
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Image acquisition, 3D reconstruction and
a visual interactive digital heritage

system

Team #9

CHUANRUI CHEN

(cc86@illinois.edu)
DENGLIN CHENG

(denglin3@illinois.edu)
QIANYAN SHEN

(qianyan2@illinois.edu)
ZIYING LI

(ziyingl4@illinois.edu)

Sponsors: Prof. Shurun Tan

May 31, 2024

Abstract

Through 3D reconstruction technology, real-world scenes are transformed into digital
models, enabling intuitive interaction and analysis. In the field of cultural heritage preser-
vation, this technology assists in preserving historical information, restoration, and pro-
tection, while providing researchers with visualization tools. Given the high cost and
complexity of traditional techniques, it is crucial to develop simplified and cost-effective
modeling methods. This project proposes a cultural heritage scanning system, consisting
of scanning hardware, point cloud reconstruction software, and a database interaction
platform, with the aim of preserving cultural artifacts in fine detail and promoting cul-
tural exchange.

i

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Visual Aid . 2
1.3 Functionality . 2
1.4 Subsystem Overview . 3

2 Design 3
2.1 Subsystem Overview . 3

2.1.1 Assistive Scanning Subsystem . 3
2.1.2 3D Reconstruction Subsystem . 6
2.1.3 Database Subsystem . 9
2.1.4 Interactive Interface Subsystem . 12

3 Cost and Schedule 15
3.1 Cost Analysis . 15

3.1.1 Parts . 15
3.1.2 Labor . 15
3.1.3 Total . 15

3.2 Schedule . 16

4 Requirements and Verification 18
4.1 Assistive Scanning Subsystem . 18
4.2 3D Reconstruction Subsystem . 19
4.3 Database Subsystem . 21
4.4 Interactive Interface Subsystem . 22

5 Conclusion 23
5.1 Accomplishment . 23
5.2 Uncertanties . 24
5.3 Future Work . 24
5.4 Ethic Consideration . 24

5.4.1 Ethics . 24
5.4.2 Safety . 25

References 26

Appendix A Requirements 27

Appendix B Algorithms 28

Appendix C Arduino code 32

ii

1 Introduction

1.1 Purpose

Cultural artifacts possess significant historical, cultural, and artistic value. However, due
to the passage of time and the impact of natural deterioration, many artifacts face risks
of damage, loss, or decay. During the course of study, exhibition, and inheritance, arti-
facts may also sustain deterioration and damage to cultural heritage [1]. Additionally,
for history enthusiasts and researchers worldwide, detailed information about specific
artifacts is not readily accessible. Furthermore, traditional photographs often fail to cap-
ture the intricate details of artifacts, hampering comprehensive research and preservation
efforts. Therefore, the conservation and exhibition methods of cultural relics have been
a common concern of scholars around the world.Therefore, our team aims to develop a
system that can generate realistic 3D models of cultural artifacts and provide users with
a user-friendly interactive interface for immersive exploration.

We plan to design a system that can capture the detailed geometric shapes of artifacts
using advanced scanning and 3D reconstruction techniques, and create 3D models. Ad-
ditionally, we need to establish a database to store the collected artifact information and
design a user-friendly interface that allows users to easily browse and interact. This will
enable us to accurately capture and preserve the features of artifacts and provide a plat-
form for enthusiasts to interact with artifacts up close.

Based on the analysis above, our first requirement is an accurate and efficient system for
collecting the visual information of artifacts. We need to address how to handle the posi-
tional relationship between artifacts and cameras, as well as how to convert RGBD data
into 3D models. Therefore, we need a mechanical device that can control the position
and angle of the camera relative to the artifacts. This will help us obtain accurate RGBD
data. Secondly, we need an efficient and accurate system to convert RGBD images into 3D
models. To address this issue, we have employed a point cloud reconstruction method.
Firstly, we obtain point clouds from the RGBD images. After applying filtering and reg-
istering operations to the point clouds, we obtain a complete point cloud. Subsequently,
we do reconstruction on the point cloud, resulting in a meshed model of the artifact that
includes color information.

Nevertheless, considering our goal of better preserving, studying, and disseminating tra-
ditional cultural heritage, having only the 3D model data of artifacts is not enough. We
also need to build a platform to store and render the models and provide interactive pos-
sibilities for users. We will export the reconstructed 3D models and load them into the
database subsystem. Users can search for artifacts of interest in the database, and the
rendered model data from the search results will be displayed in the interactive inter-
face. Users can then appreciate and study the details of the artifacts up close through
operations such as zooming and rotating.

By digitizing cultural heritage and sectors like education and tourism, our technology
can generate greater economic benefits and serve as a strong foundation for the digital
display, dissemination, and preservation of historical relics [2].

1

1.2 Visual Aid

Figure 1: Visual Aid for the whole project

1.3 Functionality

• Overall Outcomes:

The system is capable of reconstructing objects with dimensions (including length,
width, and height) ranging from 5cm to 20cm.

The dimensional accuracy of the obtained 3D models is within 5% error precision.

Our system has the capacity to store information on 2500 artifacts.

• Modeling Outcomes and User Experience:

The database securely stores information of cultural artifacts and their correspond-
ing 3D models.

The system responds to searches within 3 seconds, displaying the 3D models and
artifact information.

Users can search for specific heritage items using keywords on the website.

• Hardware Level:

The minimum response time for real-time control is less than 200 milliseconds.

The rotation accuracy is within ±1 degree.

The rotation speed can reach up to 15 degrees per second.

2

1.4 Subsystem Overview

Figure 2: Block Diagram

Our system consists of four subsystems: the Assistive Scanning subsystem, based on
hardware, designed with a mechanical gimbal to support the camera for easy positioning
of the camera and artifacts. The 3D Reconstruction subsystem obtains data from RGBD
cameras, generates point clouds, and completes the reconstruction process. The Database
subsystem stores 3D models and artifact information, providing basic functionalities such
as adding, deleting, querying, and modifying data. The Interactive Interface subsystem
handles webpage design, model rendering, and basic interactions.

2 Design

2.1 Subsystem Overview

2.1.1 Assistive Scanning Subsystem

In the evolving field of dynamic imaging technology, precision and stability are paramount.
The design and implementation of a self-stabilized gimbal represent a sophisticated blend
of mechanical design, electronic control, and software engineering aimed at achieving
high-quality motion compensation for cameras. This paper explores the intricate mathe-
matical principles and control mechanisms that form the backbone of a gimbal’s ability
to maintain camera stability even when its base is in motion.

