
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Visual Chatting and Real-Time Acting
Robot

Team #37

HAOZHE CHI

(haozhe4@illinois.edu)
MINGHUA YANG

(minghua3@illinois.edu)
JIATONG LI

(jl180@illinois.edu)
ZONGHAI JING

(zonghai2@illinois.edu)

TA: Enxin Song

May 31, 2024



Abstract

This project focuses on the development and implementation of an AI-enhanced robotic
service system designed to assist blind individuals in navigating large public spaces
and safely interacting with water dispensers. The system comprises three main com-
ponents: the navigation system, the Raspberry Pi auxiliary system, and the PCB wa-
ter dispenser system. The navigation system utilizes advanced large language mod-
els (LLMs) and large visual language models (LVLMs) to process visual inputs from a
head-mounted camera and verbal commands from the microphone, providing real-time
guidance and safety instructions. The Raspberry Pi auxiliary system integrates object de-
tection, hardware control, and automation, leveraging a fine-tuned SSD-MobileNet-V2
model in TFLite format to achieve high accuracy in detecting and handling water bottles
and cups. This system is connected with a UR3e robot arm, MegaPi controller, and vari-
ous sensors to enable seamless automated operations. The PCB water dispenser system
coordinates with the robot arm to ensure precise and safe water bottle refilling. Exten-
sive testing confirms the system’s reliability, efficiency, and effectiveness in real-world
scenarios, demonstrating the feasibility of deploying complex AI models and robotics for
practical applications in assistive technology.

Keywords: AI-Enhanced Robotics, LLM, LVLM, Raspberry Pi, Object Detection, SSD-
MobileNet-V2, TFLite, UR3e Robot Arm, MegaPi, PCB, Real-Time Automation

ii



Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Solution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Visual Aid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Design 3
2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Subsystems Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Camera Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Image Encoder Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Q-Former Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.4 Large Language Model Subsystem . . . . . . . . . . . . . . . . . . . . 4
2.2.5 Text Tokenizer Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.6 Speech-to-Text Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.7 Microphone Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.8 ROS Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.9 Text-to-Speech Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.10 Voice Player Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.11 Universal Robot UR3e Robot Arm Subsystem . . . . . . . . . . . . . 6
2.2.12 Raspberry Pi Auxiliary Subsystem . . . . . . . . . . . . . . . . . . . . 7
2.2.13 PCB Water Dispenser Subsystem . . . . . . . . . . . . . . . . . . . . . 7

3 Design Details 8
3.1 Navigation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Speech-to-Text and Text-to-Speech Modules . . . . . . . . . . . . . . 8
3.1.2 Navigation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 BLIP-2-Based Visual Language Model Deployment . . . . . . . . . . 9
3.1.4 Apply Acceleration Module . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.5 Design of Real-Time Screenshot Program . . . . . . . . . . . . . . . . 11

3.2 Raspberry Pi Auxiliary System . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 System Architecture Overview . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Block Diagram of Overall Work Flow . . . . . . . . . . . . . . . . . . 14
3.2.3 Water Bottle Object Detection Task . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Robot Gripper Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.5 Communication Setup with ROS System . . . . . . . . . . . . . . . . 19
3.2.6 Model Selection for Text-to-Speech . . . . . . . . . . . . . . . . . . . . 21
3.2.7 Communication Setup with PCB Water Dispenser System . . . . . . 21
3.2.8 Shell Script for the Whole Raspberry Pi Auxiliary System . . . . . . . 23

3.3 PCB Water Dispenser System . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Verification 26
4.1 Performance of the LVLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Performance of the SSD-MobileNet-V2 model . . . . . . . . . . . . . . . . . . 27

iii



4.2.1 Loss Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Learning Rate Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Training Process Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 Test Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Performance of the PCB Board . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1 Attempts to Improve Brightness . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Possible Causes and Future Steps . . . . . . . . . . . . . . . . . . . . . 32

5 Tolerance Analysis 33

6 Cost Analysis 34

7 Conclusion 35
7.1 Ethics and Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.1.1 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

References 38

Appendix A Team Photo and Introductions 40

Appendix B Code and Algorithm 41
B.1 Code for Taking Screenshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.2 Main ROS Code to Control the Robot Arm . . . . . . . . . . . . . . . . . . . 41
B.3 Inference Script for TFLite Model . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.4 Bottle Position Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . 43
B.5 Code for Robot Gripper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.6 Raspberry Pi GPIO Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.7 Shell Script Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



1 Introduction

1.1 Problem Statement

Blind individuals often face significant difficulties when navigating unfamiliar environ-
ments, such as finding water dispensers in large public spaces. Additionally, there is a risk
of injury from interacting with devices that dispense hot water. The emergence of large
language models (LLMs) and large visual language models (LVLMs) offers a promising
avenue for developing innovative solutions to these challenges.

1.2 Solution Overview

Our team develop an AI-enhanced robotic service system aimed at assisting blind indi-
viduals in navigating large public spaces to safely access and interact with water dis-
pensers. This initiative addresses the significant challenges that visually impaired people
face, such as the risk of injury from devices dispensing hot water and difficulty in locating
such amenities.

The proposed system combines advanced technological components including large lan-
guage models (LLMs) and large visual language models (LVLMs). These models process
both visual inputs from a camera mounted on the user’s head and verbal commands
via speech-to-text AI technology. It provides real-time, actionable guidance and safety
instructions. To enhance interaction experience between users and the automated bot-
tle refilling facilities, we also develop a Raspberry Pi Auxiliary system that can provide
auditory guidance through visual monitoring. Our system comprises the following key
components:

• Real-Time Visual and Verbal Input Processing: A combination of a head-mounted
camera and speech-to-text AI captures and analyzes the user’s surroundings and
voice commands.

• Dynamic Guidance and Interaction: The BLIP-2 model will provide navigation
assistance, warn of potential dangers, and instruct on interacting with a water dis-
penser.

• Autonomous Assistance: A Universal Robot Arm UR3e, controlled by the Robot
Operating System and instructed by the Raspberry Pi Auxiliary System, will au-
tonomously refill the user’s water bottle.

• User Communication: Audio feedback and instructions will be delivered through
a Bluetooth headset, ensuring clear and effective communication.

Operational Process When a blind individual approaches a water dispenser, the system
triggers a specific sequence of actions:

1. The Vision Language AI model guides the user to the water dispenser.

1



2. The Raspberry Pi Auxiliary System will then provide audio instructions to help user
place their bottle in a designated location.

3. Subsequently, a robot arm, following instructions from the Raspberry Pi system,
securely grasps the bottle, fills it with water from the dispenser, and then returns
the filled bottle to the user.

1.3 Visual Aid

The visual illustration of our AI-enhanced robotic service system is shown in Figure 1.

Figure 1: Visual Illustration of the AI-enhanced Robotic Service System

2



2 Design

2.1 Block Diagram

The general block diagram of our AI-enhanced robotic service system is shown in Figure
2. Our whole project can be mainly divided into two components, the navigation com-
ponent and the automated bottle filling component. In the Navigation component, the
LVLM takes the input from the head-mounted camera and the audio input from micro-
phone, and then output corresponding answers to the voice player. In the automated
bottle filling component, the Raspberry Pi acts as the central control core of this whole
component, accepts visual input from cameras and output audio feedback to users as
well as sending instructions to each hardware like robot arm, robot gripper and PCB wa-
ter dispenser board to make them work together as expected.

Figure 2: Block diagram of the AI-enhanced robotic service system (Green arrow: visual
flow; Yellow arrow: text flow; Blue arrow: instruction flow).

2.2 Subsystems Overview

2.2.1 Camera Subsystem

The Camera Subsystem is a pivotal element in our robotic framework, acting as the pri-
mary data collection point. Utilizing an iPhone camera mounted on the user’s head, this
subsystem captures the user’s environment and streams video in real-time to a connected
Mac. This setup ensures a continuous flow of high-resolution visual data to the Image
Encoder Subsystem. The system’s contribution is quantified by its ability to deliver high-
resolution video under varying lighting conditions and maintain a seamless frame rate

3



essential for subsequent processing stages. The interface with the Image Encoder Sub-
system is defined by the video resolution, frame rate, and the real-time data transfer rate
necessary for effective processing.

2.2.2 Image Encoder Subsystem

The Image Encoder Subsystem is an integral part of the robotics framework, responsi-
ble for converting visual input into a format suitable for advanced analysis. Leveraging
the Vision Transformer (ViT) structure, specifically a ViT-L/14 model, this subsystem pro-
vides a streamlined and feature-enriched representation of images captured by the Cam-
era subsystem. It processes images through 32 queries of 768 dimensions each, aligning
with the Q-Former’s specifications for efficient interfacing. The subsystem’s output, a
compressed 32 × 768 matrix denoted as Z, presents a more efficient alternative to the ini-
tial 257 × 1024 ViT-L/14 image features. By reducing data dimensionality, it plays a crucial
role in optimizing the computational workflow and facilitating swift data exchange with
the Q-Former subsystem.

