
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Campus Tour Guide by AI-Powered
Autonomous System

Team #21

XUANBO JIN

(xuanboj2@illinois.edu)
HAO REN

(haor2@illinois.edu)
YUNTONG GU (yuntong7@illinois.edu)

WEIANG WANG

(weiangw2@illinois.edu)

TA: Xinlong Huang

March, 18, 2024

Contents

1 Introduction 1
1.1 Problem and Solution Overview . 1
1.2 Motivation . 1
1.3 Visual Aid . 1
1.4 High-level requirements list . 2
1.5 External Subsystem: Motion Control Subsystem (UAV) 2

2 Design 2
2.1 Block Diagram . 2
2.2 Design Motivation . 3
2.3 AI-powered response generation subsystem . 5

2.3.1 System Architecture and Design Overview 5
2.3.2 Data side effort: Multi-media Data Collection 7
2.3.3 Agent side effort: Intent Identification and Retrieval 7
2.3.4 Agent side effort: Protection Sub-Unit . 8
2.3.5 Goals and Verification . 8

2.4 User Interface . 10
2.4.1 Subsystem Architecture and Design . 10
2.4.2 Input and Output of the Subsystem . 11
2.4.3 Frontend Development . 11
2.4.4 Remote Server Setup . 12
2.4.5 Verification and Results . 12

2.5 Planning & Control Subsystem . 13
2.5.1 Notation and Explanation . 14
2.5.2 Subsystem Architecture and Design . 14
2.5.3 Input and Output of the Subsystem . 15
2.5.4 Data Collection and Tagging . 15
2.5.5 Algorithms for Subsystem . 15
2.5.6 Verification and Results . 17
2.5.7 Verification Table For Planning and Control Subsystem 18

2.6 Sensor System . 19
2.6.1 Introduction . 19
2.6.2 Temperature and Humidity Sensor . 19
2.6.3 Accelerometer Sensor . 20
2.6.4 LCD Display . 20
2.6.5 Verification and Requirement . 21

2.7 Tolerance Analysis . 23
2.7.1 Route Planning Stability . 23
2.7.2 GPS Locating Error . 23

3 Cost and schedule 24
3.1 Cost Analysis . 24

3.1.1 Labor . 24
3.1.2 Parts . 24
3.1.3 Grand Total . 24

ii

4 Conclusion 25
4.1 Achievement . 25
4.2 Uncertainties . 25
4.3 Future Work . 25
4.4 Ethical and Safety Considerations . 25

References 26

Appendix A Requirement & Verification Table 27

iii

1 Introduction

1.1 Problem and Solution Overview

Anyone entering a place for the first time, like an university, can be quite challenging. Knowing
where you are, how to get to your destination, how to optimize your routes, knowing factors
that will influence your routes can be complicated. Having a real-time interactive system that
guides people through this process is needed. It has been possible yet not able to scale because
it’s not open-sourced, and its hardware isn’t standardized, and is expensive. The interaction
isn’t versatile enough to adapt well under the ever-changing applications. A cheap and versa-
tile solution is needed.

1.2 Motivation

The most traditional paradigm is having human tour guide guiding a group of visitors. When
the era of electrical and electronics engineering came, engineers started automating this pro-
cess. They designed specific pipelines to emulate this process. However, this automation has
intrinsic problem with cost, scalability, as well as generality. Currently, when artificial intelli-
gence prevails, simply inserting AI as a component in the pipeline has significant downsides.
Apart from previous problems, most of the components in the pipeline is not AI-powered,
wasting computational resources and efficiency. In light of these problems, we completely shift
the pipeline design to a Multi-agent AI operation network design, with each of its component
AI powered. It can scale easily as all agents have simple and general interfaces. The average
cost is also amortised as the number of agents increase. Most importantly, the paradigm of all
the downstream applications, including campus tour guide, is shifted from 1 guide leading X
visitors to X guides leading 1 visitors, letting users to these applications fully exploit the power
of AI.