3

At the heart of the gimbal’s control system lies the MPU6050 sensor module, which serves
as the pivotal element for orientation detection. This sensor is adept at measuring both
angular velocity and linear acceleration via its built-in gyroscope and accelerometer. The
data obtained from the MPU6050 are critical in computing the necessary adjustments
required to maintain the camera’s orientation relative to a reference plane. The gimbal
structure comprises three servo motors aligned along the Z, Y, and X axes. These motors
are responsible for the precise manipulation of the camera’s positioning, ensuring that the
camera plane remains parallel to the base plane at all times. The alignment and opera-
tion of these servos are crucial for counteracting any abrupt or gradual movements of the
base, thereby stabilizing the visual field of the camera. The effectiveness of a gimbal in
stabilizing images relies heavily on the real-time processing capabilities of its control sys-
tem. This system calculates the deviations from the desired orientation by continuously
monitoring the sensor outputs. An advanced algorithm interprets these deviations and
converts them into control signals that adjust the servos on the Z, Y, and X axes.

The Arduino code forms the operational core of the gimbal, interfacing directly with
the hardware to execute the control strategies developed. Initialization routines prepare
the system by setting up communication protocols via the I2C interface, configuring the
MPU6050 sensor, and calibrating the servo motors to their neutral positions. The main
operational loop of the code listens for data from the MPU6050. When new data is de-
tected, it processes this information to determine the current orientation of the camera.
Depending on how this real-world orientation deviates from the target, the code calcu-
lates the necessary adjustments and commands the servo motors to realign the camera
appropriately. The practical implications of these mathematical and control strategies are
profound in applications requiring high precision and stability in image capture, such as
in aerial photography, filmmaking, and robotic vision systems.

Figure 3: Schematic Representation of the Gimbal Mechanics and Sensor Placement

4

Figure 4: Structural Failure Analysis and Re-
inforcement

Figure 5: Initial and Upgraded 3D Printed
Components

The design and fabrication of the 3D-printed parts for this self-stabilized gimbal illustrate
the iterative nature of engineering prototypes, highlighting the blend of practical testing
and theoretical design. This section provides a comprehensive overview of the 3D printed
components, the challenges encountered, and the iterations made to enhance the gimbal’s
performance and durability. The gimbal’s structure comprises primarily white and yel-
low parts, all of which were meticulously designed and printed using a 3D printer. These
components include the arms and mounts for the servo motors, as well as the chassis
that houses the electronic components and provides a stable base for the gimbal mecha-
nism.

One of the critical challenges faced during the testing phase was the breakage of a servo
motor arm on one of the white parts. This incident occurred during a test run where the
battery’s failure led to a sudden loss of power, resulting in insufficient torque being de-
livered by the servo motor. Consequently, the entire assembly, including the gimbal and
the camera, crashed to the ground. This event prompted a reevaluation of the structural
integrity of the gimbal. In response to the breakage, the thickness at the fracture point
was increased. This modification was aimed at providing additional strength where the
servo motors are mounted with M3 screws and nuts, ensuring that the parts could with-
stand greater forces during operation. This adjustment is highlighted in the images of
the white and yellow parts, which show the areas that were thickened to prevent future
failures. The incident also led to considerations regarding the operational torque of each
servo motor. To achieve a more stable operation and minimize the risk of mechanical
failures, the torque settings of the servo motors were adjusted.

The circuit diagram provided illustrates the complete electronic configuration for con-
trolling the self-stabilized gimbal, featuring a dual 3.7V Li-ion battery setup connected
in series for enhanced voltage suitable for powering the servos and the control logic.
Integrated into this system is a TP4056 Type-C charging module for efficient battery man-
agement and recharging capabilities. Voltage regulation is achieved via a dedicated con-

5

verter, ensuring that both the Arduino Nano and the servos operate at optimal voltage
levels. The Arduino Nano serves as the brain of the operation, processing input from the
MPU6050 sensor, which tracks orientation and motion. Based on this data, the Arduino
dynamically adjusts the positions of the servos across the X, Y, and Z axes to stabilize the
camera effectively against movements.

Figure 6: Mass center of the
camera

Figure 7: circuits with physical PCB

2.1.2 3D Reconstruction Subsystem

Figure 8: Block Diagram for 3D Reconstruction Subsystem

This subsystem aims to acquire point clouds through RGBD images and utilize them for
3D reconstruction.

The system takes depth images and colour images as input from the RGBD camera sup-
ported by the Assistive Scanning Subsystem. In order to generate 3D models with lower

6

errors, the system not only needs to acquire point clouds and perform 3D reconstruc-
tion on them but also employs various algorithms for denoising and smoothing the point
clouds.

We choose Kinect v2 as our RGBD camera. We need to obtain the depth and colour frame
sequences of the rotating objects using the Kinect SDK, and then map the pixels on each
depth image to 3D space through coordinate transformation to obtain the initial point
cloud. Since we also need the artifact texture information, we also need to perform a
mapping between the depth image and the colour image to obtain the colour information
for each 3D point. Then we store the spatial position and colour information of each point
in the point cloud created by PCL or Open3D.

(a) 1920 * 1080 input
Color Image

(b) 512 * 424 input Depth
Image

(c) Retriving Point Cloud

Figure 9: Chair Example for Point Cloud Retriving

After obtaining the initial point cloud, we first need to separate the point cloud of the de-
sired object from the background. In order to do this, we need to simultaneously acquire
a background point cloud without the target object A and a point cloud with the target
object B. Then we need to register the point cloud A and B. The result is two point clouds
with a uniform coordinate system. We make a difference between the two point clouds
to get a different region [3]. Then a clustering operation is performed on this point cloud
difference to get the point cloud cluster with the closest distance to the center of the object
and the highest number of points, i.e., the point cloud data of the target object.

Figure 10: Point clouds of chair from different viewpoints

After segmentation the point cloud is first denoised. Statistical methods are used to find
the Outlier. Specifically a statistical analysis of the neighborhood of the points is needed

7

to eliminate the points that do not meet specific criteria [4]. We calculate the average dis-
tance from each point to all its neighbors. The resulting distance distribution is assumed
to follow a Gaussian distribution with a mean and a standard deviation. Any point that
exceeds the interval defined by the standard deviation can be recognized as an outlier
and subsequently removed.

Since the scans are performed from different viewpoints, the obtained point clouds often
have separate local coordinate systems and need to be converted to uniform global coor-
dinates, a process known as point cloud registration [5]. We perform Coarse registration
first and Fine registration later. The core idea is to iterate the nearest point method to
make two point clouds close to each other, and finally minimize the distance error be-
tween two point clouds. However, the problem of this operation is that it is easy to fall
into the local optimization and lack of overlapping region, which leads to poor alignment
accuracy. Therefore, it is more suitable for objects with distinctive structural features. For
objects with regular shapes (e.g. vases and water bottles), we need to select overlapping
regions with clear features for registration, and then apply the Transformation matrix
obtained from the registration to the source point cloud.

