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Probability: Review of main
concepts (Chapter 13)



Outline

* Motivation: Why use probability?
* Laziness, Ignorance, and Randomness
* Rational Bettor Theorem

* Review of Key Concepts
* Outcomes, Events
Random Variables; probability mass function (pmf)
Jointly random variables: Joint, Marginal, and Conditional pmf
Independent vs. Conditionally Independent events



Outline

* Motivation: Why use probability?
* Laziness, Ignorance, and Randomness



Motivation: Planning under uncertainty

* Recall: representation for planning

 States are specified as conjunctions of predicates
 Start state: At(P1, CMI) A Plane(P1) A Airport(CMI) A Airport(ORD)
* Goal state: At(P1, ORD)

* Actions are described in terms of preconditions and effects:
* Fly(p, source, dest)
* Precond: At(p, source) A Plane(p) A Airport(source) A Airport(dest)
» Effect: -At(p, source) A At(p, dest)



Motivation: Planning under uncertainty

* Let action A, = leave for airport t minutes before flight
*  Will A, succeed, i.e., get me to the airport in time for the flight?

* Problems:
» Partial observability (road state, other drivers' plans, etc.)
* Noisy sensors (traffic reports)
* Uncertainty in action outcomes (flat tire, etc.)
* Complexity of modeling and predicting traffic

* Hence a purely logical approach either
* Risks falsehood: “A,. will get me there on time,” or

* Leads to conclusions that are too weak for decision making:

A, will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact,
etc., etc.

A, 440 Will get me there on time but I'll have to stay overnight in the airport



Probability

Probabilistic assertions summarize effects of
* Laziness: reluctance to enumerate exceptions, qualifications, etc.
* Ignorance: lack of explicit theories, relevant facts, initial conditions, etc.
* Intrinsically random phenomena



When does it make sense to use probability?

* When should an outcome be considered to be random?
* ... List some examples or reasons....

* When should an outcome not_ be considered to be random?
* ... list some examples or reasons...



Outline

* Motivation: Why use probability?

e Rational Bettor Theorem



Making decisions under uncertainty

* Suppose the agent believes the following:
P(A,; gets me there on time) = 0.04
P(Ay, gets me there on time) = 0.70
P(A,,,gets me there on time) = 0.95
P(A 440 8ets me there on time) = 0.9999

* Which action should the agent choose?
* Depends on preferences for missing flight vs. time spent waiting
* Encapsulated by a utility function

* The agent should choose the action that maximizes the expected
utility:
P(A, succeeds) * U(A, succeeds) + P(A, fails) * U(A, fails)



Making decisions under uncertainty

* More generally: the expected utility of an action is defined as:

is used to represent and infer preferences

= probability theory + utility theory



Monty Hall problem

* You're a contestant on a game show. You see three closed doors,
and behind one of them is a prize. You choose one door, and the
host opens one of the other doors and reveals that there is no
prize behind it. Then he offers you a chance to switch to the
remaining door. Should you take it?
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http://en.wikipedia.org/wiki/Monty Hall problem




Monty Hall problem

» With probability 1/3, you picked the correct door, and with
probability 2/3, picked the wrong door. If you picked the correct door
and then you switch, you lose. If you picked the wrong door and then
you switch, you win the prize.

* Expected utility of switching:
EU(Switch) = (1/3) * 0 + (2/3) * Prize
* Expected utility of not switching:
EU(Not switch) = (1/3) * Prize + (2/3) * 0



Where do probabilities come from?

* Frequentism
* Probabilities are relative frequencies

* For example, if we toss a coin many times, P(heads) is the proportion of
the time the coin will come up heads

e But what if we’re dealing with events that only happen once?
* E.g., what is the probability that Team X will win the Superbowl this year?
» “Reference class” problem

* Subjectivism
* Probabilities are degrees of belief
* But then, how do we assign belief values to statements?
* What would constrain agents to hold consistent beliefs?



The Rational Bettor Theorem

* Why should a rational agent hold beliefs that are consistent with
axioms of probability?

* For example, P(A) + P(-A) =1

* If an agent has some degree of belief in proposition A,
he/she should be able to decide whether or not to accept
a bet for/against A (De Finetti, 1931):

* If the agent believes that P(A) = 0.4, should he/she agree to bet 54 that A
will occur against $6 that A will not occur?