2.2.3 Q-Former Subsystem

The Q-Former Subsystem serves as a crucial component in the processing pipeline of our
design, utilizing transformer architecture to elevate visual data into abstract representa-
tions. This subsystem ingeniously employs attention mechanisms to enhance the visual
features received from the Image Encoder subsystem before passing them on to the Large
Language Model (LLM) subsystem. Quantitatively, it boasts two transformer submod-
ules that share self-attention layers to refine features from varying image resolutions. The
image transformer submodule is tasked with the visual aspect, and the text transformer
handles the encoding and decoding of textual information. Through this setup, the Q-
Former ensures that the interaction between visual and textual data is not only seamless
but also optimized for the highest efficiency in real-time processing.

2.2.4 Large Language Model Subsystem

The Large Language Model (LLM) Subsystem is a sophisticated computational unit within
our robotics architecture, integral for synthesizing both visual and textual data into ac-
tionable text outputs. It processes embeddings from the Image Encoder and Text Tok-
enizer Subsystems using an advanced Llama model, a choice inspired by the BLIP-2 [1]
architecture which ensures comprehensive and nuanced text generation. This subsys-
tem’s outputs are specifically formatted to instruct the Robot Operating System (ROS)
for executing tasks or providing responses. The quantitative measure of this subsystem’s
performance is assessed by the quality and relevance of text outputs generated, as well as
the speed and accuracy with which it processes input embeddings into these outputs. The
interface with the Image Encoder and Text Tokenizer is marked by the standardized em-
bedding vectors received, while its output interface with the ROS subsystem is quantified
by the command strings dispatched for robotic control.

4



2.2.5 Text Tokenizer Subsystem

The Text Tokenizer Subsystem is a pivotal component tasked with converting raw tex-
tual inputs into structured embeddings. It serves as an intermediary, translating spoken
language captured by the Speech-to-Text subsystem into a format amenable to computa-
tional analysis. Utilizing a BERT model tokenizer ensures compatibility with advanced
Large Language Models like Llama, enabling robust text interpretation. This subsystem
significantly contributes to the overall design by ensuring that linguistic information is ac-
curately represented and processed, facilitating the system’s ability to comprehend and
act upon user commands. The interface with the Speech-to-Text subsystem is defined by
the text input stream, while the output interface with the Large Language Model consists
of tokenized text embeddings.

2.2.6 Speech-to-Text Subsystem

The Speech-to-Text Subsystem is a key interface that translates auditory information into
a digital text format, bridging human interaction and machine processing. Using an ad-
vanced open-source model, this subsystem decodes spoken language with high accuracy
and low latency, making it an essential component for real-time applications. It quanti-
tatively contributes to the overall design by providing accurate text conversion, serving
as the initial processing step for voice commands. The efficacy of this subsystem is mea-
sured by its transcription accuracy and speed, which directly impacts the performance of
the downstream Text Tokenizer subsystem.

2.2.7 Microphone Subsystem

The Microphone Subsystem is an integral component of our robotic system, tasked with
capturing audio input from users in a clear and reliable manner. Utilizing a Bluetooth
microphone, this subsystem offers flexibility and enhances the robot’s ability to interact
with its environment by ensuring high-quality audio capture. This audio is then trans-
mitted to the Speech-to-Text subsystem, where it is converted into textual data for further
processing. The performance of this subsystem is quantitatively measured by its audio
capture fidelity, noise reduction capability, and the latency in transmitting the captured
audio to the Speech-to-Text subsystem. Its seamless integration and reliability are critical
for the effective operation of the robot’s interactive capabilities.

2.2.8 ROS Subsystem

The ROS (Robot Operating System) Subsystem acts as the central control unit within our
robotics framework, crucial for interfacing with both software components and hardware
mechanisms. Leveraging MQTT, a lightweight messaging protocol, it facilitates real-time
communication with the Raspberry Pi Auxiliary System, which manages the operational
commands for the robot arm. This shift enhances the system’s responsiveness and reli-
ability, especially in low-bandwidth environments. The ROS Subsystem translates these
commands into precise physical actions, coordinating closely with the Raspberry Pi to
ensure seamless execution. Additionally, it continues to relay necessary responses back

5



to the Text-to-Speech subsystem for user interaction. The system’s performance is quan-
titatively assessed by its command execution latency, reliability in task execution, and the
efficiency of inter-process communication.

2.2.9 Text-to-Speech Subsystem

The Text-to-Speech Subsystem is an essential communicative bridge in our robotics archi-
tecture, enabling the robot to convert textual responses into spoken words, thus facilitat-
ing a natural interaction with users. Utilizing the pyttsx31, a versatile and open-source
text-to-speech Python library, this subsystem translates textual data received from the
ROS subsystem into audible speech, which is then relayed through the Voice Player sub-
system for output. The choice of pyttsx3 not only supports a broad range of voices and
languages but also ensures functionality without the need for internet connectivity. This
subsystem’s contribution to the overall design is quantitatively marked by its speech syn-
thesis speed, clarity of the generated audio, and the seamless interface with the ROS and
Voice Player subsystems, enabling the robot to provide timely and intelligible responses
to user inquiries.

2.2.10 Voice Player Subsystem

The Voice Player Subsystem is a critical component for enabling the robot to audibly
communicate with users, functioning as the final step in the interactive feedback loop. It
takes the audio files generated by the Text-to-Speech Subsystem and plays them through
a Bluetooth headset, ensuring clear and understandable speech output. This subsystem is
essential for the robot’s ability to provide audible responses to user queries or commands,
enhancing the overall user experience. Its contribution to the design is quantified by
its audio output clarity, playback latency, and compatibility with the Bluetooth headset,
facilitating effective human-robot interaction.

2.2.11 Universal Robot UR3e Robot Arm Subsystem

The Universal Robot UR3e Robot Arm Subsystem, enhanced with a Makeblock Robot
Gripper, is a critical component of our robotics architecture, providing high precision and
flexibility for physical tasks. The gripper allows the arm to grasp and handle objects
like water bottles more effectively. The gripper is controlled by a Raspberry Pi, which
interfaces directly with the ROS subsystem to receive and execute detailed instructions.
Equipped with six rotational joints, the subsystem executes movements with high pre-
cision, crucial for the accurate positioning and handling of objects within its operational
environment. This subsystem’s performance metrics include its reach, payload, repeata-
bility, and the added functionality of the gripper’s grasping capabilities.

1https://pyttsx3.readthedocs.io/en/latest/

6

https://pyttsx3.readthedocs.io/en/latest/


2.2.12 Raspberry Pi Auxiliary Subsystem

The Raspberry Pi Auxiliary Subsystem serves as a sophisticated monitoring and inter-
action enhancer between the user and the robotic system, utilizing three cameras and a
speaker for precise control and feedback. The first two cameras are dedicated to mon-
itoring the water bottle on the desk, ensuring it is within the Robot Arm’s reach and
providing precise audio instructions for adjustments along the x-axis and y-axis, such
as ”Move your bottle right/left/forward/back a bit.” The third camera checks the posi-
tioning of the bottle at the water dispenser to guarantee accurate filling. This subsystem
leverages advanced object recognition technology to pinpoint the bottle’s location and
provide verbal guidance accordingly. Connected to the PCB Water Dispenser Subsystem,
the Robot Gripper, and the ROS Subsystem, it orchestrates a seamless interaction flow and
enhances operational efficiency. This integration is critical for the system’s functionality,
offering real-time and intuitive user guidance.

2.2.13 PCB Water Dispenser Subsystem

The PCB Water Dispenser Subsystem is integral to the functionality and user interface of
our robotic system, acting as a visual communicator for the operational status of the water
dispensing process. By employing a light control mechanism with programmable LEDs,
this subsystem indicates when the water is being dispensed (green light) and when the
process is complete (red light), based on the input from the Raspberry Pi Auxiliary Sys-
tem. This direct, visual feedback mechanism is crucial for coordinating the actions of the
robot arm, especially in guiding it to retrieve and return the filled water bottle to the user.
The subsystem’s design is quantitatively defined by the accuracy of signal reception, the
precision of the internal timer for light transitions, and the reliability of sending comple-
tion signals back to the Raspberry Pi Auxiliary System. This ensures seamless integration
within the broader system, enhancing the robot’s interactive capabilities.

7



3 Design Details

Our AI-enhanced robotic service system has three main components, the Navigation Sys-
tem, the Raspberry Pi Auxiliary System, and the PCB Water Dispenser System.

3.1 Navigation System

The Navigation System includes the following part of work:

1. Deploy the speech-to-text and text-to-speech modules. This is essential for the AI
model to process blind people’s vocal input and give corresponding guidance.

2. Deploy the depth-map generation module and complete scripts for navigation algo-
rithm. Since we do not use depth camera, we need a depth-map generation module
to generate depth map from original visual image. Then the navigation algorithm
would use this depth map to detect whether there is any potential danger.

3. Establish stable connection between my personal computer and the AI server, and
realize efficient data transmission. This connection is important for stable real-time
chatting.

4. Deploy Large Visual Language Models on the AI server. This is the core of our
design, as the LVLM provides real-time guidance and instructions for blind people.

5. Apply model acceleration technique to the AI model. This is also important for
reducing the delay of processing data with AI model.

6. Design real-time visual screenshot program using Zoom App and transfer real-time
visual input to the AI server.

3.1.1 Speech-to-Text and Text-to-Speech Modules

We deploy both speech-to-text and text-to-speech modules on PC (Mac OS). Specifically,
we use a virtual machine VMware to install the Ubuntu system and deploy open-source
modules on it. To realize the speech-to-text process, we use the pre-trained silero2 model.