Figure 11: Registered Point clouds of chair from different viewpoints

We use the Ball Pivoting Algorithm (BPA) and the Poisson Surface Reconstruction Al-
gorithm for reconstruction part. The BPA algorithm [6] starts from a seed triangle and
defines a rolling ball with radius r. The ball is rolled along the edges, and it is determined
whether there are other points inside the ball to form a new triangle. repeated until all
points are included in the triangle mesh. The BPA algorithm works well for uniformly
distributed point clouds, but it becomes challenging to choose an appropriate rolling ball
radius for non-uniform point clouds, which affects the quality of the 3D model.

8

(a) Reconstruc-
tion Result of
BPA

(b) Reconstruc-
tion Result of
Poisson

(c) Reconstruc-
tion Result of
Poisson re-
moving low
densities part

(d) Real Color
image of This
Ornament
(mirrored)

Figure 12: Example for Reconstruction

Poisson Surface Reconstruction [7] is a commonly used 3D reconstruction method for
generating smooth surface models from point cloud data. It is based on the numerical
solution of Poisson’s equation, which infers the interior of the surface by considering the
point cloud data as boundary conditions of the surface. The advantage is the ability to
handle irregularly distributed point cloud data and generate smooth surface models. The
disadvantages are but slower processing speeds and the inference of non-existent regions
in low-density point cloud regions, which need to be additionally removed.

Existing commercial depth sensors assume that target objects have Lambertian reflective
surfaces. These depth sensors cannot work properly when facing objects that produce
strong specular reflections or transparent objects. This is because the surfaces of these
objects cannot provide uniform diffuse reflection, resulting in a failure of depth measure-
ment [8]. Therefore, the major defect of this subsystem, and the main defect of existing
depth sensors, is the inability to work properly on non-Lambertian reflective surfaces,
which limits the system’s application in a wider range of scenarios. To address this de-
fect, we can propose an alternative approach using artificial intelligence methods, such
as Neural Radiance Fields (NeRF) [9]. By training on RGB images of objects taken from
different viewpoints and camera poses, NeRF learns a radiance field function that rep-
resents the color value and volume density corresponding to any spatial position and
viewing direction. During the optimization process of minimizing the error between the
radiance integral projected onto each pixel and the input RGB images, the algorithm can
effectively capture any visual phenomena, including non-Lambertian surfaces.

2.1.3 Database Subsystem

The database subsystem is responsible for two main things: first, it aims to store the basic
information of the artifacts, including countries, historical backgrounds, etc., and at the
same time save the generated complex 3D model data; and, it deploys the back-end of the
website so that the front-end can retrieve information from the database.

9

The data generated by the 3D Reconstruction Subsystem will be loaded into the Database
Subsystem. With this database, users can search and view artifacts from exotic coun-
tries. Based on this requirement, we opted for Relational Cloud Database RDS MySQL
(RDS). However, it is primarily designed for storing structured data and is generally not
suitable for directly storing large files or unstructured raw file content. Therefore, we also
adopted Object Storage Service (OSS) to address this need. OSS can store files of any
type, including OBJ format files generated by 3D modeling software. OSS provides data
upload, download, management, and distribution services based on HTTP RESTful API,
allowing OBJ format files to be directly uploaded to OSS buckets [10]. RDS can store URL
links pointing to OBJ files in OSS. This allows RDS to record the storage location informa-
tion of OBJ files in OSS, achieving data association between the relational database and
object storage. Therefore, in our Database Subsystem, RDS stores metadata of the model
(such as model ID, name, historical background, etc.) and the URL link, while OSS stores
the model files themselves. By recording the URL or other reference information of OSS
objects in RDS, it enables the database to locate and retrieve the corresponding OBJ model
files during queries.

Our database design contains one table, ”Artifacts”, which has ”ID” as the primary key.
The attribute ”Link” represents the link to the corresponding OBJ files returned by the
object-based storage. ”Name”, ”Year”, ”Country” and ”Historical background” are vital
information about artifacts. The relationship is shown in the ER diagram below:

Figure 13: Entity-Relationship Diagram

In addition, for the creation and management of running virtual server instances, we
also utilized Elastic Compute Service (ECS). With 1M external bandwidth, it can meet
the concurrent access of 10-15 people online at the same time. These servers not only
support concurrent user accesses but are also highly flexible, accommodating various op-
erating systems and application software for easy scalability. They can seamlessly adapt
to changes in resource demands due to business growth [11]. We have selected the BT
Panel image for ECS, which is a server management software supporting both Windows
and Linux systems. It allows for easy server management through a web interface, en-
hancing operational efficiency. To enable internal network communication between ECS
instances and RDS instances, the network type of the RDS instance is fixed to a Virtual
Private Cloud (VPC) and configured to be the same VPC as the ECS instance. Moreover,
the private IP address of the ECS instance must be added to the IP whitelist of the RDS

10

instance to allow the ECS to access the RDS instance properly [12].

To deploy our website, I have chosen PM2, an open-source application process manager
based on Node.js [13]. PM2 includes a comprehensive set of features such as daemoniza-
tion, monitoring, and logging. If a Node.js application crashes or stops for any reason,
PM2 can automatically restart the application, ensuring continuous availability of the
service. PM2 allows developers to update Node.js applications to new versions without
stopping the current service, which is crucial for services that need to run 24/7. Addi-
tionally, PM2 provides log management functionality, making it more convenient to track
and debug applications in a production environment. Once the ports configured in the
ECS security group are added to PM2, our website will be accessible normally.

Figure 14: Overview of Database Subsystem

In order to provide a more detailed explanation of the interaction process between the
Database Subsystem and other subsystems, I will proceed to separately explain the in-
teraction between the Database Subsystem, the 3D Reconstruction Subsystem, and the
Interaction Interface Subsystem.

Regarding the interaction process between the Database Subsystem and the 3D Recon-
struction Subsystem, this process is realised through the corresponding page on the web-
site (as shown in figure 15a below), where Obj files from 3D Reconstruction Subsystem
uploaded through the upload button on the website are uploaded to the node.js server
via the Multer storage engine, and then uploaded to the OSS via the Alibaba Cloud ali-
oss SDK. After that, OSS generates a URL signature which is then stored in RDS with
SDK.

11

(a) Web page for showing information on all arte-
facts from the database

(b) Web page for showing information on all arte-
facts from the database

Figure 15: Database-related web pages.

Figure 16: User search sequence diagram

For interaction between Database Subsystem and the Interaction Interface Subsystem, the
detailed process is shown in figure 16. Users first input the ID of the artifact they want to
search for on our website. Then, ECS forwards this information to RDS, which retrieves
and finds the corresponding artifact information from its own database. If the retrieval
fails, an error is returned to the webpage. If successful, the corresponding URL link is
used to retrive the OBJ file. The website takes all the information about the artefacts from
the RDS and displays it in a tabular form on the web page, and the corresponding page
is shown according to figure 15b.

