
ECE 448 Lecture 4:
Search Intro

Slides by Svetlana Lazebnik, 9/2016
Modified by Mark Hasegawa-Johnson, 9/2017



Types of agents
Reflex agent

• Consider how the world IS
• Choose action based on 

current percept 
• Do not consider the future 

consequences of actions

Goal-directed agent

• Consider how the world WOULD BE
• Decisions based on (hypothesized) 

consequences of actions
• Must have a model of how the world 

evolves in response to actions
• Must formulate a goal 

Source: D. Klein, P. Abbeel



Search

• We will consider the problem of designing goal-based 
agents in fully observable, deterministic, discrete, static, 
known environments

Start state

Goal state



Search

• We will consider the problem of designing goal-based agents in 
fully observable, deterministic, discrete, known environments 

• The agent must find a sequence of actions that reaches the goal
• The performance measure is defined by (a) reaching the goal and (b) 

how “expensive” the path to the goal is
• The agent doesn’t know the performance measure.  This is a goal-

directed agent, not a utility-directed agent
• The programmer (you) DOES know the performance measure.  So 

you design a goal-seeking strategy that minimizes cost.
• We are focused on the process of finding the solution; while executing 

the solution, we assume that the agent can safely ignore its percepts 
(static environment, open-loop system)



Search problem components
• Initial state
• Actions
• Transition model

• What state results from
performing a given action 
in a given state?

• Goal state
• Path cost

• Assume that it is a sum of 
nonnegative step costs

• The optimal solution is the sequence of actions that gives the 
lowest path cost for reaching the goal

Initial
state

Goal 
state



Example: Romania
• On vacation in Romania; currently in Arad
• Flight leaves tomorrow from Bucharest

• Initial state
• Arad

• Actions
• Go from one city to another

• Transition model
• If you go from city A to 

city B, you end up in city B

• Goal state
• Bucharest

• Path cost
• Sum of edge costs (total distance 

traveled)



State space
• The initial state, actions, and 

transition model define the state 
space of the problem

• The set of all states reachable from initial 
state by any sequence of actions

• Can be represented as a directed graph 
where the nodes are states and links 
between nodes are actions

• What is the state space for the 
Romania problem?



Example: Vacuum world

• States
• Agent location and dirt location
• How many possible states?
• What if there are n possible locations?

• The size of the state space grows exponentially with the “size” 
of the world!

• Actions
• Left, right, suck

• Transition model



Vacuum world state space graph



Example: The 8-puzzle
• States

• Locations of tiles 
• 8-puzzle: 181,440 states (9!/2)

• 15-puzzle: ~10 trillion states

• 24-puzzle: ~1025 states

• Actions
• Move blank left, right, up, down 

• Path cost 
• 1 per move

• Finding the optimal solution of n-Puzzle is NP-hard



Example: Robot motion planning

• States
• Real-valued joint parameters (angles, displacements)

• Actions
• Continuous motions of robot joints

• Goal state
• Configuration in which object is grasped

• Path cost
• Time to execute, smoothness of path, etc.



Search
• Given:

• Initial state
• Actions
• Transition model
• Goal state
• Path cost

• How do we find the optimal solution?
• How about building the state space and then using Dijkstra’s shortest path 

algorithm?
• Complexity of Dijkstra’s is O(E + V log V), where E is the number of transitions, V is 

the number of states
• The state space is exponential in the size of the world
• Therefore the shortest-path algorithm is exponential in the size of the world!



Search: Basic idea
• Let’s begin at the start state and expand it by making a list of all 

possible successor states
• Maintain a frontier or a list of unexpanded states
• At each step, pick a state from the frontier to expand (EXPAND = 

list all of the other states that can be reached from this state) 
• Keep going until you reach a goal state
• BACK-TRACE: go back up the tree; list, in reverse order, all of the 

actions you need to perform in order to reach the goal state.
• ACT: the agent reads off the sequence of necessary actions, in 

order, and does them.



Search tree
• “What if” tree of sequences of actions and 

outcomes

• The root node corresponds to the starting state

• The children of a node correspond to the 
successor states of that node’s state

• A path through the tree corresponds to a 
sequence of actions

• A solution is a path ending in the goal state

• Nodes vs. states
• A state is a representation of the world, 

while a node is a data structure that is 
part of the search tree

• Node has to keep pointer to parent, path cost, possibly 
other info

… … …
…

Starting 
state

Successor 
state

Action

Goal state



Search: Computational complexity
• In the typical case, your search algorithm will need to expand 

about half of all of the states in the world
• The number of states is exponential in the size of the world
• Therefore, in the typical case, search is exponential complexity
• Most of what we discuss, in the next three lectures, will be 

methods for limiting the mantissa and/or limiting the exponent.



Tree Search Algorithm Outline
• Initialize the frontier using the starting state
• While the frontier is not empty

• Choose a frontier node according to search strategy and 
take it off the frontier

• If the node contains the goal state, return solution
• Else expand the node and add its children to the frontier



Tree search example

Start: Arad
Goal: Bucharest



Start: Arad
Goal: Bucharest

Tree search example

Start: Arad
Goal: Bucharest



Tree search example

Start: Arad
Goal: BucharestStart: Arad

Goal: Bucharest



Tree search example

Start: Arad
Goal: Bucharest



Tree search example

Start: Arad
Goal: Bucharest

e



Tree search example

Start: Arad
Goal: Bucharest

e



Handling repeated states
• Initialize the frontier using the starting state
• While the frontier is not empty

• Choose a frontier node according to search strategy and take it 
off the frontier

• If the node contains the goal state, return solution
• Else expand the node and add its children to the frontier

• To handle repeated states:
• Every time you expand a node, add that state to the 

explored set; do not put explored states on the frontier again
• Every time you add a node to the frontier, check whether it 

already exists in the frontier with a higher path cost, and if yes, 
replace that node with the new one



Tree search w/o repeats

Start: Arad
Goal: Bucharest



Start: Arad
Goal: Bucharest

Tree search w/o repeats

Start: Arad
Goal: Bucharest

Explored:
Arad



Tree search example

Start: Arad
Goal: Bucharest

Explored:
Arad
Sibiu



Tree search example

Start: Arad
Goal: Bucharest

Explored:
Arad
Sibiu
Rimnicu Vilces



Tree search example

Start: Arad
Goal: Bucharest

e

Explored:
Arad
Sibiu
Rimnicu Vilces
Fagaras



Tree search example

Start: Arad
Goal: Bucharest

e

Explored:
Arad
Sibiu
Rinnicu Vilces
Fagaras
Pitesti



Our first computational savings: avoid 
repeated states
• Complexity if you allow repeated states: mantissa = number of states 

you can transition to from any source state, exponent = depth of the 
tree

• Complexity if you don’t allow repeated states: never larger than the 
total number of states in the world

• For a maze search: # states = # positions you can reach, therefore 
avoiding repeated states might be all the computational savings you 
need

• For a task with multiple sub-tasks, e.g., search a maze while cleaning 
dirt: # states is exponential in the # sub-tasks, therefore we still need 
better algorithms.  That’s the topic for next week.