Firstly we use the pyaudio library in Python to record the voice and save it as a wave
file. Then we use the pre-trained silero model to process the wave file and turn it into
text. To realize the text-to-speech process, we use the open-source project pyttsx3. After
receiving the JSON file from the AI server, our program would read the answer message
from the JSON file and use pyttsx3 to turn it into audio and play it through Bluetooth
devices.

3.1.2 Navigation Algorithm

The navigation algorithm has different priorities as shown in Figure 3. For the highest
priority, the system should remind the potential danger ahead immediately. The potential

2https://github.com/snakers4/silero-models

8

https://github.com/snakers4/silero-models


danger is detected through the depth map analysis. If there is no potential danger, then it
comes to the second priority. For the second priority, the system should respond to blind
people’s vocal inputs. If there is also no vocal input from blind people, then it comes to
the third priority. For the third priority, the system should repeat the navigation route
that blind people should follow.

For the generation of depth map, we use NYU FCRN network. It’s based on Resnet50 and
several depth blocks are added. Also, since the route in our design is fixed, the repeated
guidance is also set to be fixed. We set a threshold K and would let the LVLM remind the
danger only if there are object in the depth map owning depth smaller than K, like the
cup in the figure.

Figure 3: Navigation Algorithm Illustration

3.1.3 BLIP-2-Based Visual Language Model Deployment

We establish a stable connection between our PC and the AI server. To be specific, we
use the paramiko library in Python to establish an SSH connection. We use SFTP proto-
col to realize data transmission. The overall transmission is fast and stable. Each time
when new short video or text prompt is generated, we use sftp.put(’remotepath’) and
sftp.get(’remotepath’) methods to send and fetch files. The new videos are generated ev-
ery second and thus are sent to the server every second. Whenever the blind people ask a
question, a question json file would be generated and sent to the server. Then the LVLM
model would process the newest text file along with the newest video and give response.
Whenever a new response json file is generated at the server, we would fetch the newest

9



response using sftp.get(’remotepath’) method. Since the file transmission is under ZJU
WLAN, the overall delay is within 1ms for both short videos and text files.

We deploy the Large Visual Language Model on the AI server. To be specific, we de-
ploy the modifed VideoChatgpt Model on the AI server. VideoChatgpt [2] is one of the
common video understanding models. We use the BLIP-2-based Visual Language Model
for vision-language interaction. We would send real-time visual and audio data through
a connection to the server. Then the LVLM model would process it and send the up-
dated answering messages back to the personal computer. The detailed architecture of
the BLIP-2-based model [1] is shown in Figure 4.

Figure 4: Architecture of the BLIP-2-based Model

And VideoChatgpt do not contain a Q-former module for cross-modality processing. The
detailed architecture of VideoChatgpt model is shown in Figure 5.

Figure 5: Architecture of the Video-ChatGPT Model

10



To adapt Q-former structure to VideoChatgpt architecture, we remove the spatial pool-
ing stage and replace it with a pre-trained Q-former from VideoLlama. In this way, the
temporal features are generated by Q-former while the spatial features are still generated
by temporal pooling. With Q-former and position embedding applied, more temporal
relations could be obtained through attention mechanism. The detailed architecture of
modified VideoChatgpt is shown in Figure 6.

Figure 6: Architecture of the Modified Video-ChatGPT Model

3.1.4 Apply Acceleration Module

To make inference of LVLM much faster, we add flash-attention module to the Llama
model, which is the LLM decoder at downstream of the architecture. To be detailed, flash-
attention uses tiling strategy to calculate the attention blocks in transformers in parallel.
The key idea behind is that the softmax function could be decomposed into tiles and
traditional tiling strategy could be applied. Figure 7 shows the detailed algorithm of
flash-attention.

As mentioned in the flash-attention paper [3], flash-attention method speeds up the train-
ing of GPT-2 model a lot and better utilize the bandwith of GPU and CPU. The lay-
out of flash-attention is shown in Figure 8, which demonstrates the idea of looping and
tiling.

3.1.5 Design of Real-Time Screenshot Program

To get real-time visual information, the blind people uses an iPhone to capture images
every second. To better utilize existing softwares and make the process easier and faster,

11



we use Zoom to connect the personal computer to iPhone. We write a script to take
screenshot every second in the zoom meeting, turn the shot image into short videos and
upload them to the AI server.

Figure 7: Algorithm of the Flash-attention

Figure 8: Layout of the Flash-attention

To be more precise, we use pyautogui library to take screenshot automatically. Then we
crop the informative area of Zoom screen and save it to an image. After that, we use
ImageSequenceClip class from moviepy library to generate short videos using the image

12



shot. Finally, we upload the generated video to the AI server through sftp protocol every
second. The detailed code is shown in Appendix B.1.

3.2 Raspberry Pi Auxiliary System

The integration of the Raspberry Pi Auxiliary System into our project was driven by
the need to address significant challenges observed in the initial design, which relied
heavily on a Vision Language AI model for controlling all operations. Here, we outline
the reasons behind adopting the Raspberry Pi system to enhance functionality and effi-
ciency.

Initial Design and Challenges: Our initial setup tasked the Vision Language AI model
with guiding interactions entirely, from bottle placement to operation of the robot arm
and water dispenser. This centralized approach led to considerable processing delays due
to the model’s inherent latency and added complexity, impacting system responsiveness
and precision.

Rationale for the Raspberry Pi Auxiliary System: The adoption of the Raspberry Pi
Auxiliary System was aimed at mitigating these issues through several key improve-
ments:

1. Reduced Latency: By decentralizing control, the Raspberry Pi significantly cuts
down on overall system latency, facilitating near real-time interactions between the
user and the robotic arm.

2. Simplified Processes: The Raspberry Pi manages direct control over the robot arm
and water dispenser, simplifying operations and allowing the Vision Language AI
model to focus on providing high-level navigational aid rather than managing minute
details.

3. Enhanced Precision and Interaction: With dedicated object detection and text-to-
speech models, the Raspberry Pi system provides precise localization of the water
bottle and clear auditory instructions, improving the guidance provided to users.

4. Improved System Efficiency and Usability: These modifications ensure smoother,
more convenient operations and enhance the user experience, particularly in facili-
tating effective interaction for visually impaired users.

Introducing the Raspberry Pi Auxiliary System was a strategic choice to optimize our
project’s structure, enhancing operational efficiency, responsiveness, and user interaction.
This approach not only improved system performance but also better aligned with our
objectives of supporting visually impaired individuals in public spaces.

3.2.1 System Architecture Overview

The Raspberry Pi Auxiliary System is strategically designed to enhance interaction con-
venience for visually impaired users. As shown in Figure 9, it integrates three cameras

13



and a speaker to facilitate user interaction with the robot arm:

• Two Web-Cameras: Positioned to monitor the placement of the water bottle on the
desk (both X and Y directions), ensuring it is within the operational range of the
robot arm.

• Pi-Camera: Used to confirm the bottle’s correct positioning at the water dispenser,
ensuring accurate filling.

• Speaker: Provides real-time vocal instructions to guide the user in adjusting the
bottle’s placement.

Figure 9: Architecture Overview of the Raspberry Pi Auxiliary System

3.2.2 Block Diagram of Overall Work Flow

The overall workflow of the Raspberry Pi Auxiliary System is illustrated in Figure 10. The
process consists of six control steps:

14



1. The Raspberry Pi core control center captures visual input from camera-x and camera-
y. It uses the object detection model to locate the position of the water bottle placed
on the desk.

2. Based on the detected position of the water bottle, the control center outputs audio
instructions to help the user move the bottle (right/left/forward/back) to the des-
ignated location so that the robot gripper can grasp it. (Steps 1 and 2 are repeated
until the water bottle is correctly placed.)

3. The robot gripper grabs the water bottle.

4. The control center, through the ROS system, directs the robot arm to move the water
bottle to the water dispenser.

5. The control center takes visual input from camera3, mounted on the water dis-
penser, to verify the presence of a bottle at the dispenser, ensuring accurate filling.

6. If the check in the previous step is successful, the control center sends a start signal
to the PCB board to begin filling the bottle.

After filling, the robot arm moves the water bottle back to the user, and the robot gripper
releases the bottle. Finally, the control center outputs an audio message indicating that
the user can now pick up the bottle.

Figure 10: Overall Workflow Block Diagram of the Raspberry Pi Auxiliary System

3.2.3 Water Bottle Object Detection Task

Model Selection For the task of detecting water bottles, we selected the SSD-MobileNet-
V2 model [4] because it offers an optimal balance between speed and accuracy, which

15



makes it well suited for applications in near real time on our edge device, the Rasp-
berry Pi. SSD-MobileNet-V2 is designed specifically for mobile devices and edge devices,
combining the Single Shot Multi-Box Detector (SSD) framework [5] with MobileNetV2
[6]. MobileNetV2 builds on its predecessor, MobileNetV1 [7], by introducing an inverted
residual structure with linear bottlenecks. This enhancement significantly improves com-
putational efficiency by maintaining crucial depth information for performance while re-
ducing model size and computational cost. This efficiency is crucial in reducing latency
and ensuring that the system can operate in real time, which is essential for user interac-
tion.