2.1.4 Interactive Interface Subsystem

The Interactive Interface Subsystem is responsible for facilitating user interaction with the
visual heritage system. It provides a graphical user interface (GUI) through which users
can search for artifacts, view relevant information, and explore 3D models. This subsys-
tem interprets user requests, retrieves data from the Database Subsystem, and renders
3D models along with accompanying information. It also incorporates interactive control

12

functions to enhance the user experience.In the design of the Interactive Interface Sub-
system, we opted to utilize the Express framework combined with WebGL technology to
achieve graphical rendering and web development.

The workflow of the Interactive Interface Subsystem involves two crucial stages. Firstly,
user interaction design ensures an intuitive interface, allowing easy browsing of artifacts
and interaction with 3D models. Upon user requests, the subsystem communicates with
the Database Subsystem to retrieve artifact information, including OBJ format 3D model
files. We use Express framework here. The Express framework is a JavaScript library
that supports a component-based development approach. This method simplifies the
construction of user interfaces, making them more modular and enhancing application
performance and maintainability.

Secondly, rendering 3D model files onto the user’s screen is critical. This involves han-
dling vertex, texture, and normal information from OBJ files and applying shaders for
visualization. Here we choose to use WebGL as the API. This web-based graphics ren-
dering technology allows the creation of 3D and 2D graphics using JavaScript and the
OpenGL API within a web browser. As WebGL operates on the underlying GPU, we use
GLSL language to implement paired vertex and fragment shaders. The vertex shader cal-
culates the position of vertices, while the fragment shader computes the color value of
each pixel in the currently drawn primitive. WebGL then rasterizes primitives and then
shaders automatically perform viewport mapping to convert to Screen Space.

Figure 17: Website 3D Model Example

The following words show technology details of this subsystem. OBJ file is a standard
format for representing 3D geometry. Parsing OBJ files involves extracting essential data
like vertex positions, texture coordinates, normals, and colors. The process systematically
handles each line of the OBJ file, identifying keywords (including v, vn, f, etc.) and their
corresponding arguments, and organizes the parsed data into suitable data structures for
utilization in WebGL. For each line in the OBJ file, the line is parsed to extract the keyword
and arguments. If the keyword is a known OBJ keyword, the corresponding handler
function is called with the arguments; otherwise, the line is skipped. After processing
all lines, empty arrays are removed from the geometries, and the material libraries and

13

geometries are returned. These information will be stored in the buffer if needed and
GLSL shader will operate them.

Handling and rendering OBJ files on the webpage involve several detailed steps. JavaScript
parses the obj file as previously mentioned. WebGL is prepared by creating a canvas ele-
ment and acquiring context, storing parsed data in buffers for 3D model rendering. The
camera’s position, orientation, and projection matrix are established for scene projection.
Interactive features are implemented, allowing users to dynamically manipulate the scene
via sliders, controlling rotation angles and camera position. There are three sliders on the
screen, including X-axis rotation, Y-axis rotation, and model size. The model can rotate
along the x-axis and y-axis both for 360 degrees, with a step of 0.1, and the size slider is
used to zoom in and zoom out. Subsequently, WebGL draws the scene by passing ver-
tex data, shader programs, and camera projection information to the GPU. Continuous
updates ensure real-time responsiveness to user interactions by computing the new pro-
jection (based on new model size slider input) and view matrices (based on new x and y
rotation angle slider inputs). Figure 17 is a 3D model example on the webpage.

Figure 18: Website UI Structure

Finally, the design of website structure offers a seamless journey. The structure is shown
in figure 18. Users start at the welcoming page, then proceed to the mode choice page,
offering options to explore existing artifacts or contribute new ones. Exploring artifacts
leads to a search page with a database of artifacts. Users can locate artifacts quickly by
ID, accessing detailed information including ID, name, country, year, background, and
interactive 3D models for exploration. Alternatively, users can contribute artifacts by
uploading OBJ files and relevant information on a dedicated page. Submitted artifacts
enrich the platform’s collection, aiding in the preservation of cultural heritage. Consis-
tent navigation via a back button ensures an intuitive experience, allowing users to easily
navigate back through their exploration or contribution journey. This streamlined struc-
ture ensures a seamless and user-friendly experience, facilitating both exploration and
contribution efforts.

14

3 Cost and Schedule

3.1 Cost Analysis

3.1.1 Parts

Table 1: Cost Analysis table listing all parts

Description with Manufacturer and Part # Quantity Unit Cost Total Cost

#GM2804 Brushless Motor with AS5600 Encoder 3 ¥103.9 ¥311.7

42 Stepper Motor #S42H40D20 3 ¥53 ¥159

Arduino Nano Development Board 2 ¥29.5 ¥59

Servo #MG996R 4 ¥18 ¥72

#MPU6050 Module 2 ¥35.7 ¥71.4

Dupont Cables 1 ¥16 ¥16

Microsoft Xbox Kinect Sensor and Adapter 1 ¥770 ¥770

Alibaba Cloud Elastic Compute Service 1 ¥162 ¥162

Alibaba Cloud RDS MySQL 1 ¥99 ¥99

Alibaba Cloud Object Storage Service 1 ¥4.98 ¥4.98

Website Domain Name Registration 1 ¥12 ¥12

Total ¥1737.08

3.1.2 Labor

According to the 2023 China Undergraduate Employment Report[14], the average monthly
salary for undergraduates is 5990 CNY, or 34.56 CNY per hour. four of us in our group
work an average of 2 hours a day, 5 days a week. Our weekly salary is 2× 5× 5× 34.56 =
1382.4 CNY. For a total of nine weeks of work, our salary is 9×1382.4 = 12441.6 CNY.

3.1.3 Total

Based on the above analysis, we can get the total cost of the whole project is 14178.68
CNY.

15

3.2 Schedule

Table 2: Schedule

Date Chuanrui Chen Denglin Cheng Qianyan Shen Ziying Li

Week 1
(3.11 − 3.17)

Decide to use
Vue and Visual
Studio Code to
design UI sys-
tem.

Select and pur-
chase modules,
motors, and
other system
components.

Buy Kinect and
connect it to
your computer,
install and learn
to use the SDK

Discuss with
professors and
settle the struc-
ture of Database
Subsystem.

Week 2
(3.18 − 3.24)

Learn based
Html, CSS,
JavaScript lan-
guage and
build the basic
page of website

Design subsys-
tem architecture
and planned for
future motor
upgrades.

Get colour and
depth informa-
tion from Kinect
and visualising
it

Decide to
use RDS,
OSS, and ECS
servers from
Alibaba Cloud;
ensure the
environment
deployment
of a MySQL
database and
the object-based
storage.

Week 3
(3.25 − 3.31)

Finish building
the html page
and try to build
the front end
structure.

Begin MPU6050
integration
and code de-
velopment for
motion track-
ing.

