Lecture 23: Deep Learning

Slides by Svetlana Lazebnik, 11/2016
Modified by Mark Hasegawa-Johnson, 11/2017

Beyond a single hidden layer

output layer
input layer
hidden layer

input layer

g
&

{M‘
XA

q%
b
W

@

)

output layer

hidden layer 1 hidden layer 2

Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output layer with 2 neurons), and three inputs.
Right: A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer. Notice that in both
cases there are connections (synapses) between neurons across layers, but not within a layer.

Source: http://cs231n.github.io/neural-networks-1/

Deep networks basic idea

* A linear classifier performs OK when you apply it to raw pixels

* It works much better if you apply it to higher-level features, e.g.,
detected edges, corners, patterns, etc.

* Pre-deep learning: detect features, then give them to a linear
classifier

* Deep learning: learn the features and the classifier at the same time

Outline

e Adaboost: learn the features, then learn the classifier
e Convolutional neural networks
* Adversarial inputs

Integral image

ii(y,x) = Z i(y',x")
50 x'<x,y'<y

100 = cumsum(cumsum(i,Z),l);

imagesc(ii);

150
200
250
300
350
400

450

| ! !
100 200 300 400 500 600 700

Efficiently computing the sum

The sum within the subrectangle is:

sum(open pixels) —
sum(/// pixels) —

sum(\\\ pixels) +
sum(### pixels)

The last term is necessary because,
by subtracting the two previous
terms, we have subtracted the ###
pixels twice; it is necessary to
compensate.

100 200 300 400 500 600 700

Efficiently computing the sum

In the integral image, each point is
a sum! Thus the feature we want is
just

50

100

ii(y2,x2) —
ii(yl,x2) —
ii(y2,x1) +
ii(y1l,x1)

150

200

250

300

350

400

450

100 200 300 400 500 600 700

250

300

350

400

450

Other useful features: order 2, horizontal

100

200

300

600

Feature f(x;fr,g=2,v=0)

An order-2 horizontal feature is the
sum of the right half, minus the
sum of the left half.

250

300

350

400

450

Other useful features: order 2, vertical

100

200

300

600

Feature f(x;fr,g=2,v=1)

An order-2 vertical feature is the
sum of the bottom half, minus the
sum of the top half.

250

300

350

400

450

Other useful features: order 3, vertical

100

200

300

600

Feature f(x;fr,g=3,v=1)

An order-3 vertical feature is the
sum of the outer thirds, minus the
sum of the middle third.

Other useful features: order 4
Feature f(x;fr,g=4)

An order-4 feature is the sum of the
main diagonal quadrants, minus the
sum of the off-diagonal quadrants.

250
300
350
400

450

100 200 300 400 500 600 700

Scalar Classifier

1 frq,v) <6
h(x; fr,q,v,p,0) = {0 flalr gt;z]e)rwise

Recap: finding the best scalar classifier out of a set

containing tens of thousands of possible scalar
classifiers

1. For every possible feature (fx,fy,fw,fh,q,v),

2. ...compute the feature for the whole database...

3. ...compute the probability of error...

4. .. if the answer to #3 is the best one you’ve found so far, keep it.

Adaboost

Suppose somebody told you: I’'m going to take a whole bunch of scalar
classifiers. Let’s use h;(x) to mean the classifier computed in the t’th
training iteration; remember that h;(x) is either 0 or 1. Then I’'m going
to add them all together, and the final classifier will be

nr 2 a,(2h,(x) — 1) > 0
h(x) = 5 ‘

0 if Z a;(2h;(x) —1) <0
t

\

Outline

e Adaboost: learn the features, then learn the classifier
e Convolutional neural networks
* Adversarial inputs

Biological inspiration

 D. Hubeland T. Wiesel (1959, 1962, Nobel Prize 1981)

* Visual cortex consists of a hierarchy of simple, complex, and
hyper-complex cells

Hubel & Weisel featural hierarchy
topographical mapping

complex cells

simplecells

- |ow level

Source

Convolutional Neural Networks

* Neural network with specialized
connectivity structure

e Stack multiple stages of feature
extractors

 Higher stages compute more global,
more invariant features

Bl
‘.‘: 7
7
Ea:
% =
il -
3
4|
%]
=
4

* Classification layer at the end

C3:1. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5

INPUT
39430 B@28x28

S2: f. maps
E@14x14

I Fu!tc-:)nllrecﬁcn | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,
Proc. IEEE 86(11): 2278—-2324, 1998.