Model Training and Finetuning For the water bottle detection task, we selected the
pretrained SSD-MobileNet-V2 model from the TensorFlow 2 Object Detection Model
Zoo3 [8]. Specifically, we used the following configuration:

’ssd-mobilenet-v2-fpnlite-320’: {
’model_name’: ’ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8’,
’base_pipeline_file’: ’

↪→ ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.config’,
’pretrained_checkpoint’: ’

↪→ ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz’,
}

This pretrained model is initially trained on the COCO dataset [9], which includes a wide
variety of objects, allowing the model to learn robust feature representations. Utilizing
a pretrained model provides several benefits for our project. Firstly, it reduces the com-
putational resources and time required for training from scratch. The SSD-MobileNet-V2
model is particularly advantageous due to its efficiency and accuracy, making it suitable
for deployment on resource-constrained devices such as the Raspberry Pi.

Motivation for Finetuning and Transfer Learning Method The primary task of our
project is to detect water bottles. Although the pretrained SSD-MobileNet-V2 model is
effective, fine-tuning it specifically for water bottle detection can significantly enhance
its performance for this particular task. Fine-tuning involves adjusting the pretrained
model on a smaller, task-specific dataset, which in our case, is a custom dataset of water
bottles.

We used the transfer learning method to fine-tune the pretrained model on our custom
water bottle dataset. Transfer learning leverages the knowledge gained from the large-
scale COCO dataset and applies it to our specific task, enabling the model to adapt to the
nuances of water bottle detection. This approach is more efficient than training a model
from scratch, as it requires less data and computational power while providing better
performance due to the pre-learned features from the larger dataset.

3TensorFlow2-Object-Detection-Model-Zoo

16

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md


Custom Water Bottle Dataset As shown in Figure 11, my custom water bottle dataset
consists of 260 images of water bottles and cups, collected from the Web and daily life
environments. These images represent common bottles and cups that users are likely to
carry, ensuring the relevance and applicability of the model.

Using the labelling tool Labelimg4 [10] from GitHub, we manually labeled all the images
by drawing bounding boxes around the water bottles and cups and assigning the appro-
priate labels. Once labeled, the dataset was randomly split into training, validation, and
test sets. We then created a Labelmap and TFRecords, which are required by TensorFlow
for the training process.

Figure 11: Screenshot of My Custom Water Bottle Dataset

Model Deployment After the fine-tuned model is trained, the next crucial step is to
export the model graph, which contains information about the architecture and weights,
to a TensorFlow Lite (TFLite) format. This conversion is essential for several reasons,
particularly when deploying models on edge devices such as the Raspberry Pi. The basic
outline of the inference script is shown in Appendix B.3.

The primary motivation for converting the model to the TFLite format is to optimize it for
performance on resources-constrained devices. The TFLite format offers several benefits
over the standard TensorFlow (TF) model format:

1. Reduced Model Size: TFLite models are significantly smaller in size compared to
their TF counterparts. This reduction is achieved through various optimization tech-

4https://github.com/HumanSignal/labelImg

17

https://github.com/HumanSignal/labelImg


niques such as quantization, which helps in reducing the model footprint and mak-
ing it suitable for devices with limited storage.

2. Faster Inference: TFLite models are optimized for speed. They are designed to
perform efficient inference on devices with limited computational power. This op-
timization ensures that the model can run in real time, providing quick responses,
which is critical for applications requiring immediate feedback, such as water bottle
detection.

3. Lower Latency: By converting to TFLite, the inference latency is minimized. This is
particularly important for interactive applications where user experience depends
on how quickly the system can process input and provide output.

4. Energy Efficiency: TFLite models are designed to be energy-efficient, making them
ideal for battery-powered edge devices. Reduced energy consumption ensures that
these devices can operate longer without frequent recharges.

Bottle Position Detection Algorithm In our water bottle detection task, determining
whether the detected water bottle is correctly positioned within the frame is crucial for
providing accurate guidance to the user. The Algorithm shown in Appendix B.4 was
developed to judge the position of the detected water bottle relative to the center of the
screen. There are two key concepts used in the algorithm:

Central Position Threshold The central position threshold is a predefined value that deter-
mines the allowable range around the center of the screen within which the water bottle is
considered correctly positioned. If the center of the detected water bottle’s bounding box
lies within this threshold, the bottle is deemed to be in the center. This threshold helps in
reducing sensitivity to minor movements and ensures that the detection is robust.

Position Stability Threshold The position stability threshold is another predefined value
that ensures the detected position of the water bottle is stable over a series of frames. This
stability check prevents the system from reacting to transient or noisy detections, thereby
providing a more reliable indication of the bottle’s position.

3.2.4 Robot Gripper Control

The robot gripper used to grab the water bottle is the Makeblock Robot Gripper, mounted
on the UR3e Robot Arm as shown in Figure 12. This gripper is operated through the
MegaPi [11] controller, which is programmed and interfaced with a Raspberry Pi. The
setup and control of the robot gripper involve several steps to ensure precise manipula-
tive operations. The detailed code is shown in Appendix B.5.

18



Figure 12: The robot gripper is mounted on the robot arm, with two cameras controlled
by the Raspberry Pi to detect the position of the water bottle.

3.2.5 Communication Setup with ROS System

To control the UR3e robot arm [12], a robust communication setup involving a Virtual
Machine (VM) and the Robot Operating System (ROS) is established. This setup allows
for the control of the robot arm from a Raspberry Pi via SSH, providing a streamlined
method of sending instructions remotely.

Setup and Control Procedures

1. Virtual Machine Configuration: An Ubuntu VM (version 20.04) is set up on a PC
using virtualization software. This VM serves as the host for the ROS environment

19



and interfaces with the UR3e robot arm.

2. ROS Installation: ROS Noetic [13], which is compatible with Ubuntu 20.04, is in-
stalled on the Ubuntu VM. This version of ROS provides the necessary packages
and libraries to interface with the robot hardware and execute control commands.

3. Network Configuration: To ensure seamless communication between the VM and
the robot arm, the VM’s network is configured to use a bridged adapter. This setup
utilizes the Realtek PCIe GbE Family Controller, allowing the VM to connect directly
to the same network as the host machine and the robot arm.

4. Physical Connection: The UR3e Robot Arm is connected to the PC using a network
cable. This direct connection minimizes latency and ensures reliable communica-
tion.

5. Automated Control Script: On the Raspberry Pi, a shell script is developed to au-
tomate the control of the robot arm. This script uses SSH to securely connect to the
Ubuntu VM and execute ROS commands. The SSH setup allows remote and secure
command transmission from the Raspberry Pi to the VM.

6. Enable SSH Communication: Enable the hotspot on the PC, then set up a new
bridge network with Microsoft Wi-Fi Direct Virtual Adapter #2 on VM. Connect
both the Raspberry Pi and the VM to the PC hotspot to ensure that they are under
the same subnet.

On the Ubuntu VM:

Set up communication with the robot arm by executing the following commands in two
separate terminals:

# Terminal 1
roslaunch ur_robot_driver ur3_bringup.launch robot_ip

↪→ :=192.168.1.120

# Terminal 2
rosrun ur3_driver ur3_driver _robot_ip:=192.168.1.120

On the Raspberry Pi:

Use a shell script to automate the control of the robot arm. The following example script
connects to the VM via SSH and runs ROS commands to reset the robot arm, move it to
the water dispenser, and move it back to the user.

# Shell script to control the UR3e robot arm
ssh user@vm-ip-address << EOF
rosrun RobotArm_pkg_py RobotArm_reset.py
rosrun RobotArm_pkg_py RobotArm_forward.py
rosrun RobotArm_pkg_py RobotArm_back.py
EOF

20



• The RobotArm reset.py script resets the robot arm to its original position.

• The RobotArm forward.py script sends instructions to the robot arm to move to the
water dispenser.

• The RobotArm back.py script commands the robot arm to return to the user after
filling the water bottle.

The main ROS code to control the robot arm is shown in Appendix B.2.

3.2.6 Model Selection for Text-to-Speech

For converting text outputs into audible instructions, we chose the eSpeak5 module. eS-
peak is known for its simplicity, lightweight design, and wide language support, making
it suitable for real-time speech synthesis on constrained devices. Its compact size and
efficient speech generation capabilities ensure minimal impact on the system’s resources,
aligning with the need for a fast response time in our application.

3.2.7 Communication Setup with PCB Water Dispenser System

The communication between the Raspberry Pi and the PCB water dispenser system is
established through GPIO pins, as shown in Figure 13 [14]. This setup is crucial for indi-
cating the operational status of the water dispenser system using LEDs and for managing
the water dispensing process based on camera detections.

Figure 13: Raspberry Pi GPIO 40-Pin Layout

5https://espeak.sourceforge.net/

21

https://espeak.sourceforge.net/


LED Indicators The PCB water dispenser board is equipped with two LEDs:

• Green LED: Indicates that the entire water dispenser system is operational. This
LED turns on when the system is powered up and remains on during normal oper-
ation.

• Red LED: Indicates that hot water is being dispensed. This LED turns on only when
the camera mounted on the water dispenser detects that a water bottle is placed at
the dispenser. The LED turns off once the filling process is complete.

GPIO Pin Configuration The communication with the LEDs is managed through GPIO
pins on the Raspberry Pi. Specifically, two pins are utilized:

• Green LED Pin: Connected to GPIO pin 27.

• Red LED Pin: Connected to GPIO pin 17.