Get the point
cloud from the
camera and
save it locally

Ensure the
functionality of
RDS MySQL
server and OSS
server.

Week 4
(4.1 − 4.7) Finish building

the the front
end structure.

Implement
MG996R servo
motor control
and conducted
initial tests.

Simple process-
ing of point
clouds and
exploring regis-
trations

Ensure the
interaction be-
tween MySQL
database in-
stance and
backend using
cloud server.

Week 5
(4.8 − 4.14) Make sure the

webpage can
communicate
with database
through API.

Calibrate sen-
sors and fine-
tune servo
responses for
accuracy.

Registration
and post-
processing of
point clouds

Ensure the
interaction be-
tween frontend
and backend
(stage 1).

Continued on next page

16

Table 2 – continued from previous page

Date Chuanrui Chen Denglin Cheng Qianyan Shen Ziying Li

Week 6
(4.15 − 4.21)

Make sure 3D
model can be
displayed on
the webpage
smoothly.

Assemble pro-
totype; test
MPU6050 and
servo interac-
tion.

Explore re-
construction
algorithms to
reconstruct
point clouds

Ensure the
interaction be-
tween frontend
and backend
(stage 2).

Week 7
(4.22 − 4.28)

Decorate the
webpage and
add more func-
tions.

Analyze, op-
timize perfor-
mance, and
begin stress
testing.

Interface with
Assistive Scan-
ning Subsystem
to organise the
whole process

Make sure the
functionality of
the whole sub-
system.

Week 8
(4.29 − 5.5) Interface with

3D Reconstruc-
tion Subsystem
and Database
Subsystem for
the whole pro-
cess.

Initiate stepper
or brushless
motor integra-
tion and testing.

Interface with
Database Sub-
system and
Interactive
Interface Sub-
system.

Interface with
3D Reconstruc-
tion Subsystem
and Interactive
Interface Sub-
system.

Week 9
(5.6 − 5.12) Organize and

prepare the
Final Demo and
Report.

Conduct com-
prehensive tests
and prepare the
Final Demo and
Report.

Organize and
prepare the
Final Demo and
Report.

Organize and
prepare the
Final Demo and
Report.

17

4 Requirements and Verification

4.1 Assistive Scanning Subsystem

Table 3: Requirements and Verifications table for Assistive Scanning Subsystem

Requirement Description Verification Procedure

1 Arduino Nano must receive a stable 5V
supply, to maintain operational stability
and prevent damage to the board

Verify voltage post-buck converter using
a multimeter

2 MPU6050 must accurately capture mo-
tion data within manufacturer specifica-
tions, ensuring precise control and feed-
back for motor movement

Conduct calibration tests using Arduino
software to verify accuracy of MPU6050
readings against known motion pat-
terns.

3 Servos must respond accurately to con-
trol signals within their operational
range, to achieve the desired angular po-
sitioning for the scanning functionality.

Test servos using a 270 degrees of mo-
tion simulation and measure actual an-
gles with a protractor or similar preci-
sion instrument.

4 Subsequent versions may use better ser-
vos, subject to power and performance
requirements.

Compare servo specifications, such as
torque and speed, to ensure they meet
system requirements for future up-
grades

The system meet rigorous performance specifications and ensure robust functionality
across its multiple components. Central to its design is the Arduino Nano, which re-
ceives a steady 5V supply from a voltage converter, safeguarding the system’s stability
and the board’s integrity. The MPU6050 sensor plays a critical role in motion detection,
with its outputs finely tuned to match manufacturer standards through precise calibration
processes. This ensures the servos receive accurate data for real-time adjustment of the
camera’s orientation, allowing the gimbal to respond swiftly and accurately to changes in
movement across its operational range.

In enhancing the performance and reliability of system, we explored different servo mo-
tor options, each offering varied capabilities and costs, tailored to the specific demands
of the system. The initial configuration used the MG996R servo motor, a cost-effective
choice at 18 CNY each. The MG996R operates within a voltage range of 4.8V to 6V, de-
livering a torque of 9.4 kg-cm at 4.8V and 11 kg-cm at 6V, with a speed of 0.17 seconds
per 60 degrees rotation at 4.8V and 0.14 seconds at 6V. Despite its affordability, this motor
provided the basic functionality required for early testing and development phases. For
more demanding applications, we upgraded to the N6020KG servo, priced at 148 CNY
each. This servo offers enhanced performance characteristics, suitable for applications
requiring more precision and higher torque. It operates efficiently across a voltage range
of 5V to 8.4V, achieving a torque of up to 25 kg at 8.4V, with a speed improvement notice-

18

able as the voltage increases from 5V to 8.4V. The pinnacle of our servo selection is the
T80 brushless motor, which costs 205 CNY each and is designed for top-tier applications.
This motor delivers exceptional torque and speed, crucial for the gimbal’s high-end per-
formance. Operating at voltages between 6V and 8.4V, the T80 provides a torque range
from 63 kg at 6V to 78 kg at 8.4V, with a consistent decrease in speed from 0.16 to 0.14
seconds per 60 degrees as voltage increases, ensuring both power and precision in the
stabilization process. These upgrades reflect our commitment to optimizing the gimbal’s
performance across various operational contexts.

Figure 19: Two upgrades on servos

4.2 3D Reconstruction Subsystem

Table 4: Requirements and Verifications table for 3D Reconstruction Subsystem

Requirement Description Verification Procedure

1 The subsystem can convert 1920 ∗ 1080
colour images and 512 ∗ 424 depth im-
ages into point clouds.

For the subsystem, it is necessary to
show the acquired colour and depth
images, save and display the acquired
point cloud.

2 The subsystem converts the point cloud
into a smooth as possible 3D model.

The subsystem needs to visualize the re-
construction results. Manual checking
of the model for continuity and smooth-
ness.

3 The subsystem is capable of converting
point clouds with 10,000 points or more.

Input large-scale point cloud data to
observe the processing power and effi-
ciency of the subsystem.

4 The reconstructed model can be saved as
OBJ and other formats for storage in a
database and visualisation in the inter-
active interface subsystem.

The saved model can be imported into
professional software for visualisation in
OBJ format.

19

The 3D reconstruction subsystem should be able to convert point clouds with more than
10,000 points into OBJ format. Figure 5 is the vertex counts of each reconstructed OBJ
file, which represents the number of points in the original point cloud before reconstruc-
tion.

Table 5: The number of points in meshed point clouds

Stone Ornament Chair Cup Pen Container Vase

69132 178630 15171 13498 96944

Below is the dimensional error analysis for the four models including length width and
height, the average error for all three dimensions is 3.84% which is within the high-level
requirements target range. The result shows in Figure 6.