1.3 Visual Aid

Figure 1: Multi-agent AI operation Visual Illustration

1

1.4 High-level requirements list

• The AI agents network system should be responsive. It should respond to user’s request
appropriately. It should give appropriate guidance to user in both informational and
operational ways.

• The interface must be clean and useful. It should gives user easy access to the service.

• The system must distribute and map the request to the correct agent who is most useful
in a certain service and is able to merge and reduce the response from many agents into
one organized response. The choice of agent must be optimized to ensure the best holistic
accuracy.

1.5 External Subsystem: Motion Control Subsystem (UAV)

The UAV model used in our project is the MFP450, a medium-sized drone platform with a
410mm wheelbase. It is equipped with a Pixhawk 6C open-source flight controller, M8N-GPS,
brushless motors, custom hard-shell batteries, Minihomer telemetry, an integrated optical flow
ranging module, camera, and other devices. This UAV meets the requirements for stable flight
both indoors and outdoors, and it is suitable for various applications including teaching and
development. This is an off-the-shelf open source UAV, so we won’t go in depth here.

2 Design

2.1 Block Diagram

Figure 2: Block Diagram

2

2.2 Design Motivation

Information is unavailable and unorganized

Data are ubiquitous and exist in various formats, including multimedia. Efficiently collecting
data for an entire campus is labor-intensive. However, the greater challenge lies in effectively
utilizing this multimedia data and retrieving the most relevant information from an enormous
dataset.

Figure 3: Problems emerged when queries are associated campus related data

Figure 3 illustrates the problem that may arise when a user queries campus-related information.
Due to the relatively small amount of relevant data compared to the total dataset size, the agent
struggles to retrieve the corresponding data based on the user’s intent.

Data path is very long for each query

Unlike applications hosted on a single device, our system is distributed across multiple devices,
including two personal computers (PCs) acting as host servers, one web server, a mobile phone,
a UAV, and several cloud services hosted by OpenAI. This system spans different countries and
continents.

Figure 4: Long datapath for each user’s query

The long datapath shown in Figure 4 suggests that it is beneficial to group the devices and
abstract the services behind them as subsystems. Based on this idea, we grouped the service

3

managing the web server and mobile phone as the user interface subsystem. We grouped the
service managing the UAV and the host server that communicates with it as the planning and
control unit. We also grouped the service hosted on OpenAI and the host server that commu-
nicates with it as the AI-powered response generation subsystem.

Huge gap between informational and operational

Even with proper grounding, where the OpenAI agent is provided with relevant information
and its intended domain of expertise, the generative responses produced by the LLM can be
highly unstable and unpredictable.

Figure 5: Problems when user types in the command

Another significant observation from our initial testing is that there is a 2 out of 25 chance
that GPT could generate a malicious response potentially harmful to the UAV. This requires
careful grounding, meaning we must establish a set of restrictions on communication between
AI agents and the UAV.

Complete paradigm change needed

Our group proposes a multi-agent network, focusing on generalization while supporting au-
tomation and visualization. Imagine a system built for a single-CPU game: with more re-
sources, a person can add another CPU, but the system must be entirely rebuilt because it
cannot distribute work across multiple CPUs. The same logic applies to our system. Imagine a
system using a UAV to guide users and answer questions about 10 locations. This system would
need a complete overhaul if expanded to 10 UAVs or required to answer questions about 1000
locations, as it is designed for 1 UAV and 10 locations. It cannot manage large datasets or mul-
tiple UAVs. Our system, however, can handle arbitrarily large amounts of knowledge with a

4

sufficiently large database and can expand to support any number of operational agents, given
the resources to build them.

Figure 6: Paradigm change

2.3 AI-powered response generation subsystem

The AI-powered response generation subsystem focuses on building an assistant to respond
to user queries about the ZJU-UIUC campus. The user’s query can be a question about the
campus or a command to the drone. The text generation and embedding modules are powered
by OpenAI [1]. The subsystem acts as the brain of the campus tour guide. It consists of different
AI-powered agents that help the system generate responses and interact with users.

