ECE 448 Lecture 12: Probability

Slides by Svetlana Lazebnik, 9/2016 Modified by Mark Hasegawa-Johnson, 10/2017

Probability: Review of main concepts (Chapter 13)

Outline

- Motivation: Why use probability?
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- Review of Key Concepts
 - Outcomes, Events
 - Random Variables; probability mass function (pmf)
 - Jointly random variables: Joint, Marginal, and Conditional pmf
 - Independent vs. Conditionally Independent events

Outline

- Motivation: Why use probability?
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- Review of Key Concepts
 - Outcomes, Events, and Random Variables
 - Joint, Marginal, and Conditional
 - Independence and Conditional Independence

Motivation: Planning under uncertainty

- Recall: representation for planning
- **States** are specified as conjunctions of predicates
 - Start state: At(P1, CMI) ∧ Plane(P1) ∧ Airport(CMI) ∧ Airport(ORD)
 - Goal state: At(P1, ORD)
- Actions are described in terms of preconditions and effects:
 - Fly(p, source, dest)
 - Precond: At(p, source) \(\times \) Plane(p) \(\times \) Airport(source) \(\times \) Airport(dest)
 - **Effect:** ¬At(p, source) ∧ At(p, dest)

Motivation: Planning under uncertainty

- Let action A_t = leave for airport t minutes before flight
 - Will A_t succeed, i.e., get me to the airport in time for the flight?
- Problems:
 - Partial observability (road state, other drivers' plans, etc.)
 - Noisy sensors (traffic reports)
 - Uncertainty in action outcomes (flat tire, etc.)
 - Complexity of modeling and predicting traffic
- Hence a purely logical approach either
 - Risks falsehood: "A₂₅ will get me there on time," or
 - Leads to conclusions that are too weak for decision making:
 - A₂₅ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact, etc., etc.
 - A_{1440} will get me there on time but I'll have to stay overnight in the airport

Probability

Probabilistic assertions summarize effects of

- Laziness: reluctance to enumerate exceptions, qualifications, etc.
- Ignorance: lack of explicit theories, relevant facts, initial conditions, etc.
- Intrinsically random phenomena

When does it make sense to use probability?

- When should an outcome be considered to be random?
 - ... List some examples or reasons....
- When should an outcome _not_ be considered to be random?
 - ... list some examples or reasons...

Outline

- Motivation: Why use probability?
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- Review of Key Concepts
 - Outcomes, Events, and Random Variables
 - Joint, Marginal, and Conditional
 - Independence and Conditional Independence

Making decisions under uncertainty

• Suppose the agent believes the following:

```
P(A<sub>25</sub> gets me there on time) = 0.04
P(A<sub>90</sub> gets me there on time) = 0.70
P(A<sub>120</sub> gets me there on time) = 0.95
P(A<sub>1440</sub> gets me there on time) = 0.9999
```

- Which action should the agent choose?
 - Depends on preferences for missing flight vs. time spent waiting
 - Encapsulated by a utility function
- The agent should choose the action that maximizes the expected utility:

```
P(A_t \text{ succeeds}) * U(A_t \text{ succeeds}) + P(A_t \text{ fails}) * U(A_t \text{ fails})
```

Making decisions under uncertainty

• More generally: the expected utility of an action is defined as:

$$EU(action) = \sum_{outcomes \ of \ action} P(outcome | action) U(outcome)$$

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Monty Hall problem

• You're a contestant on a game show. You see three closed doors, and behind one of them is a prize. You choose one door, and the host opens one of the other doors and reveals that there is no prize behind it. Then he offers you a chance to switch to the remaining door. Should you take it?

http://en.wikipedia.org/wiki/Monty Hall problem

Monty Hall problem

- With probability 1/3, you picked the correct door, and with probability 2/3, picked the wrong door. If you picked the correct door and then you switch, you lose. If you picked the wrong door and then you switch, you win the prize.
- Expected utility of switching:

$$EU(Switch) = (1/3) * 0 + (2/3) * Prize$$

Expected utility of not switching:

$$EU(Not switch) = (1/3) * Prize + (2/3) * 0$$

Where do probabilities come from?

Frequentism

- Probabilities are relative frequencies
- For example, if we toss a coin many times, P(heads) is the proportion of the time the coin will come up heads
- But what if we're dealing with events that only happen once?
 - E.g., what is the probability that Team X will win the Superbowl this year?
 - "Reference class" problem

Subjectivism

- Probabilities are degrees of belief
- But then, how do we assign belief values to statements?
- What would constrain agents to hold consistent beliefs?