Table 6: Error analysis of the Models

Model Name Height Width Length

Measured(cm) Real(cm) Errors (%) Measured(cm) Real(cm) Errors (%) Measured(cm) Real(cm) Errors (%)

Stone Ornament 23.86 24.90 4.17 8.10 7.60 6.58 16.16 15.70 2.55

Cup 10.16 10.10 0.59 8.37 8.50 1.53 12.93 12.20 5.98

Pen Container 9.50 9.70 2.06 10.80 10.50 2.86 10.30 9.70 6.19

Vase 26.21 24.80 5.60 14.60 13.90 5.04 14.19 13.90 2.09

Chair 81.43 80.00 1.79 59.31 56.50 4.97 54.29 56.50 3.91

Fan 32.82 32.50 0.92 10.45 9.60 8.85 19.14 18.50 3.46

Mean Errors (%) 2.52 4.97 4.03

20

4.3 Database Subsystem

Table 7: Requirements and Verifications table for Database Subsystem

Requirement Description Verification Procedure

1 The subsystem should be able to store
OBJ files in Object Storage Service (OSS).

Manually check if the OSS stores the OBJ
files successfully.

2 The subsystem should be able to store
the metadata and the URL links that re-
turned by OSS.

Manually check if RDS stores the meta-
data and the URL links that returned by
OSS.

3 The subsystem should be able to retrieve
artifacts based on user search queries.

Manually check if the database correctly
retrieve artifacts based on user search
queries.

4 The subsystem should be able to estab-
lish a interaction between the database
subsystem and the Interactive Interface
Subsystem.

Manually check if the subsystem can
provide data to the Interactive Interface
Subsystem for artifact viewing.

Figure 20: Verification for requirement 1

Figure 21: Verification for requirement 2

21

Figure 22: Verification for requirement 3

Figure 23: Verification for requirement 4

4.4 Interactive Interface Subsystem

Table 8: Requirements and Verifications table for Interactive Interface Subsystem

Requirement Description Verification Procedure

1 The subsystem shall provide a search bar
for users to search artifacts by keywords.

Verify that the search bar is visibly
present on the website’s interface and
that users can input keywords to initiate
a search.

2 The subsystem shall display 3D models
and relevant information within 3 sec-
onds of initiating a search.

Conduct performance testing to measure
the time it takes for the website to load
search results and verify that it meets the
specified requirement.

3 Users shall be able to manipulate and ex-
plore 3D models using interactive con-
trols such as zooming and rotating.

Perform user testing to ensure that in-
teractive controls for zooming, rotating,
and panning 3D models are functional
and intuitive to use.

4 The subsystem shall allow users to nav-
igate back from the result page to the
search page.

Manually test the website’s navigation
functionality to confirm that users can
return to the search page from the result
page using provided controls or browser
features.

22

Pictures below are verifications for requirement 1,3 and 4. For requirement 2, it can be
verified by entering our website and counting time.

Figure 24: Verification
for requirement 1

Figure 25: Verifica-
tion for requirement
3

Figure 26: Verification
for requirement 4

5 Conclusion

5.1 Accomplishment

Our project has designed and realized a complete set of facilities, including scanning
instruments, reconstruction software, a complete process with a database and a front-
end ui web page. It provides a cheaper and more personalized option for individual
enthusiasts and museums. This enables the recording and sharing of information about
artifacts around the world.

Scanning head can realize real-time control in 200 milliseconds, precise control of the
platform’s rotary movement, the rotation angle changes in the range of ± 1 degree, the
speed can reach 15 degrees per second, in order to fully cover the cultural relics. Equipped
with RGBD camera, the accuracy is in mm level and the depth range is 0.5-4m, which
can meet the general interactive and recording requirements. The provided point cloud
reconstruction software can restore the original color point cloud from the depth map
and color images provided by the camera, and provides users with an easy-to-use and
personalized processing flow.

In addition to ensuring the record and protection of cultural relics, we have also built a
supporting front and back end for display and dissemination. This includes a database
that can support the storage of more than 2500 models, and the ability to view artifact
profiles and realize user interactions such as rotation and zoom. The database and web-
page also support searching for specific artifacts and uploading one’s own models and
background information. Through these features, we are able to provide a comprehen-
sive display and dissemination platform that allows users to conveniently browse, inter-
act and share information about cultural relics, and promotes the wide dissemination of
cultural relics and the transmission of culture.

23

5.2 Uncertanties

We are aware of the issues with the current gimbal system, primarily concerning its stur-
diness and durability. The 3D-printed components are prone to breakage and are unable
to meet the requirements for long-term stable operation. Additionally, the motors lack
sufficient power and the support for the camera is inadequate, resulting in an unstable
center of gravity for the gimbal.

The reconstruction is faster and more effective when doing large, more distinctive struc-
tural features, simple colors, and less reflective objects. Such as antique furniture, large
sculptures, etc. For objects with fine textures, such as colored glaze vases, details need to
be obtained through a lot of repeated sampling. For objects with detailed texture engrav-
ing, the detail requirements cannot be met. For objects that may cause strong specular
reflection, such as ceramic mugs, holes are created. For objects that produce weak specu-
lar reflection, color distortion is produced. Also the color will react to changes in lighting
and will not accurately get the true color of the object.

5.3 Future Work

To enhance the gimbal system, it is necessary to use stronger and more durable mate-
rials, significantly improving the structural integrity of the gimbal. This will ensure its
ability to withstand demanding usage conditions and maintain stability over extended
periods. Additionally, improvements in power supply management and motor control
are required to optimize the overall functionality of the system, ensuring efficient power
utilization and precise control.

For the 3D reconstruction component, real-time capability and reducing manual parame-
ter matching should be considered in the future. Introducing a motorized rotating turntable
can be beneficial, ensuring that the turntable’s rotation speed matches the data acquisi-
tion speed of the scanning algorithm, enabling automated scanning and reconstruction.
Development of adaptive algorithms can be pursued to utilize different parameters for
point clouds with varying sparsity. Additionally, incorporating image feature recogni-
tion can assist in selecting parts with significant matching features as alignment targets,
reducing the need for manual selection and alignment.

For databases, establishing a connection between the local and cloud environments is
also crucial. If it is possible to achieve direct communication between the reconstruc-
tion software and the backend database, it will make the entire process more coherent
and complete. Due to the large memory footprint of stored models, optimizing network
configurations to improve access time is necessary.

5.4 Ethic Consideration

5.4.1 Ethics

In accordance with term 3 of the IEEE Code of Ethics, we pledge to ”avoid real or per-
ceived conflicts of interest whenever possible, and to disclose them to affected parties

24

when they do exist” [15]. This commitment underscores our commitment to cultural sen-
sitivity and awareness, guaranteeing that our scent cues are designed to be culturally
respectful and appropriate in diverse contexts.