* Theorem: An agent who holds beliefs inconsistent with axioms of
probability can be convinced to accept a combination of bets that
is guaranteed to lose them money



Are humans “rational bettors”?

* Humans are pretty good at estimating some probabilities, and pretty
bad at estimating others. What might cause humans to mis-estimate
the probability of an event?

* ... list some examples ...

* What are some of the ways in which a “rational bettor” might take
advantage of humans who mis-estimate probabilities?

e ... list some examples ...



Outline

* Review of Key Concepts
* Outcomes, Events, and Random Variables



Outcomes of an Experiment

The SET OF POSSIBLE OUTCOMES (a.k.a. the “sample space”) is a
listing of all of the things that might happen:

1. Mutually exclusive. It’s not possible that two different outcomes
might both happen.

2. Collectively exhaustive. Every outcome that could possibly happen
is one of the items in the list.

3. Finest grain. After the experiment occurs, somebody tells you the
outcome, and there is nothing else you need to know.

Example experiment: Alice, Bob, Carol and Duane run a 10km race to
decide who will buy pizza tonight.

Outcome = a listing of the exact finishing times of each participant.



Events

* Probabilistic statements are defined over events, or sets of
world states

= A="“tisraining”

= B = “The weather is either cloudy or snowy”

= C="“The sum of the two dice rolls is 11”

= D ="My car is going between 30 and 50 miles per hour”

An EVENT is a SET of OUTCOMES

= B ={outcomes : cloudy OR snowy }
= C={outcomes:dl+d2 =11}

Notation: p(A) or P(A) is the probability of the set of
world states (outcomes) in which proposition A holds



Kolmogorov's axioms of probability

* For any propositions (events) A, B
= 0<P(A)<1
= P(True) =1 and P(False) =0
= P(A v B)=P(A) + P(B)— P(A A B)

— Subtraction accounts for double-counting

* Based on these axioms, what is P(-A)?

* These axioms are sufficient to completely specify probability theory for discrete
random variables
* For continuous variables, need density functions



Outcomes = Atomic events

* OUTCOME or ATOMIC EVENT: is a complete specification of the state of the
world, or a complete assignment of domain values to all random variables

* Atomic events are mutually exclusive and exhaustive

* E.g., if the world consists of only two Boolean variables Cavity and Toothache,

then there are four outcomes:

-~Cavity A -Toothache
-~Cavity A Toothache
Cavity A ~Toothache
Cavity A Toothache



Random variables

* We describe the (uncertain) state of the world using random
variables
= Denoted by capital letters
* R:Isitraining?
 W: What’s the weather?
* D: What is the outcome of rolling two dice?
* S: What is the speed of my car (in MPH)?

 Just like variables in CSPs, random variables take on values in a

domain
= Domain values must be mutually exclusive and exhaustive
* Rin {True, False}
* W in {Sunny, Cloudy, Rainy, Snow}
 Din{(1,1), (1,2), ... (6,6)}
* Sin [0, 200]



Random variables

* Arandom variable can be viewed as a function that maps from
outcomes to real numbers (or integers, or strings)

* For example: the event “Speed=45mph” is the set of all
outcomes for which the speed of my car is 45mph



Probability Mass Function (pmf)

* We use a capital letter for a random variables (RV=the
function that maps from outcomes to values), and a small
letters for the actual value that it takes after any particular
experiment.

* X, = x, is the event “random variable X, takes the value x,”

* p(X,=x,) is a number: the probability that this event occurs.
* We call this number the “probability mass” of the event X, = x,
* The function is called the “probability mass function” or pmf
* Shorthand: p(x,) using a small letter x,
* Subscript notation, which we won’t use in this class: px, (x1)

* p(X,) using a capital letter X, is a function: the entire table of
the probabilities X, = x, for every possible x,




Events and Qutcomes

* An OUTCOME (ATOMIC EVENT) is a particular setting of all of

the random variables
= Qutcome = ( die 1 shows 5 dots, die 2 shows 6 dots )

 An EVENT is a SET of OUTCOMES
= “The sum of the two dice rolls is 11” = { set of all outcomes such that
D1+D2 =11}
= “D1=5" = {set of all outcomes such that D1=5, regardless of what D2 is }

= P(EVENT) = Zoutcomes e event P (outcome)



Functions of Random Variables

* Suppose we are not really interested in any given random

variable, instead we’re only interested in a function of the
random variables

* Example: the game of craps. We’re only interested in the sum

of the two dice, e.g., what is the probability that the sum of
the two dice is greater than 10.

e Define S=D1+D2. How can we calculate the pmf for S?