The Rational Bettor Theorem

- Why should a rational agent hold beliefs that are consistent with axioms of probability?
 - For example, $P(A) + P(\neg A) = 1$
- If an agent has some degree of belief in proposition A, he/she should be able to decide whether or not to accept a bet for/against A (De Finetti, 1931):
 - If the agent believes that P(A) = 0.4, should he/she agree to bet \$4 that A will occur against \$6 that A will not occur?
- Theorem: An agent who holds beliefs inconsistent with axioms of probability can be convinced to accept a combination of bets that is guaranteed to lose them money

Are humans "rational bettors"?

- Humans are pretty good at estimating some probabilities, and pretty bad at estimating others. What might cause humans to mis-estimate the probability of an event?
 - ... list some examples ...
- What are some of the ways in which a "rational bettor" might take advantage of humans who mis-estimate probabilities?
 - ... list some examples ...

Outline

- Motivation: Why use probability?
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- Review of Key Concepts
 - Outcomes, Events, and Random Variables
 - Joint, Marginal, and Conditional
 - Independence and Conditional Independence

Outcomes of an Experiment

The SET OF POSSIBLE OUTCOMES (a.k.a. the "sample space") is a listing of all of the things that might happen:

- 1. Mutually exclusive. It's not possible that two different outcomes might both happen.
- 2. Collectively exhaustive. Every outcome that could possibly happen is one of the items in the list.
- 3. Finest grain. After the experiment occurs, somebody tells you the outcome, and there is nothing else you need to know.

Example experiment: Alice, Bob, Carol and Duane run a 10km race to decide who will buy pizza tonight.

Outcome = a listing of the exact finishing times of each participant.

Events

 Probabilistic statements are defined over events, or sets of world states

```
    A = "It is raining"
    B = "The weather is either cloudy or snowy"
    C = "The sum of the two dice rolls is 11"
    D = "My car is going between 30 and 50 miles per hour"
```

An EVENT is a SET of OUTCOMES

```
B = { outcomes : cloudy OR snowy }C = { outcomes : d1+d2 = 11 }
```

 Notation: p(A) or P(A) is the probability of the set of world states (outcomes) in which proposition A holds

Kolmogorov's axioms of probability

- For any propositions (events) A, B
 - $0 \le P(A) \le 1$
 - P(True) = 1 and P(False) = 0
 - $P(A \lor B) = P(A) + P(B) P(A \land B)$
 - Subtraction accounts for double-counting
- Based on these axioms, what is $P(\neg A)$?
- These axioms are sufficient to completely specify probability theory for *discrete* random variables
 - For continuous variables, need density functions

Outcomes = Atomic events

- OUTCOME or ATOMIC EVENT: is a complete specification of the state of the world, or a complete assignment of domain values to all random variables
 - Atomic events are mutually exclusive and exhaustive
- E.g., if the world consists of only two Boolean variables *Cavity* and *Toothache*, then there are four outcomes:

```
¬Cavity ∧ ¬Toothache

¬Cavity ∧ Toothache

Cavity ∧ ¬Toothache

Cavity ∧ Toothache
```

Random variables

- We describe the (uncertain) state of the world using random variables
 - Denoted by capital letters
 - **R**: *Is it raining?*
 - **W**: What's the weather?
 - **D**: What is the outcome of rolling two dice?
 - **S**: What is the speed of my car (in MPH)?
- Just like variables in CSPs, random variables take on values in a domain
 - Domain values must be mutually exclusive and exhaustive
 - R in {True, False}
 - W in {Sunny, Cloudy, Rainy, Snow}
 - **D** in {(1,1), (1,2), ... (6,6)}
 - **S** in [0, 200]

Random variables

- A random variable can be viewed as a function that maps from outcomes to real numbers (or integers, or strings)
- For example: the event "Speed=45mph" is the set of all outcomes for which the speed of my car is 45mph

Probability Mass Function (pmf)

- We use a capital letter for a random variables (RV=the function that maps from outcomes to values), and a small letters for the actual value that it takes after any particular experiment.
- $X_1 = X_1$ is the event "random variable X_1 takes the value X_1 "
- $p(X_1 = x_1)$ is a <u>number</u>: the probability that this event occurs.
 - We call this number the "probability mass" of the event $X_1 = X_1$
 - The function is called the "probability mass function" or pmf
 - Shorthand: p(x₁) using a small letter x₁
 - Subscript notation, which we won't use in this class: $p_{X_1}(x_1)$
- $p(X_1)$ using a capital letter X_1 is a <u>function</u>: the entire table of the probabilities $X_1 = x_1$ for every possible x_1

Events and Outcomes

- An OUTCOME (ATOMIC EVENT) is a particular setting of all of the random variables
 - Outcome = (die 1 shows 5 dots, die 2 shows 6 dots)
- An EVENT is a SET of OUTCOMES
 - "The sum of the two dice rolls is 11" = { set of all outcomes such that D1+D2 = 11 }
 - "D1=5" = {set of all outcomes such that D1=5, regardless of what D2 is }
- $P(EVENT) = \sum_{outcomes \ \epsilon \ EVENT} P(outcome)$

Functions of Random Variables

- Suppose we are not really interested in any given random variable, instead we're only interested in a function of the random variables
- Example: the game of craps. We're only interested in the sum of the two dice, e.g., what is the probability that the sum of the two dice is greater than 10.
- Define S=D1+D2. How can we calculate the pmf for S?