Furthermore, we consider the risk of unintended negative consequences arising from the
misuse of emerging technologies. Hence, we follow term 6 of the IEEE Code of Ethics,
which requires us to ”enhance our technical competence and accept technological assign-
ments only when qualified by training or experience, or after full disclosure of pertinent
limitations” [15]. This ensures that our technology is exclusively provided to certified
organizations and companies, minimizing the potential for misuse.

Meanwhile, in line with ACM and IEEE ethics, we will maintain transparency in our
operations and communications. As stipulated by the ACM Ethics guidelines, term 3, we
will ” Be honest and trustworthy,” [16] providing full disclosure of system capabilities
and limitations. Similarly, the IEEE Ethics guidelines, term 5, demands that we ” seek,
accept, and offer honest criticism of technical work, to acknowledge and correct errors”
[15] .

Finally, by following both the IEEE Ethics guidelines [15] and ACM Ethics guidelines [16]
, we aim to ensure that our technology not only advances in its technical capabilities but
also contributes positively to society and operates within the highest standards of ethical
conduct.

5.4.2 Safety

• Electrical Safety: Given our system’s reliance on electronic components, we imple-
ment measures to prevent electrical shocks and hazards, ensuring all components
are properly insulated and comply with relevant safety standards.

• Mechanical Safety: Our system includes moving parts; thus, we ensure these com-
ponents are securely enclosed to prevent accidental injuries during operation.

• Environmental Safety: In project design and implementation, we adhere to the
guidelines of ACM and IEEE regarding environmental sustainability [15][16]. We
carefully use materials such as lithium batteries to prevent environmental hazards.
We also select Polylactic Acid materials for 3D printed components, which are biodegrad-
able and recyclable, to promote ecological friendliness and sustainable develop-
ment.

• Data Security: To protect sensitive information collected during scanning, we em-
ploy robust security measures to prevent data breaches and unauthorized access.

• User Training: Comprehensive training for all users is essential to safely operate the
3D scanner, emphasizing awareness of potential hazards and adherence to estab-
lished safety protocols.

25

References

[1] W. Li, “Application of virtual reality technology in the inheritance of cultural her-
itage,” in Journal of Physics: Conference Series, IOP Publishing, vol. 1087, 2018, p. 062 057.

[2] J. Sun and H. Kim, “Digital display design of historical relics—using artistic pro-
jection of historical relics as an example,” TECHART: Journal of Arts and Imaging
Science, vol. 9, no. 1, pp. 35–48, 2022.

[3] Open3d pull request #1884 commits, Accessed on 2024-05-21. [Online]. Available: https:
//github.com/isl-org/Open3D/pull/1884/commits.

[4] Point Clouds. “Statistical Outlier Removal.” (), [Online]. Available: https : / / pcl .
readthedocs . io/projects/tutorials/en/latest/statistical outlier.html (visited on
03/27/2024).

[5] Unknown, 02-introduction to point cloud registration - heima robotics — pcl-3d point
cloud, Online, [Accessed on: Insert Date], Unknown. [Online]. Available: https://
robot.czxy.com/docs/pcl/chapter03/registration intro/.

[6] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The ball-pivoting
algorithm for surface reconstruction,” IEEE transactions on visualization and computer
graphics, vol. 5, no. 4, pp. 349–359, 1999.

[7] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in Pro-
ceedings of the fourth Eurographics symposium on Geometry processing, vol. 7, 2006.

[8] X. Liu, R. Jonschkowski, A. Angelova, and K. Konolige, “Keypose: Multi-view 3d
labeling and keypoint estimation for transparent objects,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 11 602–11 610.

[9] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng,
“Nerf: Representing scenes as neural radiance fields for view synthesis,” Communi-
cations of the ACM, vol. 65, no. 1, pp. 99–106, 2021.

[10] Alibaba Cloud. “What is OSS?” (2024), [Online]. Available: https://www.alibabacloud.
com/help/en/oss/product-overview/what-is-oss (visited on 04/15/2024).

[11] Alibaba Cloud. “What is ECS?” (2024), [Online]. Available: https://www.alibabacloud.
com / help / en / ecs / product - overview / what - is - ecs ? spm = a2c63 . p38356 . 0 . 0 .
45912ed2adH7yr (visited on 04/15/2024).

[12] Alibaba Cloud. “Configure an ip address whitelist for an apsaradb rds for post-
gresql instance.” (2024), [Online]. Available: https://help.aliyun.com/zh/rds/
apsaradb-rds-for-postgresql/configure-an-ip-address-whitelist-for-an-apsaradb-
rds-for-postgresql-instance?spm=a2c4g.11186623.0.i12 (visited on 05/26/2024).

[13] PM2. “Managing applications states.” (2024), [Online]. Available: https : / / pm2 .
keymetrics.io/docs/usage/process-management/ (visited on 05/26/2024).

[14] Wang Boqing, Wang Mengping, 2023 China Undergraduate Employment Report. Bei-
jing: Social Sciences Academic Press, 2023.

[15] IEEE. “IEEE Code of Ethics.” (2016), [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7-8.html (visited on 03/27/2024).

[16] ACM. “ACM Code of Ethics and Professional Conduct.” (2018), [Online]. Available:
https://www.acm.org/code-of-ethics (visited on 03/27/2024).

26

https://github.com/isl-org/Open3D/pull/1884/commits
https://github.com/isl-org/Open3D/pull/1884/commits
https://pcl.readthedocs.io/projects/tutorials/en/latest/statistical_outlier.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/statistical_outlier.html
https://robot.czxy.com/docs/pcl/chapter03/registration_intro/
https://robot.czxy.com/docs/pcl/chapter03/registration_intro/
https://www.alibabacloud.com/help/en/oss/product-overview/what-is-oss
https://www.alibabacloud.com/help/en/oss/product-overview/what-is-oss
https://www.alibabacloud.com/help/en/ecs/product-overview/what-is-ecs?spm=a2c63.p38356.0.0.45912ed2adH7yr
https://www.alibabacloud.com/help/en/ecs/product-overview/what-is-ecs?spm=a2c63.p38356.0.0.45912ed2adH7yr
https://www.alibabacloud.com/help/en/ecs/product-overview/what-is-ecs?spm=a2c63.p38356.0.0.45912ed2adH7yr
https://help.aliyun.com/zh/rds/apsaradb-rds-for-postgresql/configure-an-ip-address-whitelist-for-an-apsaradb-rds-for-postgresql-instance?spm=a2c4g.11186623.0.i12
https://help.aliyun.com/zh/rds/apsaradb-rds-for-postgresql/configure-an-ip-address-whitelist-for-an-apsaradb-rds-for-postgresql-instance?spm=a2c4g.11186623.0.i12
https://help.aliyun.com/zh/rds/apsaradb-rds-for-postgresql/configure-an-ip-address-whitelist-for-an-apsaradb-rds-for-postgresql-instance?spm=a2c4g.11186623.0.i12
https://pm2.keymetrics.io/docs/usage/process-management/
https://pm2.keymetrics.io/docs/usage/process-management/
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics

Appendix A Requirements

Configuration satisfied with Kinect v2 camera:

• Processor (CPU): AMD Ryzen 5 2500U with Radeon Vega Mobile Gfx 2.00GHz

• Memory (RAM): 8.00GB

• Processor Architecture: 64-bit (x64)

• USB: USB 3.0

• Operating System: Windows 10 Professional Edition

Software environment required for C++ code:

• Programming Language: C++

• Integrated Development Environment (IDE): Visual Studio 2019

• Libraries: PCL version 1.12.1; OpenCV version 4.5.5; Kinect SDK 2

Software environment required for Python code:

• Programming Language: Python

• Integrated Development Environment (IDE): Pycharm

• Libraries: open3d 0.11.2; opencv 3.4.2; pyqt5 5.15.4;pykinect2; pcl-py 0.2.11; numpy
1.19.2; pygame 2.5.2; matplotlib 3.3.4

27

Appendix B Algorithms

• Obtain point cloud from Kinect.

Algorithm 1 Obtaining point cloud from Kinect
Input: Kinect device
Output: Point cloud data
Initialize Kinect device
Create point cloud container, PointCloud

while Capturing point cloud do
Get depth image, DepthImage, and color image, ColorImage
Get depth value, depth, and color value, color, from DepthImage and ColorImage

for each pixel (x, y) do
Convert pixel coordinates (x, y) to 3D coordinates (X, Y, Z)

if depth is valid then
Create a point, Point, and assign (X, Y, Z) and color to Point
Add Point to PointCloud

end
end

end
return PointCloud

• Point Cloud Registration.

Algorithm 2 Iterative Closest Point (ICP) algorithm
Input: Source point cloud A, Target point cloud B, an initial transformation matrix
Output: Transformation matrix
T ←− T0

while not converged do
for i←− 1 to N do

mi ←− findClosestPointInA(T · bi)
wi ← 0
if ∥mi − T · bi∥ ≤ dmax then

wi ← 1
end

end
T ← argmin

T

{∑
i wi ∥T · bi −mi∥2

}
end
return T

• Configure the OSS.

28

Algorithm 3 Configure the OSS.
yourEndpoint ←− the Endpoint corresponding to the region where the Bucket is lo-
cated. For example, for East China 1 (Hangzhou), the Endpoint is filled in as https:
//oss-cn-hangzhou.aliyuncs.com.
BucketName←− the Bucket name, for example, examplebucket.
ObjectName ←− the complete object path, the complete path cannot contain the Bucket
name, for example, exampledir/exampleobject.txt.
Initialize network and other resources.
credentialsProvider ←− access credentials from environment variables
Visit OssClient using Endpoint and credentialsProvider
content←− the file content with the complete local file path
request←− the request to get the object with BucketName, ObjectName, and content
outcome←− the result with request for uploading
if not success then

output ”PutObject fail, code:” + outcome.error().Code() + ”, message:” + out-
come.error().Message() + ”, requestId:” + outcome.error().RequestId()
return -1

end
Release network and other resources
return 0

• Upload OBJ files to node.js server with Multer storage engine and Alibaba Cloud
ali-oss SDK.

29

https://oss-cn-hangzhou.aliyuncs.com
https://oss-cn-hangzhou.aliyuncs.com

Algorithm 4 Upload OBJ files to node.js server with Multer storage engine and Alibaba
Cloud ali-oss SDK
Input: req, file, cb
Output: Uploaded file information or error
Function handleFile(req, file, cb):

Declare content
if file.buffer exists then

content← file.buffer
else

if file.stream exists then
Initialize buffers as an empty array file.stream.on(’data’,
(chunk) => buffers.push(chunk)) file.stream.on(’end’, ()
=> { content ← Buffer.concat(buffers) uploadToOSS(file,
content, cb) }) file.stream.on(’error’, (err) => cb(err))

else
cb(new Error(’No file content provided.’))

end
end

Function uploadToOSS(file, content, cb):
options ← { progress: (p) => console.log(‘Progress: p * 100%‘) }
filename← guid() file.originalname← filename + ’.obj’
client.put(file.originalname, content, options).then(async
(result) => { file.ossUrl ← result.url const res ← await
client.putACL(filename + ’.obj’, ’public-read’) cb(null, file)
}).catch((err) => cb(err))

Function destination(req, file, cb):
cb(null, ’’) // OSS does not need a directory structure

Function filename(req, file, cb):
cb(null, file.originalname) // Keep original filename

• Parse OBJ files.

30

Algorithm 5 Parsing OBJ file
Input: OBJ file text
Output: Material libraries and geometries
Initialize empty arrays for vertex positions, texture coordinates, normals, and colors Ini-
tialize empty arrays for WebGL vertex data and geometries Initialize arrays for material
libraries and geometries Initialize default material, object, and groups

foreach line in OBJ file do
Parse the line to extract keyword and arguments
if keyword is a known OBJ keyword then

Call corresponding handler function with arguments
else

Continue to the next line
end

end
Remove empty arrays from geometries
return Material libraries and geometries

• Render a 3D model.

Algorithm 6 Main function for rendering a 3D model
Input: Canvas element
Output: Rendered 3D model on the canvas
Obtain the Canvas container and set up the WebGL context If WebGL context is not
available, exit the function Declare vertex and fragment shaders Compile and link the
shaders, and find attribute and uniform locations Get the URL containing OBJ file in-
formation Fetch the OBJ file content via the URL Parse the OBJ file content and extract
geometry information Process each geometry and create buffers Calculate the position
and size of objects in the scene to fit the camera Initialize camera position and orienta-
tion Set camera view parameters Define user interaction parameters Enter the render-
ing loop while rendering do

Update user interaction parameters Adjust Canvas size and viewport Enable depth
testing and face culling Compute projection and view matrices Iterate over geome-
tries, set uniform variables Draw geometries Request next frame rendering

end

31

Appendix C Arduino code

Figure 27: Arduino code for Assistive Scanning Subsystem

32

	Introduction
	Purpose
	Visual Aid
	Functionality
	Subsystem Overview

	Design
	Subsystem Overview
	Assistive Scanning Subsystem
	3D Reconstruction Subsystem
	Database Subsystem
	Interactive Interface Subsystem

	Cost and Schedule
	Cost Analysis
	Parts
	Labor
	Total

	Schedule

	Requirements and Verification
	Assistive Scanning Subsystem
	3D Reconstruction Subsystem
	Database Subsystem
	Interactive Interface Subsystem

	Conclusion
	Accomplishment
	Uncertanties
	Future Work
	Ethic Consideration
	Ethics
	Safety

	References
	Appendix Requirements
	Appendix Algorithms
	Appendix Arduino code

