ECE 448 Lecture 4:
Search Intro

Slides by Svetlana Lazebnik, 9/2016
Modified by Mark Hasegawa-Johnson, 9/2017

Types of agents

Reflex agent Goal-directed agent

° Consider hOW the World IS e Consider how the world WOULD BE

: Decisions based on (hypothesized)
* Choose action based on consequences of actions

current percept Must have a model of how the world
e Do not consider the future evolves in response to actions

consequences of actions * Must formulate a goal

Source: D. Klein, P. Abbeel

Search

* We will consider the problem of designing goal-based
agents in fully observable, deterministic, discrete, static,
known environments

Start state

 /

€= Goal state

Search

* We will consider the problem of designing goal-based agents in
fully observable, deterministic, discrete, known environments
* The agent must find a sequence of actions that reaches the goal

* The performance measure is defined by (a) reaching the goal and (b)
how “expensive” the path to the goal is

* The agent doesn’t know the performance measure. This is a goal-
directed agent, not a utility-directed agent

* The programmer (you) DOES know the performance measure. So
you design a goal-seeking strategy that minimizes cost.

* We are focused on the process of finding the solution; while executing
the solution, we assume that the agent can safely ignore its percepts
(static environment, open-loop system)

Search problem components

* |nitial state Initial
. state
* Actions ‘

* Transition model

* What state results from
performing a given action
in a given state?

* Goal state
e Path cost
e Assume that it is a sum of Goal
nonnegative step costs - state

* The optimal solution is the sequence of actions that gives the
lowest path cost for reaching the goal

Example: Romania

On vacation in Romania; currently in Arad
Flight leaves tomorrow from Bucharest

Initial state
* Arad
Actions
* Go from one city to another Aradff

Transition model

* If you go from city A to
city B, you end up in city B

Goal state

* Bucharest

Path cost

* Sum of edge costs (total distance
traveled)

State space

* The initial state, actions, and
transition model define the state
space of the problem

* The set of all states reachable from initial
state by any sequence of actions

* Can be represented as a directed graph
where the nodes are states and links
between nodes are actions

* What is the state space for the
Romania problem?

HCraiova

Example: Vacuum world

A ;B
S~0 S0

0% 020

* States
e Agent location and dirt location
* How many possible states?

* What if there are n possible locations?

* The size of the state space grows exponentially with the “size”
of the world!

* Actions
 Left, right, suck

* Transition model

Vacuum world state space graph

(O

L/ﬁ\ - = /A\R
(e le [lae [&°])
ﬂfﬁ \5
- e 2 \r (=
= e
; Hs\ S
L(\dg . AQDR
o ninen

-

Example: The 8-puzzle

* States
) . 7 2
* Locations of tiles
* 8-puzzle: 181,440 states (9!/2) 5
e 15-puzzle: ~10 trillion states
* 24-puzzle: ~10?% states 8 3
° Actions Start State
* Move blank left, right, up, down 1
* Path cost 34
* 1 per move 6 ||| 7

Goal State

* Finding the optimal solution of n-Puzzle is NP-hard

Example: Robot motion planning

i}

i g

Y
D
"}:u

* States
* Real-valued joint parameters (angles, displacements)

* Actions
e Continuous motions of robot joints

* Goal state
e Configuration in which object is grasped

e Path cost
* Time to execute, smoothness of path, etc.

Search

* Given:
* Initial state

Actions

Transition model

Goal state
Path cost

* How do we find the optimal solution?

* How about building the state space and then using Dijkstra’s shortest path
algorithm?
* Complexity of Dijkstra’s is O(E + V log V), where E is the number of transitions, Vis
the number of states
* The state space is exponential in the size of the world
* Therefore the shortest-path algorithm is exponential in the size of the world!

Search: Basic idea

* Let’s begin at the start state and expand it by making a list of all
possible successor states

* Maintain a frontier or a list of unexpanded states

* At each step, pick a state from the frontier to expand (EXPAND =
list all of the other states that can be reached from this state)

* Keep going until you reach a goal state

 BACK-TRACE: go back up the tree; list, in reverse order, all of the
actions you need to perform in order to reach the goal state.

* ACT: the agent reads off the sequence of necessary actions, in
order, and does them.

Search tree

* “What if” tree of sequences of actions and Starting
outcomes state

* The root node corresponds to the starting state Action /™

* The children of a node correspond to the Successor
successor states of that node’s state state () ()

A path through the tree corresponds to a
seqguence of actions Q Q

* A solution is a path ending in the goal state

Nodes vs. states eees oees see

* Astate is a representation of the world,
while a node is a data structure that is ‘ Goal state
part of the search tree

* Node has to keep pointer to parent, path cost, possibly
other info

Search: Computational complexity

* In the typical case, your search algorithm will need to expand
about half of all of the states in the world

* The number of states is exponential in the size of the world
* Therefore, in the typical case, search is exponential complexity

* Most of what we discuss, in the next three lectures, will be
methods for limiting the mantissa and/or limiting the exponent.

