CS440/ECE448 Lecture 18: Bayesian Networks

Slides by Svetlana Lazebnik, 10/2016 Modified by Mark Hasegawa-Johnson, 10/2017

Review: Bayesian inference

- · A general scenario:
 - Query variables: X
 - Evidence (observed) variables and their values: E = e
- Inference problem: answer questions about the query variables given the evidence variables
- This can be done using the posterior distribution $P(X \mid E = e)$
- Example of a useful question: Which X is true?
- More formally: what value of X has the least probability of being wrong?
- Answer: MPE = MAP (argmin P(error) = argmax P(X=x|E=e))

Today: What if P(X,E) is complicated?

- Very, very common problem: P(X,E) is complicated because both X and E depend on some hidden variable Y
- SOLUTION:
 - Draw a bunch of circles and arrows that represent the dependence
 - When your algorithm performs inference, make sure it does so in the order of the graph
- FORMALISM: Bayesian Network

Hidden Variables

- A general scenario:
 - Query variables: X
 - Evidence (observed) variables and their values: E = e
 - Unobserved variables: Y
- Inference problem: answer questions about the query variables given the evidence variables
 - This can be done using the posterior distribution $P(X \mid E = e)$
 - In turn, the posterior needs to be derived from the full joint P(X, E, Y)

$$P(X \mid E = e) = \frac{P(X,e)}{P(e)} \propto \sum_{y} P(X,e,y)$$

Bayesian networks are a tool for representing joint probability distributions efficiently

Bayesian networks

- More commonly called *graphical models*
- A way to depict conditional independence relationships between random variables
- A compact specification of full joint distributions

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Constructing a Bayesian network
- Conditional independence ≠ Independence
- Real-world examples

Bayesian networks: Structure

• Nodes: random variables

- Arcs: interactions
 - An arrow from one variable to another indicates direct influence
 - Must form a directed, acyclic graph

Example: N independent coin flips

• Complete independence: no interactions

Example: Naïve Bayes document model

- Random variables:
 - X: document class
 - W₁, ..., W_n: words in the document

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Constructing a Bayesian network
- Conditional independence ≠ Independence
- Real-world examples

Example: Los Angeles Burglar Alarm

- I have a burglar alarm that is sometimes set off by minor earthquakes. My two neighbors, John and Mary, promised to call me at work if they hear the alarm
 - Example inference task: suppose Mary calls and John doesn't call. What is the probability of a burglary?
- What are the random variables?
 - Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- What are the direct influence relationships?
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example: Burglar Alarm

Conditional independence and the joint distribution

- Key property: each node is conditionally independent of its non-descendants given its parents
- Suppose the nodes X_1 , ..., X_n are sorted in topological order
- To get the joint distribution $P(X_1, ..., X_n)$, use chain rule:

$$P(X_{1},...,X_{n}) = \prod_{i=1}^{n} P(X_{i} \mid X_{1},...,X_{i-1})$$
$$= \prod_{i=1}^{n} P(X_{i} \mid Parents(X_{i}))$$

Conditional probability distributions

 To specify the full joint distribution, we need to specify a conditional distribution for each node given its parents: P(X | Parents(X))

Example: Burglar Alarm

Example: Burglar Alarm

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Constructing a Bayesian network
- Conditional independence ≠ Independence
- Real-world examples

Constructing Bayesian networks

- 1. Choose an ordering of variables X_1, \dots, X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from X₁, ..., X_{i-1} such that
 P(X_i | Parents(X_i)) = P(X_i | X₁, ... X_{i-1})

Example contd.

- Deciding conditional independence is hard in noncausal directions
 - The causal direction seems much more natural
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed (vs. 1+1+4+2+2=10 for the causal ordering)

Why store it in causal order? A: Saves memory

- Suppose we have a Boolean variable X_i with k Boolean parents. How many rows does its conditional probability table have?
 - 2^k rows for all the combinations of parent values
 - Each row requires one number for P(X_i = true | parent values)
- If each variable has no more than k parents, how many numbers does the complete network require?
 - $O(n \cdot 2^k)$ numbers vs. $O(2^n)$ for the full joint distribution
- How many nodes for the burglary network?

$$1 + 1 + 4 + 2 + 2 = 10$$
 numbers (vs. $2^5-1 = 31$)

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Constructing a Bayesian network
- Conditional independence ≠ Independence
- Real-world examples

The joint probability distribution

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$$

For example,

$$P(j, m, a, \neg b, \neg e) = P(\neg b) P(\neg e) P(a|\neg b, \neg e) P(j|a) P(m|a)$$

Independence

- By saying that X_i and X_j are independent, we mean that $P(X_i|X_j) = P(X_i)$
- X_i and X_j are independent if and only if they have no common ancestors
- Example: independent coin flips

 Another example: Weather is independent of all other variables in this model.

