ECE Reflections | Projections

DATA/AI

N

e
Fnd‘h 0/29 Saturday 9/30
CWunlter deu‘:m e ég owdh?nniv

Siebel 2405 Sielpel 2405
5- p_rﬁ 2-3

The Reflections| Projections conference is bringing a host of distinguished speakers in the Al/ML field to UIUC
this weekend. The list Includes Christine Hung: Head of Spotify Data Science, Amar Das: Director of

Healthcare Research at IBM Watson, and Travis Oliphant: creator of NumPy. More information and
registration can be found at acmrp.org.

Announcements

* MP1 is due Monday at 23:59:59

* If you think you need an extension (e.g., because you have an exam or
MP due in another class on Monday), you need to send me e-mail by
tonight (9/28/2017 23:59:59).

CS440/ECE448 Lecture 10:
Stochastic Games, Stochastic
Search, and Learned Evaluation
Functions

Slides by Svetlana Lazebnik, 9/2016
Modified by Mark Hasegawa-Johnson, 9/2017

Types of gdame environments

Perfect

information Chess, checkers, Backgammon,
monopol

(fully observable) &° poly

Imperfect Battleship Scrabble,

information poker,

(partially bridge

observable)

Content of today’s lecture

 Stochastic games: the Expectiminimax algorithm

* Imperfect information
* Minimax formulation
e Expectiminimax formulation

 Stochastic search, even for deterministic games
* Learned evaluation functions
e Case study: Alpha-Go

Stochastic games

How can we incorporate dice throwing into the game
tree?

Stochastic games

MAX /\
CHANCE . .
1/36 1/18
1 1,
MIN \/ \/
CHANCE 0

TERMINAL 2 -1

1/36
6

Minimax vs. Expectiminimax

* Minimax:
* Maximize (over all possible moves | can make) the
* Minimum (over all possible moves Min can make) of the
* Reward

Value(node) = max min (Reward))
my moves \Min's moves

* Expectiminimax:
* Maximize (over all possible moves | can make) the
e Minimum (over all possible moves Min can make) of the
* Expected reward

Value(node) = max min (IE[Reward]))

my moves\Min's moves

E[Reward] = z Probability(outcome) X Reward(outcome)

outcomes

Stochastic games

* Expectiminimax: for chance nodes, sum values of
successor states weighted by the probability of each
successor

e Value(node) =
= Utility(node) if node is terminal

" max,..,, Value(Succ(node, action)) if type = MAX
" min,.,,, Value(Succ(node, action)) if type = MIN
" sum,.,, P(Succ(node, action)) * Value(Succ(node, action)) if type

= CHANCE

Expectiminimax example

« RANDOM: Max flips a coin. It's heads or tails.

* MAX: Max either stops, or continues.
 Stop on heads: Game ends, Max wins (value = S2).
* Stop on tails: Game ends, Max loses (value = -52).
* Continue: Game continues.

e RANDOM: Min flips a coin.
e HH: value = S2
e TT: value = -S2
* HT or TH: value =0
* MIN: Min decides whether to keep the current

outcome (value as above), or pay a penalty
(value=S1).

Expectiminimax summary

* All of the same methods are useful:
* Alpha-Beta pruning
 Evaluation function
* Quiescence search, Singular move

* Computational complexity is pretty bad
* Branching factor of the random choice can be high
* Twice as many “levels” in the tree

Games of Imperfect Information

Stochastic games of imperfect information

Fig. 1. Portion of the
extensive-form game
representation of three-
card Kuhn poker (16).
Player 1 is dealt a queen
(Q), and the opponent is
given either the jack (J) or
king (K). Game states are
circles labeled by the
player acting at each state
(“c" refers to chance,
which randomly chooses
the initial deal). The 3
arrows show the events
the acting player can

choose from, labeled with H n n
their in-game meaning.
The leaves are square
vertices labeled with the

associated utility for

player 1 (player 2's utility H n E n

is the negation of player

1's). The states connected by thick gray lines are part of the same information set; that is, player 1 cannot
distinguish between the states in each pair because they each represent a different unobserved card
being dealt to the opponent. Player 2's states are also in information sets, containing other states not

pictured in this diagram.

