Markov Decision Processes

• In HMMs, we see a sequence of observations and try to reason about the underlying state sequence
 • There are no actions involved

• But what if we have to take an action at each step that, in turn, will affect the state of the world?
Markov Decision Processes

- Components that define the MDP. Depending on the problem statement, you either know these, or you learn them from data:
 - **States** \(s \), beginning with initial state \(s_0 \)
 - **Actions** \(a \)
 - Each state \(s \) has actions \(A(s) \) available from it
 - **Transition model** \(P(s' \mid s, a) \)
 - *Markov assumption*: the probability of going to \(s' \) from \(s \) depends only on \(s \) and \(a \) and not on any other past actions or states
 - **Reward function** \(R(s) \)
- **Policy** – the “solution” to the MDP:
 - \(\pi(s) \in A(s) \): the action that an agent takes in any given state
Overview

• First, we will look at how to “solve” MDPs, or find the optimal policy when the transition model and the reward function are known.
• Second, we will consider **reinforcement learning**, where we don’t know the rules of the environment or the consequences of our actions.
Game show

- A series of questions with increasing level of difficulty and increasing payoff
- Decision: at each step, take your earnings and quit, or go for the next question
 - If you answer wrong, you lose everything
Game show

- Consider $50,000 question
 - Probability of guessing correctly: 1/10
 - Quit or go for the question?
- What is the expected payoff for continuing?
 \[0.1 \times 61,100 + 0.9 \times 0 = 6,110\]
- What is the optimal decision?
Game show

- What should we do in Q3?
 - Payoff for quitting: $1,100
 - Payoff for continuing: $5,550

- What about Q2?
 - $100 for quitting vs. $4,162 for continuing

- What about Q1?
Grid world

\[R(s) = -0.04 \text{ for every non-terminal state} \]

Transition model:
Goal: Policy

Source: P. Abbeel and D. Klein
Grid world

Transition model:

R(s) = -0.04 for every non-terminal state
Grid world

Optimal policy when $R(s) = -0.04$ for every non-terminal state
Grid world

- Optimal policies for other values of $R(s)$:

- $R(s) < -1.6284$
- $-0.4278 < R(s) < -0.0850$
- $-0.0221 < R(s) < 0$
- $R(s) > 0$
Solving MDPs

• MDP components:
 • States \(s \)
 • Actions \(a \)
 • Transition model \(P(s' | s, a) \)
 • Reward function \(R(s) \)

• The solution:
 • Policy \(\pi(s) \): mapping from states to actions
 • How to find the optimal policy?
Maximizing expected utility

• The optimal policy \(\pi(s) \) should maximize the *expected utility* over all possible state sequences produced by following that policy:

\[
\sum_{\text{state sequences starting from } s_0} P(\text{sequence}|s_0, a = \pi(s_0))U(\text{sequence})
\]

• How to define the utility of a state sequence?
 • Sum of rewards of individual states
 • Problem: infinite state sequences
Utilities of state sequences

- Normally, we would define the utility of a state sequence as the sum of the rewards of the individual states.
- **Problem:** infinite state sequences
- **Solution:** *discount* the individual state rewards by a factor γ between 0 and 1:

\[
U([s_0, s_1, s_2, \ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots
\]

\[
= \sum_{t=0}^{\infty} \gamma^t R(s_t) \leq \frac{R_{\text{max}}}{1-\gamma} \quad (0 < \gamma < 1)
\]

- Sooner rewards count more than later rewards
- Makes sure the total utility stays bounded
- Helps algorithms converge
Utilities of states

• Expected utility obtained by policy \(\pi \) starting in state \(s \):

\[
U^\pi(s) = \sum_{\text{state sequences starting from } s} P(\text{sequence}|s, a = \pi(s))U(\text{sequence})
\]

• The “true” utility of a state, denoted \(U(s) \), is the best possible expected sum of discounted rewards
 • if the agent executes the best possible policy starting in state \(s \)
 • Reminiscent of minimax values of states...
Finding the utilities of states