Conditional independence

- By saying that W_i and W_j are conditionally independent given X, we mean that $P(W_i|X,W_j) = P(W_i|X)$
- W_i and W_j are conditionally independent given X if and only if they have no common ancestors other than the ancestors of X.
- Example: naïve Bayes model:

Conditional independence

The meaning of this graph is that W_i and W_j are conditionally independent given X. $P(W_i|X,W_i) = P(W_i|X)$ is the meaning of the graph.

Conditional independence ≠ Independence

Being conditionally independent given X does NOT mean that W_i and W_j are independent. Quite the opposite.

Suppose P(X) = 1/2, and $w_i = x$, and $w_j = x$. Then $P(W_i) = \frac{1}{2}$, but $P(W_i|W_j) = 1$.

Conditional independence

Another example: causal chain

X: Low pressure

Y: Rain

Z: Traffic

- The meaning of this graph is that X and Z are conditionally independent given Y: P(z|x,y) = P(z|y).
- Being conditionally independent given Y does NOT mean that X and Z are independent. Quite the opposite. For example, suppose P(X) = 0.5, P(Y|X) = 0.8, $P(Y|\neg X) = 0.1$, P(Z|Y) = 0.7, and $P(Z|\neg Y) = 0.4$. Then we can calculate that P(Z|X) = 0.64, but P(Z) = 0.535

Conditional independence ≠ Independence

Common cause

Y: Project due

X: Newsgroup busy

. . . . j

Z: Lab full

- Are X and Z independent?
 - No
 - $P(Z|X) \neq P(Z)$
- Are they conditionally independent given Y?
 - Yes
 - P(Z|X,Y) = P(Z|Y)

Common effect

X: Raining

Z: Ballgame

Y: Traffic

- Are X and Z independent?
 - Yes
 - P(Z|X) = P(Z)
- Are they conditionally independent given Y?
 - No
 - $P(Z|X,Y) \neq P(Z|Y)$

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Constructing a Bayesian network
- Conditional independence ≠ Independence
- Real-world examples

A more realistic Bayes Network: Car diagnosis

- Initial observation: car won't start
- Orange: "broken, so fix it" nodes
- Green: testable evidence
- Gray: "hidden variables" to ensure sparse structure, reduce parameters

Car insurance

Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data Karen Sachs, Omar Perez, Dana Pe'er, Douglas A. Lauffenburger, and Garry P. Nolan (22 April 2005) *Science* **308** (5721), 523.

Fig. 3 A parametric, fixed-order model which describes the visual appearance of L object categories via a common set of K shared parts. The j^{th} image depicts an instance of object category o_j , whose position is determined by the reference transformation ρ_j . The appearance w_{ji} and position v_{ji} , relative to ρ_j , of visual features are determined

by assignments $z_{ji} \sim \pi_{o_j}$ to latent parts. The cartoon example illustrates how a wheel part might be shared among two categories, *bicycle* and *cannon*. We show feature positions (but not appearance) for two hypothetical samples from each category

Describing Visual Scenes Using Transformed Objects and Parts

E. Sudderth, A. Torralba, W. T. Freeman, and A. Willsky.

International Journal of Computer Vision, No. 1-3, May 2008, pp. 291-330.

Audiovisual Speech Recognition with Articulator Positions as Hidden Variables

Mark Hasegawa-Johnson, Karen Livescu, Partha Lal and Kate Saenko

International Congress on Phonetic Sciences 1719:299-302, 2007

Detecting interaction links in a collaborating group using manually annotated data

S. Mathur, M.S. Poole, F. Pena-Mora, M. Hasegawa-Johnson, N. Contractor *Social Networks* 10.1016/j.socnet.2012.04.002

Detecting interaction links in a collaborating group using manually annotated data

S. Mathur, M.S. Poole, F. Pena-Mora, M. Hasegawa-Johnson, N. Contractor *Social Networks* 10.1016/j.socnet.2012.04.002

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + conditional probability tables
- Generally easy for domain experts to construct