Outline

- Motivation: Why use probability?
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- Review of Key Concepts
 - Outcomes, Events, and Random Variables
 - Joint, Marginal, and Conditional
 - Independence and Conditional Independence

Joint probability distributions

 A joint distribution is an assignment of probabilities to every possible atomic event

Atomic event	Р
¬Cavity ∧ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity ∧ ¬Toothache	0.05
Cavity ∧ Toothache	0.05

• Why does it follow from the axioms of probability that the probabilities of all possible atomic events must sum to 1?

Joint probability distributions

- A joint distribution is an assignment of probabilities to every possible atomic event
- Suppose we have a joint distribution of N random variables, each of which takes values from a domain of size D
 - What is the size of the probability table?
 - Impossible to write out completely for all but the smallest distributions

Notation

- $p(X_1 = x_1, X_2 = x_2, ..., X_N = x_N)$ refers to a single entry (atomic event) in the joint probability distribution table
 - Shorthand: $p(x_1, x_2, ..., x_N)$
 - Subscript notation, which we won't use in this class: $p_{X_1,X_2,...,X_N}(x_1,x_2,...,x_N)$
- p(X₁, X₂, ..., X_N) refers to the entire joint probability distribution table
- P(A) can also refer to the probability of an event
 - E.g., $X_1 = x_1$ is an event

Marginal probability distributions

• From the joint distribution p(X,Y) we can find the marginal distributions p(X) and p(Y)

P(Cavity, Toothache)	
¬Cavity ∧ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity ∧ ¬Toothache	0.05
Cavity ∧ Toothache	0.05

P(Cavity)	
¬Cavity	ن
Cavity	?

P(Toothache)	
¬Toothache	?
Toochache	?

Marginal probability distributions

- From the joint distribution p(X,Y) we can find the marginal distributions p(X) and p(Y)
- To find p(X = x), sum the probabilities of all atomic events where X = x:

$$P(X = x) = P((X = x \land Y = y_1) \lor ... \lor (X = x \land Y = y_n))$$
$$= P((x, y_1) \lor ... \lor (x, y_n)) = \sum_{i=1}^{n} P(x, y_i)$$

 This is called marginalization (we are marginalizing out all the variables except X)

Conditional probability

• Probability of cavity given toothache:

P(Cavity = true | Toothache = true)

• For any two events A and B,

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = \frac{P(A,B)}{P(B)}$$

Conditional probability

P(Cavity, Toothache)	
¬Cavity ∧ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity ∧ ¬Toothache	0.05
Cavity ∧ Toothache	0.05

P(Cavity)	
¬Cavity	0.9
Cavity	0.1

P(Toothache)	
¬Toothache	0.85
Toochache	0.15

- What is p(Cavity = true | Toothache = false)? p(Cavity | ¬Toothache) = ?
- What is p(Cavity = false | Toothache = true)?
 p(¬Cavity | Toothache) = ?

Conditional distributions

• A conditional distribution is a distribution over the values of one variable given fixed values of other variables

P(Cavity, Toothache)	
¬Cavity ∧ ¬Toothache	0.8
¬Cavity ∧ Toothache	0.1
Cavity ∧ ¬Toothache	0.05
Cavity ∧ Toothache	0.05

P(Cavity Toothache = true)	
¬Cavity	0.667
Cavity	0.333

P(Cavity Toothache = false)	
¬Cavity	0.941
Cavity	0.059

P(Toothache Cavity = true)	
¬Toothache	0.5
Toochache	0.5

P(Toothache Cavity = false)	
¬Toothache	0.889
Toochache	0.111

Normalization trick

 To get the whole conditional distribution p(X | Y = y) at once, select all entries in the joint distribution table matching Y = y and renormalize them to sum to one

Normalization trick

- To get the whole conditional distribution p(X | Y = y) at once, select all entries in the joint distribution table matching Y = y and renormalize them to sum to one
- Why does it work?

$$\frac{P(x,y)}{\sum_{x'} P(x',y)} = \frac{P(x,y)}{P(y)}$$
 by marginalization

Product rule

- Definition of conditional probability: $P(A \mid B) = \frac{P(A,B)}{P(B)}$
- Sometimes we have the conditional probability and want to obtain the joint:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

Product rule

- Definition of conditional probability: $P(A \mid B) = \frac{P(A,B)}{P(B)}$
- Sometimes we have the conditional probability and want to obtain the joint:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