Figure 7: Multi-agent communication architecture

2.3.1 System Architecture and Design Overview

The system is architected to efficiently handle two distinct types of queries: informational
queries and operational queries. The architecture of each agent is modular, with each mod-

5

ule specializing in tasks such as intent detection, data retrieval, and response generation and
validation. This modular design facilitates scalability and maintenance while ensuring the sys-
tem can evolve to incorporate future enhancements or functionalities. The single agent sys-
tem specializes in one specific task, and together they compose the AI-agents network. Many
tasks require the cooperation and communication between different agents, as shown in Figure
7.

Figure 8: Single-agent architecture

The single-agent architecture can be broken into the following parts:

• Vector Database(DB) storing related campus material

• Intent Extraction module extracting user’s intent.

• Search Engine module search for related entries in Vector DB

• Answer Generation

To build each agent, we have two sides of tasks:

• Data side tasks: tasks related to multi-media data collection and processing.

• Agent side tasks: tasks related to response generation process.

The data side tasks consist of various work items. First, one must spend times to mine in-
sights from data. This data mining process is crucial to determine the methods used to process
data. For instance, If the data for each location is not too long, then we can categorize data by
location and handle queries related to each location separately. Based on the insights gained

6

from the multi-media data, we can handle different types of data with different methods. Once
we finalize the methods, we can scale up the data size and systematically collect and process
data. Hence, the third work item is multi-media data gathering, cleaning and tagging. Eventu-
ally when the data gathering is completed, we need to present statistics in clear and organized
ways.

The agent side also has many components in its pipeline. The first module of the pipeline is
intent identification. It identifies and categorizes user’s intent. Then we have a search engine
module that extracts the corresponding data which is processed by tremendous data-side effort.
Then we have a answer generation module which references the data extracted from search en-
gine, generating a ungrounded response. By ungrounded, we mean the response generated by
answer generation module can be nonideal, meaning it can be too long, too dangerous, inac-
curate. Hence, we need a protection-unit module to ground the output generated by answer
generation module. These modules form a pipeline for the AI powered response generation
agent.

The interface of the subsytem is listed as follows:

Table 1: Input and Output of the AI-Powered Response Generation Subsystem

Field Name Type Meaning

User Query Input Campus related query or a command to drone

User Location Input Current GPS location of user

Answer Output Answer to user’s question

Command Output Parsed output Command to the drone

2.3.2 Data side effort: Multi-media Data Collection

The GPT model does not have the ability to answer questions related to ZJU-UIUC. It failed
to answer the 100 testing questions completely. To supply pertinent information regarding to
users’ query, we need a set of data tailored for our application. The data we will use are in
multiple forms as shown, it could be digital pdfs, or paper-based materials placed at many
places at different locations within the campus. We utilize several methods to handle these
different forms of information.

1. OCR tool backed by Wechat.

2. python tools to parse pdfs.

The code to parsing multi-media material is in this directory.

We convert these data-sources into uniform textual information so our agent can answer user’s
query with accurate and diverse information.

2.3.3 Agent side effort: Intent Identification and Retrieval

The intent identification module classifies users’ input into three categories, as specified in
the instruction section of the prompt. This module relies on a straightforward query to GPT

7

https://github.com/MooMooHorse/ZJUI_tourguide_openAI_backend/tree/main/utils

Figure 9: Workflow of Data Collection

3.5. However, given that GPT models typically achieve only about 70% accuracy on general
multiple-choice tests [1], we must evaluate its performance on our specific task with caution.
Enhancements might be achieved through refined prompt engineering [2].

The information retrieval module employs a Retrieval-Augmented-Generation approach. After
extensive review [3], I opted for a sophisticated modular configuration. This agent integrates
multimedia input processing, a search engine as the retriever, and a generation unit that pro-
cesses and outputs the retrieved information.

The document retriever connects queries to relevant locations and retrieves the associated data.
However, as data for each location increases, it may surpass GPT’s token limit—the maximum
number of tokens an LLM can process at one time. To manage this, the retriever breaks down
data into manageable ”chunks,” summarizing each chunk and converting them into vectors
using an OpenAI tool. The vector distance indicates the textual semantic similarity, which aids
in identifying the most relevant chunks for a query.