Outline

* Review of Key Concepts

* Joint, Marginal, and Conditional



Joint probability distributions

* A joint distribution is an assignment of probabilities to every possible
atomic event

Atomic event P
-~Cavity A ~Toothache 0.8
-~Cavity A Toothache 0.1
Cavity A ~Toothache 0.05
Cavity A Toothache 0.05

* Why does it follow from the axioms of probability that the probabilities of all
possible atomic events must sumto 1?



Joint probability distributions

* A joint distribution is an assignment of probabilities to every possible
atomic event

e Suppose we have a joint distribution of N random variables, each of
which takes values from a domain of size D

* What is the size of the probability table?
* Impossible to write out completely for all but the smallest distributions



Notation

* p(X; =Xy, X5 =X, ..., Xy = X) refers to a single entry
(atomic event) in the joint probability distribution table
* Shorthand: p(xy, X, ..., Xy)
e Subscript notation, which we won’t use in this class:
Px.Xx,,..XyN (X1, X200 XN)
* p(Xy, X, ..., X) refers to the entire joint probability
distribution table

* P(A) can also refer to the probability of an event
* E.g., X, =X, Is an event



Marginal probability distributions

* From the joint distribution p(X,Y) we can find the
marginal distributions p(X) and p(Y)

-Cavity A =Toothache 0.8
-Cavity A Toothache 0.1
Cavity A =Toothache 0.05
Cavity A Toothache 0.05

-Cavity ? -~Toothache ?

Cavity ? Toochache ?




Marginal probability distributions

* From the joint distribution p(X,Y) we can find the
marginal distributions p(X) and p(Y)

* To find p(X = x), sum the probabilities of all atomic
events where X = x:

P(X =X)=P((X =XAY =y,)v..v(X =XAY =Y.))

=P((X,y)V...v(X,Y,))= Zn:P(X» yi)

* This is called marginalization (we are marginalizing
out all the variables except X)



Conditional probability

* Probability of cavity given toothache:
P(Cavity = true | Toothache = true)

* For any two events A and B, P(A| B) _ P(A/\ B) _ P(Aa B)

P(B) P(B)

P(A A B)

P(B)




Conditional probability
PlCavity, Toothache) | |

-~Cavity A -Toothache 0.8
-~Cavity A Toothache 0.1
Cavity A —~Toothache 0.05
Cavity A Toothache 0.05

-Cavity 0.9 -~Toothache 0.85
Cavity ‘ 0.1 Toochache ‘ 0.15

* What is p(Cavity = true | Toothache = false)?
p(Cavity|-Toothache) = ?

* What is p(Cavity = false | Toothache = true)?
p(-Cavity| Toothache) = ?



Conditional distributions

e A conditional distribution is a distribution over the values of
one variable given fixed values of other variables

-Cavity A -Toothache 0.8
-Cavity A Toothache 0.1
Cavity A —-Toothache 0.05
Cavity A Toothache 0.05

_Cavity 0.667 | |-Cavity 0.941
Cavity [0.333 | | cavity | 0.059

-Toothache 0.5 -Toothache 0.889

Toochache ‘ 0.5 Toochache ‘ 0.111




Normalization trick

* To get the whole conditional distribution p(X | Y =) at
once, select all entries in the joint distribution table
matching Y = y and renormalize them to sum to one

P(Cavity, Toothache)

-Cavity A =Toothache 0.8
-Cavity A Toothache 0.1
Cavity A ~Toothache 0.05
Cavity A Toothache B select 0.05

Toothache, Cavity = false

~Toothache 0.8

Toochache 0.1
{} Renormalize

P(Toothache | Cavity = false)
-~Toothache 0.889

Toochache 0.111




Normalization trick

* To get the whole conditional distribution p(X | Y =) at
once, select all entries in the joint distribution table
matching Y = y and renormalize them to sum to one

* Why does it work?