• Ground Pin: Connected to GPIO Ground pin (No.6 in the layout diagram).

These pins control the LEDs on the PCB board, providing a straightforward and low-
latency interface to manage the water dispensing actions based on the camera’s detec-
tions. The detailed code is shown in Appendix B.6.

Bottle Detection and Red LED Control As shown in Figure 14, the system checks if
a water bottle is placed at the dispenser using the Detect Bottle function. If a bottle is
detected, the red LED is turned on to indicate that hot water is being dispensed. The LED
remains on during the filling process and turns off once the process is complete. If no
bottle is detected, the system provides an appropriate audio message, and then the robot
arm will move back to the original position.

Figure 14: The camera3 detects that a water bottle is placed at the water dispenser, then
the red LED is turned on to indicate that hot water is now being dispensed.

22



3.2.8 Shell Script for the Whole Raspberry Pi Auxiliary System

To integrate the above all components of the Raspberry Pi Auxiliary System and achieve
automatic control, a comprehensive shell script is used. This script orchestrates the ac-
tions of the camera detection, robot gripper, UR3e robot arm, and LED indicators on PCB
board to provide a seamless and automated process for water bottle handling. The fol-
lowing is an introduction to the shell script and its functionalities.

Overview of the Shell Script The shell script is designed to perform the following se-
quence of operations:

1. Reset the robot arm to its initial position.

2. Turn on the green power LED light to indicate that the system is operational.

3. Wait for the camera to detect the water bottle.

4. Grab the water bottle using the robot gripper.

5. Move the robot arm with the bottle to the water dispenser.

6. Check if the water bottle is correctly placed at the dispenser and fill it with water.

7. Move the robot arm back to the user.

8. Release the water bottle.

Using a shell script to control each component together provides several benefits, in-
cluding streamlined automation, reduced manual intervention, and improved synchro-
nization between components. And the detailed implementation is shown in Appendix
B.7.

3.3 PCB Water Dispenser System

The design details of our PCB board of the simulated water dispenser are shown in the
following figures. On the board there are two LED lights with several gate-controlled
logic. Based on the input from the Raspberry Pi Auxiliary System, when the whole system
is powered up (green light on), and when the hot water is being dispensed (red light
on).

The Design of the PCB Board As shown in Figure 15, inputs include voltage sources
and signal sources from the Raspberry Pi, with NAND gates to control the red and green
lights to come on at different times. In the whole circuit, most of the devices are intuitive,
but we still want to illustrate the 74LS00 for U1U2 and the 74LS04 for U3. As a basic
building block in digital circuits, the 74LS00 can be used to implement NAND logic. And
74LS04 is used to act as voltage regulator.

23



Figure 15: PCB Schematics

Figure 16: PCB Footprints Details

24



Figure 17: PCB Schematics in KiCad

(a) PCB Front (b) PCB Back

25



4 Verification

4.1 Performance of the LVLM

To verify the effectiveness of the modified VideoChatgpt model, we conduct comprehen-
sive experiments on Video QA datasets. We also quantatively test the inference delay of
model to show the effectiveness of the added acceleration module flash-attention.

Model Size MSVD MSRVTT ActivityNet

FrozenBiLM [15] 1B 32.2 16.8 24.7

VideoChat [16] 7B 56.3 45.0 26.5

Video-ChatGPT [2] 7B 64.9 49.3 35.2

Video-LLaMA [17] 7B 51.6 29.6 12.4

Video-LLaVA [18] 7B 70.7 59.2 45.3

Ours 7B 65.7 51.6 34.1

Table 1: Short Video Question Answering Results (Accuracy) on MSVD, MSRVTT, and
ActivityNet Dataset

Model Size Time

VideoChatgpt 7B 5.6s

VideoChatgpt + flash-attention 7B 4.1s

Ours 7B 5.9s

Ours + flash-attention 7B 3.8s

Table 2: Inference Time Comparison

We conduct experiments on short video QA datasets MSVD, MSRVTT and NextQA.
MSVD is a short video dataset collected by Microsoft company that contains 1970 short
video clips in total. The average length of each video clip is 10 seconds. These clips are
from Youtube and cover various themes like animals, music, sports and travelling. Each
short video clip has a text describing the contents in the video. The Video QA file is
generated from these video descriptions. MSRVTT dataset is also collected by Microsoft,
containing 10,000 short video clips. The average length here is 20 seconds, which means
it’s longer compared to MSVD. MSRVTT covers more topics and show more variety of
contents. Furthermore, MSRVTT include more scene switches, which make the video
clips harder to understand. ActivityNet dataset is a benchmark that contains many types

26



of human activities. ActivityNet dataset provides various types of videos for advance
video understanding, including temporal action reasoning and common scene under-
standing. It comprises of different motion information for further action recognition and
analysis.

The modified VideoChatgpt model shows competitive results in QA tasks, as shown in
Table 2. First, we can see that flash-attention reduces the total time delay by 2.1 seconds.
Furthermore, we can see that flash-attention module only reduces original VideoChatgpt
inference time by 1.5 seconds. This is because I add Q-former module to original model,
and flash-attention module can significantly reduce the processing time of Q-former as
well. Second, it’s shown in Table 1 that the modified VideoChatgpt achives better ac-
curacy than original model in MSVD dataset QA task, and shows competitive result
with respect to Video-LLaVA. Moreover, the modified VideoChatgpt also shows better
accuracy in MSRVTT dataset QA task. Lastly, although it does not show superior result
in ActivityNet dataset QA task, it still has high accuracy compared to other baselines.
The reason of lower accuracy might due to the flexibility of questions in ActivityNet, as
more complex reasoning questions are included. In general, the performance of modified
VideoChatgpt is impressive and inspiring. This also shows the effectiveness of Q-former
structure in BLIP-2 architecture.

4.2 Performance of the SSD-MobileNet-V2 model

The fine-tuning training results of the SSD-MobileNet-V2 model are illustrated through
several key figures that show the behavior of different loss functions and the rate of learn-
ing during the training process.

4.2.1 Loss Figures

The training process is evaluated using four types of loss functions as shown in Figure
19, each representing a different aspect of the model’s performance.

1. Classification Loss: The first figure shows the classification loss, which measures
the model’s accuracy in classifying detected objects. This loss represents the error
in predicting the correct class labels for the detected objects. A decrease in classifi-
cation loss over time indicates that the model is improving in its ability to correctly
classify objects.

2. Localization Loss: The second figure shows the localization loss, which measures
the accuracy of the bounding box predictions. This loss accounts for the differences
between the predicted bounding boxes and the ground truth boxes. A decrease in
localization loss signifies that the model is getting better at predicting the precise
locations of the objects.

3. Regularization Loss: The third figure shows the regularization loss, which helps to
prevent overfitting by adding a penalty for large weights. This loss component en-
sures that the model generalizes well to unseen data. A smooth decrease in regular-
ization loss indicates effective regularization, contributing to better generalization.

27



4. Total Loss: The fourth figure shows the total loss, which is the sum of the classifi-
cation, localization, and regularization losses. This combined loss gives an overall
measure of the model’s performance during training. A consistent decrease in total
loss suggests that the model is learning effectively, balancing classification accuracy,
localization precision, and regularization.

Figure 19: Four Types of Loss Functions During Training Progress

4.2.2 Learning Rate Figure

The learning rate in Figure 20 shows how the learning rate changes over the training
process. The learning rate controls the step size during gradient descent optimization.
Initially, the learning rate increases to allow rapid learning, then it stabilizes and gradu-
ally decreases to fine-tune the model’s weights. The shape of the curve indicates that the
training process starts with aggressive learning and transitions to fine-tuning as training
progresses.

28



Figure 20: Learning Rate During Training Progress

4.2.3 Training Process Analysis

The general training process can be analyzed from the above loss functions and learning
rate figures:

• Early Stage: The initial part of the training shows a steep decline in classification
and localization losses, indicating a rapid improvement in both classifying objects
and predicting their locations. This is supported by a high initial learning rate that
facilitates quick learning.

• Mid Stage: As training progresses, the decrease in losses starts to slow down, show-
ing that the model is entering a phase of fine-tuning. The learning rate stabilizes
and then gradually decreases, indicating a shift from rapid learning to careful ad-
justment of the model’s parameters.

• Late Stage: In the later stages of training, the losses continue to decrease at a slower
rate, and the learning rate decreases further. This suggests that the model is making
smaller and more precise adjustments to improve performance without overfitting.

Overall, the figures demonstrate a successful training process in which the model im-
proves significantly in terms of classification and localization, with effective regulariza-
tion to ensure generalization. The learning rate adjustments contribute to a balanced
training process, optimizing both speed and accuracy.

4.2.4 Test Results and Analysis

After converting the fine-tuned SSD-MobileNet-V2 model to TensorFlow Lite (TFLite)
format, I evaluated its performance on my custom test dataset discussed in Section 3.2.3.

29



Two examples of inference results and the mAP results on the test dataset are analyzed in
the following two sections.

Inference Results Two example inference results are shown in Figure 21, captured in the
actual lab environment where we have set up our robot arm and the water dispenser. In
both test images, cups are placed in front of the robot arm. The green bounding boxes ac-
curately identify the position and label of the cups. These results demonstrate the TFLite
model’s high accuracy in detecting and labeling the cups. The bounding boxes are well-
aligned with the objects, indicating the model’s ability to accurately locate and classify
the items.