2.3.4 Agent side effort: Protection Sub-Unit

AI agents suffer greatly from hallucination, which means the generation of plausible but in-
correct or nonsensical information. This can be particularly problematic in scenarios requiring
precise and accurate responses, such as UAV operations, where incorrect information can lead
to dangerous or illegal actions.

To mitigate these risks, AI agents must be carefully grounded, especially on the operational side
of the AI agent network. Grounding involves validating and verifying the generated outputs
against predefined rules and contexts to ensure their accuracy and safety.

2.3.5 Goals and Verification

In order to verify the design, our system has the following 3 main target functionalities:

• Identify the intent of the input to the subsystem

8

Figure 10: Simplified workflow of protection unit

• Fetch the correct external materials

• Output proper answer

In order to verify these functionalities, we design the following verification methods:

• The intent is evaluated automatically against the ground truth labeled by human on a
testing dataset containing 100 sample questions.

• The retrieval accuracy will be evaluated automatically against ground truth labeled by
human on a testing question set containing 30 human labeled questions on 4 testing loca-
tions.

• The end-to-end answer accuracy will be evaluated on the same dataset as retrieval accu-
racy. This evaluation will be conducted by human, giving a score of 5 and a comments
pointing out potential issue. The comments are visualized and analyzed through word
cloud.

Figure 11: Analysis of End to End Accuracy as well as RAG accuracy

The code is available at project repos

9

https://github.com/MooMooHorse/ZJUI_tourguide_openAI_backend

2.4 User Interface

Figure 12: User Interface Diagram

The User Interface (UI) subsystem serves as the primary point of interaction between the users
and the AI-powered response generation system. It is designed to be intuitive and user-friendly,
enabling users to easily submit queries about the ZJU-UIUC campus and issue commands to
the UAV.

2.4.1 Subsystem Architecture and Design

The User Interface (UI) subsystem is the principal conduit for user interactions within the AI-
powered response generation system. It is meticulously crafted to be both intuitive and user-
friendly, enabling seamless submission of queries and UAV command issuance.

The subsystem is comprised of several key components:

• A web server that accepts and distributes messages.

• Client interfaces for visitors to interact with the system.

The architecture delineates the following operational flow:

1. The web server receives messages from various visitors through the user interface.

2. Depending on the message type, identified as a question or a command, the server routes
the message to the respective subsystem for processing.

The design leverages a set of defined APIs to manage the interactions between the UI and other
subsystems, promoting real-time processing and ensuring data consistency and reliability. The
modular nature of the design allows for scalable and maintainable enhancements, critical for
future integration and functionality expansion.

The envisioned deliverables include:

• Hosting the web service on a remote server.

• Developing an easy-to-navigate, full-stack framework.

10

Figure 13: User Interface

• Establishing a robust connection between the web server and the AI and Planning sub-
systems.

This architecture is designed to provide a seamless, efficient, and secure user experience, whether
it’s for informational queries or operational control over the UAV.

2.4.2 Input and Output of the Subsystem

Table 2: Input and Output of the User Interface Subsystem

Field Name Type Meaning

UAV Instructions User2Server Input Take-off, Land, Stop instruction to UAV

User Questions Input Questions about ZJUI Campus

User Destination Input User’s destination

AI Answer Output Answer to user’s question

UAV Instructions Server2UAV Output Take-off, Land, Stop instruction to UAV

The input to the user interface subsystem is the answer to the user’s questions and the status
of the drone. The output of the subsystem is questions by the user and commands to the
drone.

2.4.3 Frontend Development

The frontend of the UI subsystem is developed using React and JavaScript, offering a dynamic
and responsive web interface. The design features a minimalist layout to enhance user experi-

11

ence and facilitate ease of use. Key elements of the UI include:

• Question Input Block: A dedicated area where users can type in or voice their queries
about the ZJU-UIUC campus.