P(x,y) _ P(X.Y)
ZP(X’,y) P(y)

by marginalization



Product rule
P(A,B)

* Definition of conditional probability: P(A|B)=
P(B)

* Sometimes we have the conditional probability and want to
obtain the joint:

P(A,B)=P(A|B)P(B)=P(B| A)P(A)




Product rule
P(A,B)

* Definition of conditional probability: P(A|B)=
P(B)

* Sometimes we have the conditional probability and want to
obtain the joint:

P(A,B)=P(A|B)P(B)=P(B| A)P(A)

 The chain rule:

P(Au. A) = P(AP(A | AIP(A | ALA)...P(A | A AL
“TTPA A A



The Birthday problem

* We have a set of n people. What is the probability that two of
them share the same birthday?

 Easier to calculate the probability that n people do not share
the same birthday

P(B,,... B, distinct )
= P (B, distinct from B,,... B _, | B,,... B,_, distinct )
P(B,,...B,_, distinct )

= H P(B, distinct from B,,...B._, | B,,... B,_, distinct )
i=1



The Birthday problem

P(B,,... B, distinct )
= H P (B, distinct from B,,... B, | B,,... B,_, distinct )

365 —1+1

P(B; distinct from B,,...,B; | |B,,..., B, distinct) = 365

365 364 ><365—n+1

P(B,,..., B, distinct) =
365 365 365

365 364 365 -n+1
X ... X

P(B,,..., B, not distinct) =1- X
365 365 365



The Birthday problem

* For 23 people, the probability of sharing a birthday is
above 0.5!
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http://en.wikipedia.org/wiki/Birthday problem




Outline

* Review of Key Concepts

* Independence and Conditional Independence



Independence

* Two events A and B are independent if and only if
P(AAB)=p(A, B)=p(A) p(B)
* In other words, p(A | B) = p(A) and p(B | A) = p(B)
* This is an important simplifying assumption for modeling,

e.g., Toothache and Weather can be assumed to be
independent?

* Are two mutually exclusive events independent?

* No, but for mutually exclusive events we have
p(A v B) =p(A) + p(B)



Independence

* Two events A and B are independent if and only if
P(A A B) = p(A) p(B)
* In other words, p(A | B) = p(A) and p(B | A) = p(B)
* This is an important simplifying assumption for modeling, e.g.,
Toothache and Weather can be assumed to be independent

* Conditional independence: A and B are conditionally independent

given C iff
P(AAB | C)=p(A|C)p(B|C)
* Equivalent:
p(A | B,C)=p(A|C)
* Equivalent:

p(B | A, C)=p(B|C)



Random Audience Participation Slide

* List some pairs of events that are independent
* ... here is a pair of events ....

* List some pairs of events that are mutually exclusive
* .... here is some different pair of events ....

* List some pairs of events that are conditionally independent given
knowledge of some third event
* ... whoa, now we need event triples. ...



Conditional independence: Example

* Toothache: boolean variable indicating whether the patient has a toothache
* Cavity: boolean variable indicating whether the patient has a cavity
* Catch: whether the dentist’s probe catches in the cavity

 If the patient has a cavity, the probability that the probe catches in it doesn't
depend on whether he/she has a toothache

p(Catch | Toothache, Cavity) = p(Catch | Cavity)
* Therefore, Catch is conditionally independent of Toothache given Cavity
» Likewise, Toothache is conditionally independent of Catch given Cavity
p(Toothache|Catch, Cavity) = p(Toothache | Cavity)

* Equivalent statement:
p(Toothache, Catch|Cavity) = p(Toothache | Cavity) p(Catch| Cavity)



Conditional independence: Example

How many numbers do we need to represent the joint probability table
p(Toothache, Cavity, Catch)?

23 -1 =7 independent entries

Write out the joint distribution using chain rule:

p(Toothache, Catch, Cavity)
= p(Cavity) p(Catch | Cavity) p(Toothache | Catch, Cavity)
= p(Cavity) p(Catch | Cavity) p(Toothache| Cavity)

How many numbers do we need to represent these distributions?
1+ 2+ 2=>5independent numbers

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linearin n