Figure 21: Example Inference Results of the TFLite Model on the Custom Test Dataset

Mean Average Precision (mAP) Results Mean Average Precision (mAP) is a standard
metric used to evaluate the performance of object detection models. It considers both the
precision and the recall of the detections.

• Precision is the ratio of true positive detections to the total number of detections
made by the model.

• Recall is the ratio of true positive detections to the total number of actual objects
present in the images.

The mAP is calculated by averaging the Average Precision (AP) for each class. AP is
computed as the area under the Precision-Recall (PR) curve.

• Precision:
Precision =

TP
TP + FP

• Recall:
Recall =

TP
TP + FN

30



• Average Precision (AP):

AP =

∫ 1

0

Precision(Recall) dRecall

• Mean Average Precision (mAP):

mAP =
1

N

N∑
i=1

APi

COCO Metric for mAP @ 0.50:0.95: The mAP results for the TFLite model are determined
using the mAP calculator6 tool [19]. They are reported using the COCO metric for mAP
@ 0.50:0.95 [20], as shown in Figure 22. This metric is the average AP across different
Intersection over Union (IoU) thresholds ranging from 0.50 to 0.95 in increments of 0.05. It
provides a comprehensive evaluation of the model’s performance by considering varying
levels of detection overlap.

Figure 22: mAP Results for the TFLite Model on the Custom Test Dataset

• Bottle Detection: The model achieved an average mAP of 75.63% for detecting bot-
tles. This indicates a high level of accuracy, but also suggests room for improvement,
possibly due to the variability in bottle appearances.

• Cup Detection: The model performed exceptionally well in detecting cups, with an
average mAP of 89.11%. This high accuracy demonstrates the model’s robustness
in recognizing and localizing cups.

• Overall Performance: The overall mAP of 82.37% reflects the model’s strong per-
formance across both classes. This high mAP score indicates that the fine-tuned
SSD-MobileNet-V2 model is highly effective for the water bottle detection task.

In conclusion, the TFLite model exhibits excellent detection capabilities, with high mAP
scores indicating reliable performance for both bottles and cups. The conversion to TFLite
format did not compromise accuracy, making it suitable for deployment on edge devices
such as the Raspberry Pi.

6https://github.com/Cartucho/mAP

31

https://github.com/Cartucho/mAP


4.3 Performance of the PCB Board

We conducted tests to analyze the behavior of the LEDs in our circuit, focusing on their
brightness at different voltages.

Red LED The red LED begins to shine brightly at approximately 2.2 V and reaches full
brightness at around 3.0 V, indicating efficient operation within this voltage range.

Green LED The green LED, however, remains dimmer even with increased voltage.

4.3.1 Attempts to Improve Brightness

To enhance the green LED’s brightness, we replaced the LED and reduced the resistance
in its branch from 1000 Ω to 680 Ω. These changes did not significantly improve its bright-
ness, making the green LED less visible during demonstrations in dim lighting.

4.3.2 Possible Causes and Future Steps

The difference in brightness may be due to varying forward voltage requirements and
efficiencies between the LEDs. Future steps to balance the brightness include:

• Using LEDs with matched forward voltage and efficiency.

• Implementing precise current control.

• Exploring alternative circuit configurations.

These optimizations aim to achieve a balanced and effective LED display in our cir-
cuit.

32



5 Tolerance Analysis

A key design consideration is the latency in data transfer, which is critical to real-time in-
teraction and control. We meticulously assess the latency focusiing on two main channels:
user to computer, and computer to server.

User to Computer Data Transfer Analysis: A pivotal design concern is the latency dur-
ing Bluetooth transmission of captured images and audio from head-mounted cameras
and headsets to the computer. Assuming an operational distance of approximately 10 me-
ters, we utilize the following formula to estimate Bluetooth transmission latency:

Latency =
Data Size

Transmission Speed
+ Propagation Delay

Data Size is the total size of the data to be transmitted, measured in bits. Transmission
Speed is the rate at which data is transmitted, measured in bits per second (bps). Propa-
gation Delay is the time it takes for the signal to travel from the source to the destination,
which can be calculated as the distance divided by the speed of the signal. However, for
Bluetooth and similar short-range technologies operating at the speed of light, this delay
is negligible compared to other factors.

Given Bluetooth 4.0’s capability of up to 25 Mbps in high-speed mode and considering an
average data packet size (1MB for a captured image), we can estimate the latency:

Latency =
1× 106 × 8 bits
25× 106 bits/sec

= 0.32 seconds

Computer to Server Data Transfer Analysis: Through simulations, we have estimated
that data transfer delays between the computer and server can be confined to approxi-
mately 3-4 seconds. This latency is primarily influenced by network speed, server pro-
cessing capabilities, and the data’s complexity. Incorporating Python libraries like flash-
attention has been instrumental in augmenting our AI models’ processing speeds. These
libraries enable more efficient handling of computations necessary for real-time analysis
and decision-making based on the data received from user devices.

Conclusion: Experimental outcomes demonstrate that, despite variations, the entire
processing duration stays within a few seconds, contingent on the complexity of the in-
put data. This duration falls within our acceptable limits for real-time operations, under-
scoring the system’s viability for responsive and effective user assistance. This analysis
confirms our commitment to optimizing system performance while maintaining the real-
time interaction that is vital for the success of our project.

33



6 Cost Analysis

Our fixed labor salary is estimated to be $10/hour, and 50 hours for each person. The
total labor costs for all partners:

4 · $10/hour · 2.5 · 50 hours = $5000

The costs of all parts in our project are shown in Table 3.

Part Cost

Personal Computer (Macbook) $1200

Bluetooth Headset and iPhone Camera $1000

Raspberry Pi System $150

PCB Board (with Control Lights) $20

Robot Arm and AI Server (Borrow from ZJUI) $0

Table 3: Cost of Each Part

The grand total costs: $5000 + $1200 + $1000 + $150 + $20 = $7370.

34



7 Conclusion

In summary, our AI-enhanced robotic service system successfully addresses the chal-
lenges faced by blind individuals in navigating public spaces and safely interacting with
water dispensers. This project has demonstrated the effective integration of advanced
technologies, including large language models (LLMs), large visual language models
(LVLMs), and robotics, to create a practical and reliable solution.

The key accomplishments of our project include:

• Effective Real-Time Visual and Verbal Input Processing: The head-mounted cam-
era and LVLM work seamlessly to capture and analyze the user’s surroundings and
commands, providing real-time guidance.

• Dynamic and Accurate User Guidance: The BLIP-2 model provides precise naviga-
tion assistance, warning of potential dangers and instructing the user on interacting
with water dispensers.

• Autonomous Bottle Refilling: The Universal Robot Arm UR3e, controlled by the
Robot Operating System and instructed by the Raspberry Pi Auxiliary System, per-
forms autonomous water bottle refilling, ensuring safety and efficiency.

• Clear and Effective User Communication: Audio feedback and instructions deliv-
ered through a Bluetooth headset guarantee clear communication, enhancing the
overall user experience.

Our system has undergone rigorous testing, confirming its reliability and effectiveness
in real-world scenarios. The navigation component, powered by LVLM, has proven ca-
pable of guiding users accurately to water dispensers, while the automated bottle filling
component ensures a safe and efficient interaction with the dispensers.

In conclusion, the project demonstrates a significant step forward in assistive technol-
ogy for blind individuals. This project showcases the potential of integrating AI and
robotics to improve accessibility and safety for visually impaired individuals in public
spaces. With further refinements and potential scalability, this system could be deployed
widely to enhance the independence and quality of life for blind individuals, making
public spaces more accessible and user-friendly.

7.1 Ethics and Safety

In the development of our robotics project, we rigorously adhere to the IEEE Code of
Ethics [21] to uphold the highest standards of ethical practice and safety.

7.1.1 Ethics

Privacy (ACM 1.7: Respect the Privacy of Others) To protect privacy, we take strict
measures to ensure the confidentiality and security of any personal information collected
by the robot. We establish robust protocols based on industry standards to limit access

35



to this sensitive data to authorized individuals with a legitimate need to access it. In
addition, we carefully design and implement secure storage and processing procedures
to reduce the risk of unauthorized disclosure or misuse. By prioritizing the protection of
personal information, we demonstrate our unwavering commitment to maintaining the
privacy and trust of individuals who interact with our robots.

Fairness (IEEE - Avoiding Real or Perceived Conflicts of Interest) The possibility of
bias in the decision-making process of artificial intelligence is a major ethical issue. Rec-
ognizing this, we will strive to provide robots with a comprehensive understanding of
human diversity and societal nuances through rigorous training and careful refinement.
By exposing robots to a variety of data, including different demographics, cultural back-
grounds, and environmental scenarios, we aim to equip robots with the ability to impar-
tially discern and understand complex social dynamics.

Being Open (ACM 1.2: Avoid Harm) We are committed to ensuring full transparency
in the robotics decision-making process. Our goal is to provide clear and understandable
information to all stakeholders so that they can fully understand how the robot operates
and the factors that influence its decisions. To achieve this, we keep detailed records of
the algorithms, data inputs and learning methods used by the robot. Additionally, we
are committed to an open approach to making information about the robot’s functioning,
including its training data, learning outcomes, and decision logic, readily available. By
increasing transparency, we aim to build trust and confidence among users, stakehold-
ers, and the broader community, thereby promoting ethical behavior by individuals or
organizations when using our robotics.