• Instruction Buttons: Several interactive buttons designed to issue predefined commands
to the UAV, such as ”Take off,” ”Land,” and ”Stop”. Besides, there is an additional button
to send questions to AI-powered Generative System ”Send”.

• Campus Image Display: An image block that dynamically displays photographs of the
ZJUI campus, which could be relevant to the user’s queries or for showcasing UAV func-
tionalities.

This design ensures that users have a straightforward and efficient way to interact with the
system, whether seeking information or controlling the UAV.

2.4.4 Remote Server Setup

The subsystem utilizes Ali Cloud for hosting the remote server, establishing a robust and scal-
able infrastructure. The connection to the server is secured via SSH, ensuring encrypted com-
munication channels. This server plays a critical role in:

• Managing connections between end-users and the Planning & Control subsystem.

• Facilitating data exchange between the UI and AI subsystems, ensuring seamless integra-
tion and real-time response capabilities.

This integration is designed to be highly efficient, minimizing latency and maximizing the ac-
curacy and relevance of the information provided to the users.

2.4.5 Verification and Results

The verification of the User Interface Subsystem involved a series of rigorous tests and evalu-
ations to ensure its functionality, usability, and performance met the project requirements. The
following methodologies were employed:

1. Usability Testing: Usability testing sessions were conducted with a diverse group of users
to evaluate the UI’s ease of use, intuitiveness, and effectiveness in facilitating interaction
with the AI-powered Campus Tour Guide UAV.

2. Performance Testing: Performance tests were carried out to assess the responsiveness and
reliability of the UI subsystem under various load conditions, ensuring it could handle
multiple concurrent user requests without degradation in performance.

3. Integration Testing: Integration tests were performed to validate the seamless communi-
cation between the UI subsystem and other project modules, including the AI subsystem
and the Planning & Control subsystem.

The problem at hand pertains to the fluctuating relationship between querying or pulling fre-
quency and packet loss/data error within a network environment. In one scenario, as the fre-
quency of queries increases, the occurrence of packet loss decreases. This suggests a correla-
tion where heightened querying aids in error correction or enhances packet delivery, thereby

12

mitigating loss. Conversely, in another scenario, an inverse relationship emerges, where ele-
vated pulling frequencies correspond with escalated packet loss. Here, the increased frequency
potentially triggers network congestion or system overload, heightening the probability of er-
rors occurring. These contrasting patterns highlight the complexity of managing network per-
formance and the need for nuanced strategies to optimize data transmission and minimize
loss.

Figure 14: Package Loss & Data Error

The table illustrate the relationship between querying or pulling frequency and packet loss/data
error. The first curve demonstrates a scenario where packet loss decreases as querying fre-
quency increases. The second curve shows an inverse relationship where packet loss increases
with higher pulling frequency.

Based on the observed relationships between querying or pulling frequency and packet loss/data
error, we opt to set the frequency to once per second. This decision stems from a careful consid-
eration of both scenarios outlined. In the first scenario, where packet loss decreases as query-
ing frequency increases, a higher querying frequency undoubtedly enhances error correction
mechanisms and ensures improved packet delivery, thus reducing loss. Conversely, in the sec-
ond scenario, where higher pulling frequencies lead to increased packet loss, selecting a lower
frequency mitigates the risk of network congestion and system overload, thereby decreasing
the likelihood of errors.

2.5 Planning & Control Subsystem

The Planning and Control Subsystem is an integral component of our UAV operational frame-
work, designed to process commands from the user interface, assess the current status of the
drone, and issue precise navigational instructions based on the drone’s specifications. This
subsystem interfaces directly with PX4 APIs, an open-source flight control software, to moni-
tor and control the UAV’s flight parameters. The primary input to this subsystem is the user’s

13

Figure 15: Planning and Control Block Diagram

command and the drone’s status, while its output is the command to the UAV, ensuring that
each operation is executed safely and efficiently.