States are grouped into
T information sets for
each player

Source

Miniminimax with imperfect information

* Minimax:
e Maximize (over all possible moves | can make) the
* Minimum
* (over all possible states of the information | don’t know,
e ... over all possible moves Min can make) the
* Reward.

my moves | missing info,
Min's moves

Value(node) = max (min (Reward))

Imperfect information example

* Min chooses a coin.

* | say the name of a U.S. President.
* If | guessed right, she gives me the coin.

 If | guessed wrong, | have to give her a
coin to match the one she has.

Method #1: Treat “unknown” as “unknown”

* The problem: | don’t know which
state I'm in. | only know it’s one of
these two.

* The solution: choose the policy
that maximizes my minimum
reward.

e “Lincoln”: minimum reward is -5.
e “Jefferson”: minimum reward is -1.

* Miniminimax policy: say
“Jefferson”.

Method #2: Treat “unknown” as “random”

* Expectiminimax: treat the unknown
information as random.

* Choose the policy that maximizes
my expected reward.

* “Lincoln”: %x 1+ % X (=5) = -2
* “Jefferson”: % X (—1) + % X5=2
* Expectiminimax policy: say
“Jefferson”,

« BUT WHAT IF: (1)
equally likely? =~

&9 are not

How to deal with imperfect information

* If you think you know the probabilities of different settings, and if you
want to maximize your average winnings (for example, you can afford
to play the game many times): expectiminimax

* If you have no idea of the probabilities of different settings; or, if you
can only afford to play once, and you can’t afford to lose:
miniminimax

* If the unknown information has been selected intentionally by your
opponent: use game theory

Stochastic search

Temperature: 25.0

Stochastic search for stochastic games

* The problem with expectiminimax: huge branching factor (many possible outcomes)

E[Reward] = 2 Probability(outcome) X Reward(outcome)

outcomes

* An approximate solution: Monte Carlo search

E[Reward] = 2 Reward(i'th random game)

» Asymptotically optimal: as n — oo, the approximation gets better.

* Controlled computational complexity: choose n to match the amount of
computation you can afford.

Monte Carlo Tree Search

* What about deterministic games with deep trees, large branching factor,
and no good heuristics — like Go?

* Instead of depth-limited search with an evaluation function,
use randomized simulations

 Starting at the current state (root of search tree), iterate:

* Select a leaf node for expansion
using a tree policy (trading off
exploration and exploitation)

* Run a simulation using
a default po[lcy (e.g:' random ~— Selection —— Expansion —— Simulation —» Backpropagation ~
moves) until a terminal state
is reached

* Back-propagate the outcome
to update the value estimates

of internal tree nodes Tree Defixu!r
Policy Po{icy
v
_ A J

C. Browne et al., A survey of Monte Carlo Tree Search Methods, 2012

Learned evaluation functions

Stochastic search off-line

Training phase:

* Spend a few weeks allowing your computer to play billions of random
games from every possible starting state

* Value of the starting state = average value of the ending states
achieved during those billion random games

Testing phase:

* During the alpha-beta search, search until you reach a state whose
value you have stored in your value lookup table

* Oops.... Why doesn’t this work?

Evaluation as a pattern recognition problem

Training phase:

* Spend a few weeks allowing your computer to play billions of random games from
billions of possible starting states.

* Value of the starting state = average value of the ending states achleved during those
billion random games

Generalization: b— N

* Featurize (e.g., x1=number of_i_ patterns, x2 = number of . | patterns, etc.)
* Linear regression: find al, a2, etc. so that Value(state) = al*x1+x2*x2+...

Testing phase:

* During the alpha-beta search, search as deep as you can, then estimate the value of each
state at your horizon using VaIue(state) al*x1+x2*x2+...