Professional Development (ACM 2.6) Adhering to ACM’s principles, our team ded-
icates itself to the continual enhancement of our knowledge and understanding of the
societal ramifications of robotics. We recognize the dynamic nature of ethical standards
and proactively refine our systems to stay abreast of new developments, ensuring that
our robots serve as a benchmark for responsible AI and robotics practice.

7.1.2 Safety

Avoiding Accidents (IEEE - Priority to Public Welfare) Our robots are carefully de-
signed with safety as a top priority to ensure that they do not jeopardize the personal
safety of others or the safety of property. Equipped with advanced emergency stops and
a range of sophisticated sensors, the robots are able to operate with increased vigilance,
effectively preventing collisions with people and objects. These safety features are care-
fully designed to prevent accidental collisions and provide peace of mind in dynamic
environments where human-robot interactions are frequent.

Staying Secure (ACM 3.7: Recognize the Need to Protect Personal Data) Given the
advanced functionality and interconnectedness of our robots, it is critical to protect their

36



integrity and guard against potential cyber threats. We are therefore building relevant se-
curity measures to strengthen its defenses and reduce the risks posed by malicious actors
and cyberattacks. This requires the implementation of advanced encryption protocols,
strict access controls and continuous monitoring mechanisms to detect and respond to
any unauthorized attempts to compromise robotic systems or data. In addition, we prior-
itize regular security assessments and audits to identify vulnerabilities and weaknesses
in our security infrastructure, enabling us to proactively address potential threats and
ensure that our robots are resilient to evolving cyber threats.

Dealing with Mistakes (ACM 2.5 & IEEE - Acknowledge and Correct Mistakes) In
the event of an unforeseen situation or error, the robot responds in a manner that pri-
oritizes safety and reliability. The robot’s operational framework incorporates fail-safe
mechanisms and real-time monitoring capabilities to promptly identify and address any
anomalies or deviations from expected behavior. By promptly notifying designated per-
sonnel or stakeholders of such occurrences, the robot facilitates rapid intervention to min-
imize potential risks and ensure continuity of safe and effective operations.

Responsibility (IEEE) In line with IEEE guidelines, our project is committed to the re-
sponsible deployment of robotics, ensuring they fulfill their intended roles effectively
while safeguarding societal and environmental well-being. Our team maintains a vigi-
lant approach to technology stewardship, regularly assessing and mitigating any nega-
tive impacts our robots may have, thereby ensuring our innovations contribute positively
to society and operate sustainably within the environment.

Whistleblowing (ACM 1.4) Upholding ACM’s ethical code, we foster an environment
where whistleblowing is not just protected but encouraged, as it is crucial for maintain-
ing the highest ethical standards. By promoting transparency and inviting scrutiny, we
ensure any instance of misuse or ethical misconduct involving our robots is promptly
addressed, reinforcing our commitment to integrity and the responsible use of technol-
ogy.

37



References

[1] J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models,” arXiv preprint
arXiv:2301.12597, 2023.

[2] M. Maaz, H. Rasheed, S. Khan, and F. S. Khan, “Video-chatgpt: Towards detailed
video understanding via large vision and language models,” 2023.

[3] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and memory-
efficient exact attention with io-awareness,” 2022.

[4] Y.-C. Chiu, C.-Y. Tsai, M.-D. Ruan, G.-Y. Shen, and T.-T. Lee, “Mobilenet-ssdv2: An
improved object detection model for embedded systems,” in 2020 International con-
ference on system science and engineering (ICSSE). IEEE, 2020, pp. 1–5.

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:
Single shot multibox detector,” in Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer,
2016, pp. 21–37.

[6] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: In-
verted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2018, pp. 4510–4520.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mo-
bile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[8] TensorFlow, “Tensorflow 2 detection model zoo,” 2021, accessed: 2024-05-
25. [Online]. Available: https://github.com/tensorflow/models/blob/master/
research/object detection/g3doc/tf2 detection zoo.md

[9] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13. Springer, 2014, pp. 740–755.

[10] Tzutalin, “Labelimg,” 2015, accessed: 2024-05-25. [Online]. Available: https:
//github.com/HumanSignal/labelImg

[11] Makeblock, “About megapi - programming guide,” 2024, accessed: 2024-
05-25. [Online]. Available: https://support.makeblock.com/hc/en-us/articles/
12963818051991-About-MegaPi#6.%20Programming%20Guide

[12] U. Robots, “Ur3e robot arm technical details,” 2024, accessed: 2024-
05-25. [Online]. Available: https://www.universal-robots.com/media/1802780/
ur3e-32528 ur technical details .pdf

[13] O. S. R. Foundation, “Ros noetic installation on ubuntu,” 2024, accessed: 2024-05-25.
[Online]. Available: http://wiki.ros.org/Installation/Ubuntu

38

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/HumanSignal/labelImg
https://github.com/HumanSignal/labelImg
https://support.makeblock.com/hc/en-us/articles/12963818051991-About-MegaPi#6.%20Programming%20Guide
https://support.makeblock.com/hc/en-us/articles/12963818051991-About-MegaPi#6.%20Programming%20Guide
https://www.universal-robots.com/media/1802780/ur3e-32528_ur_technical_details_.pdf
https://www.universal-robots.com/media/1802780/ur3e-32528_ur_technical_details_.pdf
http://wiki.ros.org/Installation/Ubuntu


[14] R. P. Foundation, “Raspberry pi documentation - computers,” 2024, accessed:
2024-05-25. [Online]. Available: https://www.raspberrypi.com/documentation/
computers/raspberry-pi.html

[15] A. Yang, A. Miech, J. Sivic, I. Laptev, and C. Schmid, “Zero-shot video question an-
swering via frozen bidirectional language models,” 2022.

[16] K. Li, Y. He, Y. Wang, Y. Li, W. Wang, P. Luo, Y. Wang, L. Wang, and Y. Qiao,
“Videochat: Chat-centric video understanding,” 2024.

[17] H. Zhang, X. Li, and L. Bing, “Video-llama: An instruction-tuned audio-visual lan-
guage model for video understanding,” 2023.

[18] B. Lin, Y. Ye, B. Zhu, J. Cui, M. Ning, P. Jin, and L. Yuan, “Video-llava: Learning
united visual representation by alignment before projection,” 2023.

[19] J. Cartucho, “map: Mean average precision for object detection,” 2020, accessed:
2024-05-25. [Online]. Available: https://github.com/Cartucho/mAP

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” 2015, accessed: 2024-05-25.
[Online]. Available: https://cocodataset.org/#detection-eval

[21] Institute of Electrical and Electronics Engineers. (2016) IEEE Code of Ethics.
Accessed on: 2024-03-07. [Online]. Available: https://www.ieee.org/about/
corporate/governance/p7-8.html

39

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://github.com/Cartucho/mAP
https://cocodataset.org/#detection-eval
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html


Appendix A Team Photo and Introductions

Figure 23 was taken in the ZJUI Intelligent Robotics Laboratory of our team and Prof.
Liangjing Yang. We are grateful to Prof. Liangjing Yang and the ZJUI Intelligent Robotics
Laboratory for providing the UR3e Robot Arm and Robot Gripper for our project.

Figure 23: Team Photo

Team Members (From left to right):
Jiatong Li; Prof. Liangjing Yang; Zonghai Jing; Haozhe Chi; Minghua Yang

40



Appendix B Code and Algorithm

B.1 Code for Taking Screenshots
while True:

time.sleep(1)
demo_image = pyautogui.screenshot()
demo = demo_image.crop((375, 393, 2000, 1600))
#print(demo_image.size)
demo.save("./demo.png")
img_files = [’./demo.png’]
duration = 10.0
fps = 30
clip = ImageSequenceClip(img_files, fps=fps, durations=

↪→ duration)
clip.write_videofile(’demo.mp4’, fps=fps)
sftp.put(filevideopth, remotevideopth)
sftp.put(fileimgpth, remoteimgpth)
#time.sleep(1)

B.2 Main ROS Code to Control the Robot Arm
def move_arm(pub_cmd, loop_rate, dest, vel, accel):

global thetas
global SPIN_RATE

error = 0
spin_count = 0
at_goal = 0

driver_msg = command()
driver_msg.v = vel
driver_msg.a = accel
driver_msg.destination = dest
driver_msg.io_0 = current_io_0
pub_cmd.publish(driver_msg)

rospy.init_node(’ECE445’)

# Initialize publisher for ur3/command with buffer size of 10
pub_command = rospy.Publisher(’ur3/command’, command, queue_size

↪→ =10)
sub_position = rospy.Subscriber(’ur3/position’, position,

↪→ position_callback)

41



sub = rospy.Subscriber(’/ur3/gripper_input’, gripper_input,
↪→ gripper_input_callback)

B.3 Inference Script for TFLite Model
from tflite_runtime.interpreter import Interpreter
import numpy as np
import cv2

# Load the TFLite model and allocate tensors
interpreter = Interpreter(model_path="model.tflite")
interpreter.allocate_tensors()

# Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# Load the label map
with open(’labelmap.txt’, ’r’) as f:

labels = [line.strip() for line in f.readlines()]

