Order a Pcb

The following page does not apply to ZJUI. This will be updated in the coming weeks.

Custom Printed Circuit Boards (PCBs)

The primary method for making PCBs is to order them through PCBway. With the help of your TA, you can order a simple PCB (2 layers) through PCBway at no cost to you. Alternatively, you can order a PCB from any outside vendor (including PCBway) and pay for the cost of the board out of pocket. By paying for a PCB yourself, you are not required to meet the deadlines imposed by the course and often will get your board more quickly.

In rare cases, some teams will be allowed to order PCBs through the Electronic Services Shop in ECEB. If you have need of special board layouts or require a PCB very early in the semester, please discuss this option with your TA.

3D Scanner

Peiyuan Liu, Jiayi Luo, Yifei Song, Chenchen Yu

Featured Project

# Team Members

Yifei Song (yifeis7)

Peiyuan Liu (peiyuan6)

Jiayi Luo (jiayi13)

Chenchen Yu (cy32)

# 3D Scanner

# Problem

Our problem is how to design an algorithm that uses a mobile phone to take multiple angle photos and generate 3D models from multiple 2D images taken at various positions. At the same time, we will design a mechanical rotating device that allows the mobile phone to rotate 360 degrees and move up and down on the bracket.

# Solution Overview

Our solution for reconstructing a 3D topology of an object is to build a mechanical rotating device and develop an image processing algorithm. The mechanical rotating device contains a reliable holder that can steadily hold a phone of a regular size, and an electrical motor, which is fixed in the center of the whole system and can rotate the holder 360 degrees at a constant angular velocity.

# Solution Components

## Image processing algorithms

- This algorithm should be capable of performing feature detection which is essential for image processing. It should be able to accurately identify and extract relevant features of an object from multiple 2D images, including edges, corners, and key points.

- This algorithm should be designed to minimize the memory requirement and energy consumption, because mobile phones have limited memory and battery.

## Mechanical rotating system

Phone holder that can adjust its size and orientation to hold a phone steadily

Base of the holder with wheels that allows the holder to move smoothly on a surface

Electrical motor for rotating the holder at a constant angular velocity

Central platform to place the object

The remote-control device can be used to control the position of the central platform. Different types of motors and mechanisms can be used for up and down, such as the stepper motors, servo motors, DC motors, and AC motors.

# Criterion for Success

- Accuracy: The app should be able to produce a 3D model that is as accurate as possible to the real object, with minimal distortion, errors or noise.

- Speed: The app should be able to capture and process the 3D data quickly, without requiring too much time or processing power from the user's device.

- Output quality: The app should be able to produce high-quality 3D models that can be easily exported and used in other software applications or workflows.

- Compatibility: Any regular phone can be placed and fixed on the phone holder with a certain angle and does not come loose

- Flexibility: The holder with a phone must be able to rotate 360 degrees smoothly without violent tremble at a constant angular velocity

# Distribution of Work

Yifei Song

Design a mobile app and deploy a modeling algorithm to it that enables image acquisition and 3D modeling output on mobile devices.

Peiyuan Liu:

Design an algorithm for modeling 3D models from multiple view 2D images.

Jiayi Luo:

Design the remote-control device. Using the electrical motors to control the central platform of the mechanical rotating system.

Chenchen Yu:

Design the mechanical part. Build, test and improve the mechanical rotating system to make sure the whole device works together.