Tree Search Algorithm Outline

* Initialize the frontier using the starting state

* While the frontier is not empty

* Choose a frontier node according to search strategy and
take it off the frontier

* |f the node contains the goal state, return solution
* Else expand the node and add its children to the frontier

Tree search example

Start: Arad
Goal: Bucharest

366=0+366

Straightline distance

o Buchamst
Arad
Bucharest
Crawva
Dobreta
LElorie
Fagaras
Giurgiu
Hirsows
Iasi

Pitesti

Rimnicu Vikes
Sibiu
Timisoara
Urzicemi

Vashn

Zerind

256

0
L&
241
lal
L7&

151
225
244
141
234

L
193
153
319

199
EFE

Tree search example

393=140+253

447=118+329

imisoara

e A B LR T R e

o Buchamst
Arad
Bucharest
Crawva
Dobreta
LElorie
Fagaras
Giurgiu
Hirsows
Iasi

Lugoj
MhMehadis
Meamt
Orades
Pitesti
Rimnicu Vikes
Sibiu
Timisoara
Urzicemi
Vashn

Zerind

256

0
L&
241
lal
L7&

151
14
244
141
134

L
193
153
319

199
EFE

449=T5+374

Tree search example

Start: Arad
Goal: Bucharest

St

-

e

e

- N

P

~J

-

e

Ss.

—’,

- .,

Seee

- ~

—"‘

< Shiu

C AIE.J --} { Eagalas > (OI;.CH& pp@:ﬁ@

-
S

646=280+366 415=239+176 671=2914380 413=220+183

Urzlcen|

-] Hirsocwa

Etarie

Amd >

imisoara,

H7=118+329

Straightline distance

o Buchamst
Arad
Bucharest
Crawva
Dobreta
LElorie
Fagaras
Giurgiu
Hirsows
Iasi

Lugoj
MhMehadis
Meamt
Orades
Pitesti
Rimnicu Vikes
Sibiu
Timisoara
Urzicemi
Vashn

Zerind

256

0
L&
241
lal
L7&

151
14
244
141
134

L
193
153
319

199
EFE

449=75+374

Tree search example

Start: Arad
Goal: Bucharest

-

e

e

- N

P

~J

-

e

Ss.