# Function to perform inference
def detect_water_bottle(image_path, frame):

# Load and preprocess each frame form camera
input_data = np.expand_dims(frame, axis=0)

# Set input tensor
interpreter.set_tensor(input_details[0][’index’], input_data)

# Run the model
interpreter.invoke()

# Class index of detected objects
classes = interpreter.get_tensor(output_details[classes_idx][’

↪→ index’])[0]

# Get output label
Object_name = labels[int(classes[i])]

42



B.4 Bottle Position Detection Algorithm

Algorithm 1 Bottle Position Detection
Require: Video stream from camera; screen center screen center x; central position threshold

central position threshold; position stability threshold position stability threshold
1: Initialize object positions← {}, object stability count← {}
2: Start video stream from camera
3: while True do
4: Capture frame from video stream
5: Perform object detection on the frame
6: for each detected object do
7: if object is a bottle or cup then
8: Calculate center coordinates (center x, center y) of the bounding box
9: Get object identifier object id

10: if object id in object positions then
11: if Position is stable then
12: Increment stability count object stability count[object id]
13: else
14: Update position and reset stability count
15: object positions[object id]← (center x, center y)
16: object stability count[object id]← 1
17: end if
18: else
19: Initialize position and stability count
20: object positions[object id]← (center x, center y)
21: object stability count[object id]← 1
22: end if

{if the object has been in the same position for 8 consecutive frames}
23: if object stability count[object id] ≥ 8 then
24: if center x < screen center x− central position threshold then
25: position← right
26: else if center x > screen center x + central position threshold then
27: position← left
28: else
29: position← center
30: end if
31: if position == center then
32: Output audio instruction: ”Hold your object id in the current position and wait for the

next instruction”
33: Stop video stream and return success
34: else
35: Output audio instruction: ”Move your object id position a bit”
36: end if
37: Reset stability count object stability count[object id]← 0
38: end if
39: end if
40: end for
41: if exit condition met then
42: Break
43: end if
44: end while
45: Stop video stream and clean up

43



B.5 Code for Robot Gripper
from time import sleep
from megapi import MegaPi

class Gripper:
def __init__(self, usb_port=’/dev/ttyUSB0’, motor_port=4,

↪→ motor_speed=100, run_time=1):
"""
Initialize the gripper.
:param usb_port: Specify the USB-port connection to the

↪→ MegaPi.
:param motor_port: specify the motor port on MegaPi.
:param motor_speed: Specify the speed of the motor.
:param run_time: Specify the time (in seconds) to run the

↪→ motor for open/close operations.
"""
self.bot = MegaPi()
self.bot.start(usb_port)
self.motor_port = motor_port
self.motor_speed = motor_speed
self.run_time = run_time

# Ensure the motor is stopped initially.
self.bot.motorRun(self.motor_port, 0)
sleep(1) # Wait for the MegaPi to initialize properly.

def release(self):
"""
Open the gripper.
"""
self.bot.motorRun(self.motor_port, -(self.motor_speed))
sleep(self.run_time)
self.stop()
return 1

def grab(self):
"""
Close the gripper.
"""
self.bot.motorRun(self.motor_port, self.motor_speed)
sleep(self.run_time)
self.stop()
return 1

44



def stop(self):
"""
Stops any gripper motion.
"""
self.bot.motorRun(self.motor_port, 0)
sleep(1) # Pause to allow the motor to fully stop.

def close(self):
"""
Closes the serial connection and cleans up.
"""
self.bot.close()
self.bot.exit(0, 0)

B.6 Raspberry Pi GPIO Control
import time
import gpiod

LED_GREEN_PIN = 27
LED_RED_PIN = 17

def Led_green_ON(LED_GREEN_PIN):
chip = gpiod.Chip(’gpiochip4’)
led_line_green = chip.get_line(LED_GREEN_PIN)
led_line_green.request(consumer="LED", type=gpiod.

↪→ LINE_REQ_DIR_OUT)
led_line_green.set_value(1)

def Led_green_OFF(LED_GREEN_PIN):
chip = gpiod.Chip(’gpiochip4’)
led_line_green = chip.get_line(LED_GREEN_PIN)
led_line_green.request(consumer="LED", type=gpiod.

↪→ LINE_REQ_DIR_OUT)
led_line_green.set_value(0)
time.sleep(1)
led_line_green.release()

### Check if the water bottle is placed at the water dispenser
if (Detect_Bottle()):

print("Detect bottle at the water dispenser...")
chip = gpiod.Chip(’gpiochip4’)
led_line_red = chip.get_line(LED_RED_PIN)

45



led_line_red.request(consumer="LED", type=gpiod.
↪→ LINE_REQ_DIR_OUT)

led_line_red.set_value(1)

# Start filling the bottle (dispensing hot water)
play_audio_vlc("filling_bottle.mp3")

led_line_red.set_value(0)
led_line_red.release()

else:
print("No bottle at the water dispenser!")

B.7 Shell Script Implementation
#!/bin/bash

# SSH into the Ubuntu VM to control the Robot Arm (Reset position
↪→ )

ssh chris@192.168.137.119 << EOF
source /opt/ros/noetic/setup.bash
source ˜/catkin_robot_arm/devel/setup.bash
rosrun RobotArm_pkg_py RobotArm_reset.py
logout
EOF
echo "Robot arm reset successful"

# Function to handle cleanup
cleanup() {

echo "Cleaning up..."
python3 water_dispenser_led.py OFF
echo "LED cleanup complete. Exit!"
exit 0 # Exit the script

}

# Catch the SIGINT (Ctrl+C), calling cleanup
trap cleanup SIGINT

# Setup holding state of water dispenser (Green LED ON)
python3 water_dispenser_led.py ON
echo "Water dispenser is ready..."

while true; do

# Detect water bottle and then grab

46



echo "Start detecting the location of water bottle..."
usb_port=$(ls /dev/ttyUSB*)
echo "USB port: $usb_port"
camera1_index=$(v4l2-ctl --list-devices | grep -A 1 ’XWF 1080P

↪→ ’ | tail -n 1)
echo "Camera 1 Index: $camera1_index"
camera2_index=$(v4l2-ctl --list-devices | grep -A 1 ’USB2.0

↪→ _CAM2’ | tail -n 1)
echo "Camera 2 Index: $camera2_index"
python3 detect_grab.py --webcam1 $camera1_index --webcam2

↪→ $camera2_index --usb_port $usb_port

# SSH into the Ubuntu VM to control the Robot Arm (forward to
↪→ the water dispenser)

ssh chris@192.168.137.119 << EOF
source /opt/ros/noetic/setup.bash
source ˜/catkin_robot_arm/devel/setup.bash
rosrun RobotArm_pkg_py RobotArm_forward.py
logout
EOF

echo "Robot arm is moving toward the water dispenser..."

# Start the water dispenser
python3 check_bottle_led.py

# SSH into the Ubuntu VM to control the Robot Arm (back to the
↪→ user)

ssh chris@192.168.137.119 << EOF
source /opt/ros/noetic/setup.bash
source ˜/catkin_robot_arm/devel/setup.bash
rosrun RobotArm_pkg_py RobotArm_back.py
logout
EOF

echo "Robot arm is moving back to the user..."

# Release the water bottle
python3 release_bottle.py --usb_port $usb_port
echo "Water bottle is released..."
echo "Finish"

sleep 60
done

47


	Introduction
	Problem Statement
	Solution Overview
	Visual Aid

	Design
	Block Diagram
	Subsystems Overview
	Camera Subsystem
	Image Encoder Subsystem
	Q-Former Subsystem
	Large Language Model Subsystem
	Text Tokenizer Subsystem
	Speech-to-Text Subsystem
	Microphone Subsystem
	ROS Subsystem
	Text-to-Speech Subsystem
	Voice Player Subsystem
	Universal Robot UR3e Robot Arm Subsystem
	Raspberry Pi Auxiliary Subsystem
	PCB Water Dispenser Subsystem


	Design Details
	Navigation System
	Speech-to-Text and Text-to-Speech Modules
	Navigation Algorithm
	BLIP-2-Based Visual Language Model Deployment
	Apply Acceleration Module
	Design of Real-Time Screenshot Program

	Raspberry Pi Auxiliary System
	System Architecture Overview
	Block Diagram of Overall Work Flow
	Water Bottle Object Detection Task
	Robot Gripper Control
	Communication Setup with ROS System
	Model Selection for Text-to-Speech
	Communication Setup with PCB Water Dispenser System
	Shell Script for the Whole Raspberry Pi Auxiliary System

	PCB Water Dispenser System

	Verification
	Performance of the LVLM
	Performance of the SSD-MobileNet-V2 model
	Loss Figures
	Learning Rate Figure
	Training Process Analysis
	Test Results and Analysis

	Performance of the PCB Board
	Attempts to Improve Brightness
	Possible Causes and Future Steps


	Tolerance Analysis
	Cost Analysis
	Conclusion
	Ethics and Safety
	Ethics
	Safety


	References
	Appendix Team Photo and Introductions
	Appendix Code and Algorithm
	Code for Taking Screenshots
	Main ROS Code to Control the Robot Arm
	Inference Script for TFLite Model
	Bottle Position Detection Algorithm
	Code for Robot Gripper
	Raspberry Pi GPIO Control
	Shell Script Implementation