- What is the expected utility of taking action \(a \) in state \(s \)?
 \[
 \sum_{s'} P(s'|s,a)U(s')
 \]

- How do we choose the optimal action?
 \[
 \pi^*(s) = \arg\max_{a \in A(s)} \sum_{s'} P(s'|s,a)U(s')
 \]

- What is the recursive expression for \(U(s) \) in terms of the utilities of its successor states?
 \[
 U(s) = R(s) + \gamma \max_a \sum_{s'} P(s'|s,a)U(s')
 \]
The Bellman equation

• Recursive relationship between the utilities of successive states:

\[U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U(s') \]
The Bellman equation

• Recursive relationship between the utilities of successive states:

\[U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' | s, a) U(s') \]

• For \(N \) states, we get \(N \) equations in \(N \) unknowns
 • Solving them solves the MDP
 • Nonlinear equations -> no closed-form solution, need to use an iterative solution method (is there a globally optimum solution?)
 • We could try to solve them through expectiminimax search, but that would run into trouble with infinite sequences
 • Instead, we solve them algebraically
 • Two methods: value iteration and policy iteration
Method 1: Value iteration

- Start out with every $U(s) = 0$
- Iterate until convergence
 - During the ith iteration, update the utility of each state according to this rule:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a)U_i(s')$$

- In the limit of infinitely many iterations, guaranteed to find the correct utility values
 - In practice, don’t need an infinite number of iterations...
Value iteration

- What effect does the update have?

\[
U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'| s, a) U_i(s')
\]
Value iteration

Input (non-terminal $R=-0.04$)

Utilities with discount factor 1

Final policy

Input (non-terminal $R=-0.04$)

Utilities with discount factor 1

Final policy

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>START</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.812</td>
<td>0.868</td>
<td>0.918</td>
<td>+1</td>
</tr>
<tr>
<td>2</td>
<td>0.762</td>
<td></td>
<td>0.660</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0.705</td>
<td>0.655</td>
<td>0.611</td>
<td>0.388</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Utility estimates

Number of iterations

$(4,3)$ $(3,3)$ $(1,1)$ $(3,1)$ $(4,1)$

0.35
Method 2: Policy iteration

- Start with some initial policy π_0 and alternate between the following steps:
 - **Policy evaluation**: calculate $U^\pi_i(s)$ for every state s
 - **Policy improvement**: calculate a new policy π_{i+1} based on the updated utilities

- Notice it’s kind of like hill-climbing in the N-queens problem.
 - Policy evaluation: Find ways in which the current policy is suboptimal
 - Policy improvement: Fix those problems

- Unlike Value Iteration, this is guaranteed to converge in a finite number of steps, as long as the state space and action set are both finite.
Method 2, Step 1: Policy evaluation

• Given a fixed policy π, calculate $U^\pi(s)$ for every state s

\[
U^\pi(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) U^\pi(s')
\]

• $\pi(s)$ is fixed, therefore $P(s'|s, \pi(s))$ is an $s' \times s$ matrix, therefore we can solve a linear equation to get $U^\pi(s)$!

• Why is this “Policy Evaluation” formula so much easier to solve than the original Bellman equation?

\[
U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')
\]
Method 2, Step 2: Policy improvement

• Given $U^\pi(s)$ for every state s, find an improved $\pi(s)$

$$\pi^{i+1}(s) = \arg\max \sum_{a \in A(s)} \sum_{s'} P(s'| s, a) U^{\pi_i}(s')$$
Summary

- MDP defined by states, actions, transition model, reward function
- The “solution” to an MDP is the policy: what do you do when you’re in any given state
- The Bellman equation tells the utility of any given state, and incidentally, also tells you the optimum policy. The Bellman equation is N nonlinear equations in N unknowns (the policy), therefore it can’t be solved in closed form.

- Value iteration:
 - At the beginning of the (i+1)’st iteration, each state’s value is based on looking ahead i steps in time
 - ... so finding the best action = optimize based on (i+1)-step lookahead

- Policy iteration:
 - Find the utilities that result from the current policy,
 - Improve the current policy