CNN (Convolutional Neural Networks)

CONYOLUTIONS E'I I
Y K

What is a convolution?

 Weighted moving average
e All positive weights: average

 Some weights negative: finds
edges, corners, etc.

Feature Map

Convolutional Neural Networks

i

[Feature maps }

-

[Normalization }

-

(Spatial pooling }

-

[Non-linearity ’

-

Convolution
(Learned)

{ Input Image }

Convolutional Neural Networks

i

[Feature maps }

i

[Normalization J

i

[Spatial pooling J

e

Convolution
(Learned)

{}

[Input Image W

Input

Feature Map

Convolutional Neural Networks

i

[Feature maps j

i

[Normalization }

i

(Spatial pooling }

l Non-linearity I

Convolution
(Learned)

{ Input Image }

relu(x)

T T | S R R R R B |

i i i i i i i i i

Convolutional Neural Networks

i

Feature maps }

i

[Normalization J

Spatial pooling

T

Convolution
(Learned)

{}

Input Image W

amy o

Convolutional Neural Networks

i

[Feature maps }

{}

[Normalization]

i

[Spatial pooling J Feature Maps Feature 'VIaIOS
After Contrast

i i Normalization

{}

Convolution }

(Learned)

{}

[Input Image W

Convolutional Neural Networks

i

[Feature maps }

-

[Normalization }

Convolutional filters are trained in a supervised
' . manner by back-propagating
(Spatial pooling } classification error

-

-

[Non-linearity ’

-

Convolution
(Learned)

{ Input Image }

AlexNet

Similar framework to LeCun’98 but:
Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
More data (10° vs. 103 images)

Strid
“of 4
3

N s

GPU implementation (50x speedup over CPU)

* Trained on two GPUs for a week

Max
pooling

48

128 2048 204

128

dense

dense dense

182

Max
pooling

128 Max L | L |
pooling 2948 2048

lo00

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional

Neural Networks, NIPS 2012

Refinement of AlexNet architecture

image size 224 110 26 13 13 13 _
filter size 7 3 3
¢'I 384 &'I 384 256
_ ,\2‘56 \ '\
stride 2 96 3x3 max 3x3 max
3x3 max pool pool | |contrast pool 4096
stride 2 stride 2| [norm. stride 2 units
3 55|
A 13 @3 6
Input Image 1 %6 26 -

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

4096
units

class
softmax

Layer6 Layer?7 Output

Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as
the input. This is convolved with 96 different 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y.
The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within
3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 different 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 - 6 - 256 = 9216 dimensions). The final layer is a C-way softmax

function, €' being the number of classes. All filters and feature maps are square in shape.

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,

arXiv preprint, 2013

CNN for Image Classification: VGG16

223 224 =224 = 6d

112 x 128

i 5l = 206
2R 28 x D12

TxTxHl2

14x14x 512

%:ﬂ_ﬂ 11 :;:l-ltlﬂ.-aﬁ]

ﬁ comvoalution4RellS

iy poaling
| fully connected+Rel.1

1] softmax

1 ll_:x: lE][J[J

Layer 1 Filters

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,
arXiv preprint, 2013

Top-9 Patches

Layer 1

(-

ST NH™ EEER ma=s
Y WYY EER WD
AW Y.ENw D

-_—
] .

I
1]
I
. B
|

!