Pros and Cons

* Learned evaluation function

* Pro: off-line search permits lots of compute time, therefore lots of training
data

e Con: there’s no way you can evaluate every starting state that might be
achieved during actual game play. Some starting states will be missed, so
generalized evaluation function is necessary

 On-line stochastic search

e Con: limited compute time

* Pro: it’s possible to estimate the value of the state you’ve reached during
actual game play

Case study: AlphaGo

» “Gentlemen
should not
waste their time
on trivial games
-- they should
play go.”

e -- Confucius,

* The Analects

* ca.5008B. C. E.

Anton Ninno Roy Laird, Ph.D.
antonninno@yahoo.com
roylaird@gmail.com

special thanks to Kiseido Publications

Game Al: State of the art

* Computers are better than humans:
* Checkers: solved in 2007

* Chess:
» State-of-the-art search-based systems now better than humans

* Deep learning machine teaches itself chess in 72 hours, plays at
International Master Level (arXiv, September 2015)

e Computers are competitive with top human players:

* Backgammon: TD-Gammon system (1992) used reinforcement
learning to learn a good evaluation function

* Bridge: top systems use Monte Carlo simulation and alpha-
beta search

Game Al: State of the art

* Computers are not competitive with top human players:

* Poker

e Heads-up limit hold’em poker has been solved (Science, Jan. 2015)
* Simplest variant played competitively by humans
* Smaller number of states than checkers, but partial observability makes it difficult
* Essentially weakly solved = cannot be beaten with statistical significance
in a lifetime of playing
* Huge increase in difficulty from limit to no-limit poker, but Al has made
progress

* Go
* Branching factor 361, no good evaluation
functions have been found

* Best existing systems use Monte Carlo
Tree Search and pattern databases

* New approaches: deep learning
(44% accuracy for move prediction
can win against other strong Go Alf

Alpha-Go Innovations

e Learned policy function
* From training data, learn a 361-dimensional regression[m, ..., 341 |=function(features).

* During each round of game play: compute features from the current board position, then
plug them into the function to compute [my, ..., 351]. If T; > 0, then search the it"* move.
If 7; < 0, then don’t search it.

* Branching factor = # positive elements in [, ..., T341], Which is much less than 361.

* Learned value function
* From training data, learn a real-valued Value=function(features).
» Search down to a pre-determined search depth, then estimate the value of the horizon
state using your value function.
* On-line stochastic search
» Search to a small depth using exhaustive search, as described above
* ... then search much deeper, using stochastic search.
* Value(node) = average(evaluation function, stochastic search result)

Alpha-Go video

B -—3| (& WiFi | Panera Bread [di) The computerthat x4+ = o *

&« = O m B bing.com] " 4 e <= 7. &

¥ toolsbeckmanilin Y7 Skyward & Summary of Lorelei A JASA editor Ff LoReHLT Evaluations ¥y Informatics PhD | ¥y UNCorpus ¥r Kaldi Kaldi ¥r kyoudsimae ¢ University of lllingis:

Alphago Transparent Ba...

Alp Master

The computer that mastered Go
* YouTube < + VigWs ! 1

Related videos W Feedback

DIFFICULTY oF
VARIOUS GAMES
crey FOR COMPUTERS
TIC-TAC-TOE
G
SOLVED FoR
T
SOVED 9
PLAY PERFECTLY
s | (Goro)
POSTIONS | (CHECKERS) (2007)
RO s
COMPUTERS CAM F‘E‘BR:;HRV 10, 1996:
BEF“- TOP HUMHNS Wﬁ;‘:

T
SETO MANS
(Bu FocwseD RRD @}
(OULD (HANGE THIS)
SNAKES A0 LADDERS
COMPUIERS =
VY NEVER
OUTALAY HUMANS
|
HARD
http://xkcd.com/1002/

See also: http://xkcd.com/1263/

THE oY T THE SKORE 1S
PERMANENT | STILL @ To 12
RULE ™ -

CANMEBEALL 15
THAT 00 CAMT
P 1T THE
SEMME MAY A

Calvinball:
e Play it online

 Watch an instructional video