The chain rule:

$$P(A_1,...,A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1,A_2)...P(A_n \mid A_1,...,A_{n-1})$$

$$= \prod_{i=1}^n P(A_i \mid A_1,...,A_{i-1})$$

The Birthday problem

- We have a set of *n* people. What is the probability that two of them share the same birthday?
- Easier to calculate the probability that n people do not share the same birthday

```
P(B_{1},...B_{n} \text{ distinct })
= P(B_{n} \text{ distinct from } B_{1},...B_{n-1} | B_{1},...B_{n-1} \text{ distinct })
P(B_{1},...B_{n-1} \text{ distinct })
= \prod_{i=1}^{n} P(B_{i} \text{ distinct from } B_{1},...B_{i-1} | B_{1},...B_{i-1} \text{ distinct })
```

The Birthday problem

$$P(B_1, \dots B_n \text{ distinct })$$

$$= \prod_{i=1}^{n} P(B_i \text{ distinct from } B_1, \dots B_{i-1} \mid B_1, \dots B_{i-1} \text{ distinct })$$

$$P(B_i \text{ distinct from } B_1, \dots, B_{i-1} | B_1, \dots, B_{i-1} \text{ distinct}) = \frac{365 - i + 1}{365}$$

$$P(B_1, ..., B_n \text{ distinct}) = \frac{365}{365} \times \frac{364}{365} \times ... \times \frac{365 - n + 1}{365}$$

$$P(B_1,...,B_n \text{ not distinct}) = 1 - \frac{365}{365} \times \frac{364}{365} \times ... \times \frac{365 - n + 1}{365}$$

The Birthday problem

• For 23 people, the probability of sharing a birthday is above 0.5!

http://en.wikipedia.org/wiki/Birthday problem

Outline

- Motivation: Why use probability?
 - Laziness, Ignorance, and Randomness
 - Rational Bettor Theorem
- Review of Key Concepts
 - Outcomes, Events, and Random Variables
 - Joint, Marginal, and Conditional
 - Independence and Conditional Independence

Independence

- Two events A and B are *independent* if and only if $p(A \land B) = p(A, B) = p(A) p(B)$
 - In other words, $p(A \mid B) = p(A)$ and $p(B \mid A) = p(B)$
 - This is an important simplifying assumption for modeling, e.g., *Toothache* and *Weather* can be assumed to be independent?
- Are two mutually exclusive events independent?
 - No, but for mutually exclusive events we have $p(A \lor B) = p(A) + p(B)$

Independence

- Two events A and B are *independent* if and only if $p(A \land B) = p(A) p(B)$
 - In other words, $p(A \mid B) = p(A)$ and $p(B \mid A) = p(B)$
 - This is an important simplifying assumption for modeling, e.g., Toothache and Weather can be assumed to be independent
- Conditional independence: A and B are conditionally independent given C iff

```
p(A \wedge B \mid C) = p(A \mid C) p(B \mid C)
```

• Equivalent:

$$p(A \mid B, C) = p(A \mid C)$$

• Equivalent:

$$p(B \mid A, C) = p(B \mid C)$$

Random Audience Participation Slide

- List some pairs of events that are independent
 - ... here is a pair of events
- List some pairs of events that are mutually exclusive
 - here is some different pair of events
- List some pairs of events that are conditionally independent given knowledge of some third event
 - ... whoa, now we need event triples. ...

Conditional independence: Example

- Toothache: boolean variable indicating whether the patient has a toothache
- Cavity: boolean variable indicating whether the patient has a cavity
- Catch: whether the dentist's probe catches in the cavity
- If the patient has a cavity, the probability that the probe catches in it doesn't depend on whether he/she has a toothache
 p(Catch | Toothache, Cavity) = p(Catch | Cavity)
- Therefore, *Catch* is conditionally independent of *Toothache* given *Cavity*
- Likewise, *Toothache* is conditionally independent of *Catch* given *Cavity* p(Toothache | Catch, Cavity) = p(Toothache | Cavity)
- Equivalent statement:
 p(Toothache, Catch | Cavity) = p(Toothache | Cavity) p(Catch | Cavity)

Conditional independence: Example

 How many numbers do we need to represent the joint probability table p(Toothache, Cavity, Catch)?

```
2^3 - 1 = 7 independent entries
```

• Write out the joint distribution using chain rule:

```
p(Toothache, Catch, Cavity)
= p(Cavity) p(Catch | Cavity) p(Toothache | Catch, Cavity)
= p(Cavity) p(Catch | Cavity) p(Toothache | Cavity)
```

How many numbers do we need to represent these distributions?

```
1 + 2 + 2 = 5 independent numbers
```

• In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in *n* to linear in *n*