1
|
_
a
W |
E

e ‘l,‘\
RN -

-
ERE BEE

[Ny~

b-/ Al F 1N . B

- (.1 1 ID0AnTEEE
15 H Il‘l\ll.\;l m Bl
n'z il > EEE"VY ===

APPY i < <ad ERE

47 @ TPy Vil e EEET ==L

- .h,
ﬁ 'r" — _INCL USSR A RS » & -: \“L‘l -
! M- . &@_lll,".-lkl k %/ .'m 1|Illlr
o laas 13) cERm=c gLl
Wi BAAWTE |/ < SER
I\ ¥ LAY /i] Itd/ " *] §

I“!ﬂ_‘ ‘ A "l?j iJ L i/ *SW

= 15 B ’%E._hla A ~
L ECCE N 4 1“' JREE A M
Wl ﬂ"”llm_«,z 11 F!ﬁ» A 4 TN E Il [E‘L 1 =
A< T11/00 E 5 g e T 7
!]] g Hm -~ I\\ ‘a\\\ﬂ' WX H ——— — g B

-‘-

Y
-

1
\\ | LR .

IR

Layer 3 Top 9 PatcheS

o &3 ' P A A
| 4 . ‘
. '\ oY ‘;: *% # | L‘ .
sf;,:-,‘-;wb-'

" P - A

e 7 s

Rl T E | ¥ =
N E“‘:!

. \ - (’—'
l . “;

»

-

v

a1

e
RN

ImageNet Challenge

* ~14 million labeled images, 20k classes
* Images gathered from Internet
* Human labels via Amazon MTurk

* Challenge: 1.2 million training images,
1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional
Neural Networks, NIPS 2012

ImageNet Challenge 2012-2014

Team Year Place Error (top-5) External data
SuperVision — Toronto 2012 - 16.4% no

(7 layers)

SuperVision 2012 1st 15.3% ImageNet 22k
Clarifai — NYU 2013 - 11.7% no

(7 layers)

Clarifai 2013 1st 11.2% ImageNet 22k

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Outline

e Adaboost: learn the features, then learn the classifier
e Convolutional neural networks
* Adversarial inputs

Breaking CNNs

)3 i
[Ea (S v
by ity) Ve S bl
b DA / e D A ;o
< 3o Kis L A A £ f
S\ i » =S W
. \ o oy e
M B o K v Ry P N
1 e 1 v
N A ¥ <
5% I e e Yt s

correct +distort ostrich correct +distort ostrich

Take a correctly classified image (left image in both columns), and add a tiny distortion (middle) to fool the ConvNet with the
resulting image (right).

http://arxiv.org/abs/1312.6199

http://karpathy.github.io/2015/03/30/breaking-convnets/

Breaking CNNs

| centipede | peacock " jackfruit bubble

e o e i g g o g N S S
- Fp
N g S O

A

o o o ot ot e i o A
o N g g g g e

king penguin starfish " baseball " electric guitar I

ooe
ooe
one

AR LR
1ipoooooonnt
U§§§U
AR RR R

100
100
1100

| freight car " remote control " peacock " African grey |

http://arxiv.org/abs/1412.1897
http://karpathy.github.io/2015/03/30/breaking-convnets/

What is going on?

* Recall gradient descent training: moth‘Ey the weights to reduce

classifier error W W

e Adversarial examples: modify the image to increase classifier error

oE
X X+a—

OX

http://arxiv.org/abs/1412.6572
http://karpathy.github.io/2015/03/30/breaking-convnets/

What is going on?

“panda” “nematode” “gibbon”
57.7% confidence

99.3 % confidence

+.007 x

http://arxiv.org/abs/1412.6572
http://karpathy.github.io/2015/03/30/breaking-convnets/

Fooling a linear classifier

* Perceptron weight update: add a small multiple of the example to
the weight vector:

w < w+ax

To fool a linear classifier, add a small multiple of the weight vector to
the training example:

. X €& X+ ow

Fooling a
linear
classifier

12.5% daisy

Fooled linear classifier: The starting image (left) is classified as a kit fox. That's incorrect, but then what can you expect from a
linear classifier? However, if we add a small amount "goldfish" weights to the image (top row, middle), suddenly the classifier is
convinced that it's looking at one with high confidence. We can distort it with the school bus template instead if we wanted to.

http://karpathy.github.io/2015/03/30/breaking-convnets/