—’,

- ~

-

-
P

N
~ o

ey

N
~~~~~~~

.

-

-

< Aad

< Sk >

H7=118+329

L4 Alaé--)DGa_.g-a‘ED C Oradea )

G46=280+366 415=238+176 G671=291+380

-(m .-.-F;-i.tasﬁ g -m =

526=366+1680 4+17=317+100 553=300+253

o Buchamst
Arad
Bucharest
Crawva
Dobreta
LElorie
Fagaras
Giurgiu
Hirsows
Iasi

Lugoj
Nlehadis
Meamt
Orades
Pitesh

=] Hirscwva

LIzl |
e Sibiu

Timisoara
Urziceni
Vasln

Zerind

Etarie

Rimnico Vikes

Straightline distance

256

0
L&
241
lal
L7&

151
14
244
141
134

L
193
153
319

199
EFE

449=T5+374



Tree search example

Start: Arad
Goal: Bucharest

T Amd

447=118+329

@

646=280+366 P "\.\ G71=231+380

C> @D

581=338+253 450=450+0 526=366+ 160 -1-1?—31?+1UU 553=300+253

o Buchamst
Arad
Bucharest
Crawva
Dobreta
LElorie
Fagaras
Giurgiu
Hirsows
Iasi

Lugoj
Nlehadis
Meamt
Orades
Pitesh

Sibiu
Timisoara
Urziceni
Vashn

Zerind

<:_simt>

Rimnico Vikes

Straightline distance

256

0
L&
241
lal
L7&

151
14
244
141
134

L
193
153
319

199
EFE

449=T5+374



Tree search example

Start: Arad
Goal: Bucharest

Amd >

H7=118+329

ﬁ

64—6_23:|+366 PN 671=231+380

--

591=338+253 450=45040 525—355+1'50 553—1303+253

PEED T @D

413=418+40 ©15=455+160 607=414+193

o Buchamst
Arad
Bucharest
Crawva
Dobreta
LElorie
Fagaras
Giurgiu
Hirsows
Iasi

Lugoj
Nlehadis
Meamt
Orades
Pitesh

Sibiu
Timisoara
Urziceni
Vashn

Zerind

s

Rimnico Vikes

Straightline distance

256

0
L&
241
lal
L7&

151
14
244
141
134

L
193
153
319

199
EFE

449=75+374



Handling repeated states

* Initialize the frontier using the starting state

* While the frontier is not empty

* Choose a frontier node according to search strategy and take it
off the frontier

* |f the node contains the goal state, return solution
* Else expand the node and add its children to the frontier

* To handle repeated states:

* Every time you expand a node, add that state to the
explored set; do not put explored states on the frontier again

* Every time you add a node to the frontier, check whether it
already exists in the frontier with a higher path cost, and if yes,
replace that node with the new one



Tree search w/o repeats

Start: Arad
Goal: Bucharest

366=0+366

Straightline distance

o Buchamst
Arad
Bucharest
Crawva
Dobreta
LElorie
Fagaras
Giurgiu
Hirsows
Iasi

Pitesti

Rimnicu Vikes
Sibiu
Timisoara
Urzicemi

Vashn

Zerind

256

0
L&
241
lal
L7&

151
14
244
141
134

L
193
153
319

199
EFE



Tree search w/o repeats

Explored:
Arad

Start: Arad
Goal: Bucharest

393=140+253

447=118+329

imisoara

e A B LR T R e

o Buchamst
Arad
Bucharest
Crawva
Dobreta
LElorie
Fagaras
Giurgiu
Hirsows
Iasi

Pitesti

Rimnicu Vikes
Sibiu
Timisoara
Urzicemi

Vashn

Zerind

256

0
L&
241
lal
L7&

151
14
244
141
134

L
193
153
319

199
EFE

449=T5+374



P

T

H7=118+329

Tree search example W = e

Explored:
Arad Straight—line distan
o rai ine distance

Sibiu bEil‘m:ﬂt
Arad W56
Bucharest 0
Crawva 180
Dobreta 143
Eforie lal
Fagaras 176
Giurgiu 77
Hirsowa 151
Ia= 174
Lugoj 244
Mehadia 141
Meamt 234
Orades 180

Start: Arad Pitesti T

Goal: Bucharest Rimnicu Vikes 103
Sibiu 253
Timisoara 119
Urziceni BN
Vashn 199
Zerind 174

449=75+374



=

c:.'_%ingi%' | T e

Tree search example -—- = :

526=366+180 4+17=317+100 553=300+253

Explored:
Arad
N Straight—line distance

Sibiu o Ellgv.':]'m st

Rimnicu Vilces Arad W
Bucharest 0
Cralova 180
Dobreta 242
Eforie lal
Fagaras L7&
Giurgiu T7
Hirsova 151
Iasi 225
Lugoj 244
Mehadia 341
Meamt 134
Orades 10

Start: Arad Pitesti 10

Goal: Bucharest Rimnicu Vikea o3
Sibiu 353
Timisoara 119
Urziceni 80
Vashn 19

Zerind 174



D

€ Shiv _} - -‘-l;-n;igoaja R

H47=118+329 +48=T5+374
Tree search example == -—-

Explored:
Arad
N Straight—line distance

Sibiu o Ellgr.':ha st

Rimnicu Vilces Arad W

Fagaras Bucharest 0
Cralova 180
Dobreta 242
Eforie 161
Fagaras L7&
Giurgiu T7
Hirsova 151
Iasi 225
Lugoj 244
Mehadia 341
Meamt 134
Orades 10

Start: Arad Pitesti 10

Goal: Bucharest Rimnicu Vikea o3
Sibiu 353
Timisoara 119
Urziceni 80
Vashn 19

Zerind 174



Tree search example

Explored:
Arad

Sibiu

Rinnicu Vilces
Fagaras
Pitesti

Start: Arad

Goal: Bucharest

-

e

e

- N

P

~J

-

e

Ss.

—’I

Rimnicu ¥Wlicea

ey

N
~~~~~~~

.

-

P

- r;
N 447=118+329
> ﬁ
G46=280+366 ,' ‘\\ 571=231+380 I

526=366+160 ' =

591=338%253 450=45040 . 553=300+253

P G IS

413=418+0 615=455+160 607=4144193

o Buchamst
Arad
Bucharest
Crawva
Dobreta
LElorie
Fagaras
Giurgiu
Hirsows
Iasi

Lugoj
Nlehadis
Meamt
Orades
Pitesh

[]| ¥Waslui

-] Hirsocwa

______________ ; Sibiu
Timisoara
Urziceni

Efarie "rml“i
Zerind

.~ s

Rimnico Vikes

Straightline distance

256

0
L&
241
lal
L7&
151
126
A4
141
e

L
193
153
319

199
EFE

449=75+374

Our first computational savings: avoid
repeated states

* Complexity if you allow repeated states: mantissa = number of states
you can transition to from any source state, exponent = depth of the
tree

* Complexity if you don’t allow repeated states: never larger than the
total number of states in the world

* For a maze search: # states = # positions you can reach, therefore
avoiding repeated states might be all the computational savings you
need

* For a task with multiple sub-tasks, e.g., search a maze while cleaning
dirt: # states is exponential in the # sub-tasks, therefore we still need
better algorithms. That’s the topic for next week.

