs?
 - Worst case $O(m^n)$
- Can we do better?
Computational complexity of CSPs

• **The satisfiability (SAT) problem:**
 • Given a Boolean formula, is there an assignment of the variables that makes it evaluate to true?

 \[(X_1 \lor \overline{X}_7 \lor X_{13}) \land (\overline{X}_2 \lor X_{12} \lor X_{25}) \land \ldots\]

• SAT is **NP-complete**
 • NP: a class of decision problems for which
 • the “yes” answer can be verified in polynomial time
 • no known algorithm can find a “yes” answer, from scratch, in polynomial time
 • An NP-complete problem is in NP and every other problem in NP can be efficiently reduced to it (Cook, 1971)
 • Other NP-complete problems: graph coloring, n-puzzle, generalized sudoku
 • **It is not known whether P = NP**, i.e., no efficient algorithms for solving SAT in general are known
Local search, e.g., hill climbing
Local search for CSPs

• Start with “complete” states, i.e., all variables assigned
• Allow states with unsatisfied constraints
• Attempt to improve states by reassigning variable values
• Hill-climbing search:
 • In each iteration, randomly select any conflicted variable and choose value that violates the fewest constraints
 • I.e., attempt to greedily minimize total number of violated constraints

h = number of conflicts
Local search for CSPs

• Start with “complete” states, i.e., all variables assigned
• Allow states with unsatisfied constraints
• Attempt to improve states by reassigning variable values

• Hill-climbing search:
 • In each iteration, randomly select any conflicted variable and choose value that violates the fewest constraints
 • I.e., attempt to greedily minimize total number of violated constraints
 • Problem: local minima

\[h = 1 \]
CSP in computer vision: Line drawing interpretation

An example polyhedron:

Variables: edges
Domains: +, −, →, ←

Desired output:

David Waltz, 1975
CSP in computer vision: Line drawing interpretation

Four vertex types:

- L
- Y
- T
- Arrow

Constraints imposed by each vertex type:

- L
- Y
- T
- Arrow

David Waltz, 1975
CSP in computer vision: 4D Cities

1. When was each photograph taken?
2. When did each building first appear?
3. When was each building removed?

Set of Photographs:

Set of Objects:
Buildings

http://www.cc.gatech.edu/~phlosoft/
CSP in computer vision: 4D Cities

- Goal: reorder images (columns) to have as few violations as possible

Columns: images
Rows: points

Satisfies constraints:

Violates constraints:
CSP in computer vision: 4D Cities

• **Goal:** reorder images (columns) to have as few violations as possible

• **Local search:** start with random ordering of columns, swap columns or groups of columns to reduce the number of conflicts

• Can also reorder the rows to group together points that appear and disappear at the same time – that gives you buildings
Summary

• CSPs are a special kind of search problem:
 • States defined by values of a fixed set of variables
 • Goal test defined by constraints on variable values
• **Backtracking** = depth-first search where successor states are generated by considering assignments to a single variable
 • **Variable ordering** and **value selection** heuristics can help significantly
 • **Forward checking** prevents assignments that guarantee later failure
 • **Constraint propagation** (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
• Complexity of CSPs
 • NP-complete in general (exponential worst-case running time)
 • Efficient solutions possible for special cases (e.g., tree-structured CSPs)
• Alternatives to backtracking search: local search