# ECE 448 Lecture 3: Rational Agents

Slides by Svetlana Lazebnik, 9/2016 Modified by Mark Hasegawa-Johnson, 9/2017

#### Contents

- Agent = Performance, Environment, Actions, Sensors (PEAS)
- What makes an agent *Rational*?
- What makes an agent Autonomous?
- Types of Agents: Reflex, Internal-State, Goal-Directed, Utility-Directed (RIGU)
- Properties of Environments: Observable, Deterministic, Episodic, Static, Continuous (ODESC)

#### Agents

 An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators



## Example: Vacuum-Agent

- Environment = tuple of variables:
  - Location, status of both rooms,e.g., S = { Loc=A, Status=(Dirty, Dirty) }
- Action = variable drawn from a set:
   A ∈ { Left, Right, Suck, NoOp }
- Sensors = tuple of variables:
  - Location, and status of Current Room Only e.g., S = { Loc=A, Status = Dirty }



#### function Vacuum-Agent([location,status]) returns an action

- if Loc=A
  - if Status=Dirty then return Suck
  - else if I have never visited B then return Right
  - else return NoOp
- else
  - if Status=Dirty then return Suck
  - else if I have never visited A then return Left
  - else return NoOp

## Specifying the task environment

- PEAS: Performance, Environment, Actions, Sensors
- P: a function the agent is maximizing (or minimizing)
  - Assumed given
- E: a formal representation for world states
  - For concreteness, a tuple  $(var_1=val_1, var_2=val_2, ..., var_n=val_n)$
- A: actions that change the state according to a transition model
  - Given a state and action, what is the successor state (or distribution over successor states)?
- S: observations that allow the agent to infer the world state
  - Often come in very different form than the state itself
  - E.g., in tracking, observations may be pixels and state variables 3D coordinates

#### PEAS Example: Autonomous taxi

- Performance measure
  - Safe, fast, legal, comfortable trip, maximize profits
- Environment
  - Roads, other traffic, pedestrians, customers
- Actuators
  - Steering wheel, accelerator, brake, signal, horn
- Sensors
  - Cameras, LIDAR, speedometer, GPS, odometer, engine sensors, keyboard

## Another PEAS example: Spam filter

- Performance measure
  - Minimizing false positives, false negatives
- Environment
  - A user's email account, email server
- Actuators
  - Mark as spam, delete, etc.
- Sensors
  - Incoming messages, other information about user's account

#### Performance Measure

- An agent's performance is measured by some performance or utility measure
- Utility = function of the current environment  $E_t$ , and of the history of all actions from time 1 to time t,  $A_{1:(t-1)}$ :

$$U_t = f(E_t, A_{1:(t-1)})$$

• Example:  $U_t = \#$  currently dirty rooms  $-\frac{1}{2}(\#$  non-NoOp Actions)

#### What makes an agent *Rational*?

- For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and the agent's built-in knowledge
- Performance measure (utility function):
   An objective criterion for success of an agent's behavior
- Expected utility: the expected outcome of the action  $A_t$ :

$$EU(A_t) = \sum_{E_{t+1}} U_{t+1}(E_{t+1}, A_{1:t}) Pr\{E_{t+1} | A_{1:t}, S_{1:t}\}$$

Can a rational agent make mistakes?

#### Back to the Vacuum-Agent

**function Vacuum-Agent**([location,status]) returns an action

- if Loc=A
  - if Status=Dirty then return Suck
  - else if I have never visited B then return Right
  - else return NoOp
- else
  - if Status=Dirty then return Suck
  - else if never visited A then Left
  - else return NoOp



• Is this agent *Rational*?

## What makes an agent *Autonomous*?

 Russell & Norvig: "A system is autonomous to the extent that its behavior is determined by its own experience."

 A Rational Agent might not be Autonomous, if its designer was capable of foreseeing the maximumutility action for every environment.

• Example: Vacuum-Agent

## Types of Agents

- Reflex agent: no concept of past, future, or value
  - Might still be Rational, if the environment is known to the designer with sufficient detail
- Internal-State agent: knows about the past
- Goal-Directed agent: knows about the past and future
- Utility-Directed agent: knows about past, future, and value

# Reflex Agent



# Internal-State Agent



## Goal-Directed Agent



# Utility-Directed Agent



#### PEAS

- Performance measure: Determined by the system designer, attempts to measure some intuitive description of behavior goodness.
- Actions: Determined by the system designer, usually trades off cost versus utility
- Sensors: Determined by the system designer, usually trades off cost versus utility
- Environment: Completely out of the control of the system designer.

#### Properties of Environments

- Fully observable vs. partially observable
- Deterministic vs. stochastic
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Single agent vs. multi-agent
- Known vs. unknown

#### Fully observable vs. partially observable

- Do the agent's sensors give it access to the complete state of the environment?
  - For any given world state, are the values of all the variables known to the agent?



VS.



Source: L. Zettlemoyer

#### Deterministic vs. stochastic

- Is the next state of the environment completely determined by the current state and the agent's action?
  - Is the transition model **deterministic** (unique successor state given current state and action) or **stochastic** (distribution over successor states given current state and action)?
  - **strategic:** the environment is deterministic except for the actions of other agents



#### Episodic vs. sequential

- Is the agent's experience divided into unconnected episodes, or is it a coherent sequence of observations and actions?
  - Does each problem instance involve just one action or a series of actions that change the world state according to the transition model?



#### Static vs. dynamic

- Is the world changing while the agent is thinking?
  - Semidynamic: the environment does not change with the passage of time, but the agent's performance score does



VS.



#### Discrete vs. continuous

- Does the environment provide a countable (discrete) or uncountably infinite (continuous) number of distinct percepts, actions, and environment states?
  - Are the values of the state variables discrete or continuous?
  - Time can also evolve in a discrete or continuous fashion
  - "Distinct" = different values of utility



VS.



#### Single-agent vs. multiagent

• Is an agent operating by itself in the environment?



VS.



#### Known vs. unknown

- Are the rules of the environment (transition model and rewards associated with states) known to the agent?
  - Strictly speaking, not a property of the environment, but of the agent's state of knowledge





# Examples of different environments









Word jumble solver

Chess with a clock

Scrabble

Autonomous driving

Observable

Deterministic

Episodic

Static

Discrete

| Fully         | Fully       | Partially  | Partially  |
|---------------|-------------|------------|------------|
| Deterministic | Strategic   | Stochastic | Stochastic |
| Episodic      | Sequential  | Sequential | Sequential |
| Static        | Semidynamic | Static     | Dynamic    |
| Discrete      | Discrete    | Discrete   | Continuous |
| Single        | Multi       | Multi      | Multi      |

Single agent

#### Preview of the course

- Deterministic environments: search, constraint satisfaction, logic
  - Can be sequential or episodic
- Multi-agent, strategic environments: minimax search, games
  - Can also be stochastic, partially observable
- Stochastic environments
  - Episodic: Bayesian networks, pattern classifiers
  - Sequential, known: Markov decision processes
  - Sequential, unknown: reinforcement learning