2.5.1 Notation and Explanation

Table 3: Notations Used for Planning and Control Subsystem

Name Meaning

Node The map is continuous, we extract a sets of locations as nodes

Map Database A data-store for the node

Next Node The next node we plan to go to

Link The minimum route unit linking 2 nodes

Command An instruction to UAV or from user

Parsed Command An instruction equivalent to a set of MAVSDK APIs

MAVSDK a software dev kit consists of APIS instructing UAV

Search Engine A module searching for next node given current location and command

Reformulation A process formulating instruction to comply with MAVSDK APIs

2.5.2 Subsystem Architecture and Design

This subsystem obtains a command and it reformulates the command to the drone to execute.
The reason why this module is essential and vital is this module helps visitor has a safe and
comfortable trip. This subsystem objective is to find a short and comfortable route for user to
take while taking the tour inside ZJU-UIUC campus.

This subsystem establishes a robust connection with a remote server to access vital flight data,

14

including starting points, destinations, flight altitudes, and other navigational parameters. This
connection is crucial for retrieving real-time information necessary for flight planning and con-
trol. The communication between the Planning & Control Subsystem and the remote server
is facilitated through a secure, encrypted channel, ensuring the integrity and confidentiality of
transmitted data. This setup allows the subsystem to:

• Obtain real-time updates on weather conditions, no-fly zones, and other environmental
factors that may affect flight paths.

• Receive user-defined flight parameters such as starting location, destination, and pre-
ferred flight height.

• Update the UAV’s mission parameters in response to changing conditions or user com-
mands.

2.5.3 Input and Output of the Subsystem

Table 4: Inputs and Outputs

Inputs Outputs

From the Unmanned Aerial Vehicle
(UAV):

• Latitude and longitude position of
the UAV.

• Current velocity, acceleration, and at-
titude (orientation) of the UAV.

To the Unmanned Aerial Vehicle (UAV):
• Attitude control commands for the

UAV.
• Velocity and acceleration control

commands for the UAV.

From the AI-Powered Generative System:
• Responses generated by the AI sys-

tem based on user queries.

To the AI-Powered Generative System:
• User queries directed to the AI sys-

tem.

From the User Interface System:
• User commands and requests sub-

mitted through the interface.

To the User Interface System:
• Responses provided to users based

on their queries.

2.5.4 Data Collection and Tagging

We used an n*n adjacency matrix to represent the entire map, where n is the number of locations
in the map. A link is a pair of nodes. A link is a viable path. Any connections between nodes
that are not linked are not a valid path. For instance, if the connection between 2 nodes cross a
lake which visitor is impossible to follow, it won’t be our data store.

2.5.5 Algorithms for Subsystem

Let’s define the mathematical model for the planning and control subsystem:

15

• Nodes N : A set of extracted locations from the continuous map, which serve as possible
waypoints for the UAV.

• Map Database D: A datastore that contains the nodes and links information.

• Links L: Directed edges between nodes representing the minimum navigable path for the
UAV. Each link connects two nodes and has associated costs (like distance, time, or energy
consumption).

• Commands C: Instructions from the user or system that need to be executed by the UAV.

• Parsed Commands P : Translated commands into MAVSDK API calls.

• MAVSDK M : The software development kit used to control the UAV.

Given:

• Current Node ncurrent: The UAV’s current position represented as a node.

• Destination Node ndestination: The target position the UAV needs to reach.

Objective

Find the optimal path Π from ncurrent to ndestination minimizing the cost function F , which could
include factors like distance, time, energy, etc.

Constraints

• The UAV can only travel along links in L from one node to another.

• The path must start near ncurrent

BFS Algorithm for Pathfinding

BFS algorithm can be used to find the path from ncurrent to ndestination in a graph represented by
nodes and links.

1. Initialize a queue Q and enqueue the starting node nstart.

2. Create a set S to track visited nodes and add nstart to S.

3. While Q is not empty:

• Dequeue the front node n from Q.

• If n is the destination node ndestination, terminate the search and process the result as
needed.

• For each neighbor nnext of n:

– If nnext has not been visited (not in S):

* Enqueue nnext into Q.

* Add nnext to S.

The result of BFS algorithm is the path Π that optimizes the cost function F , providing an
efficient route for the UAV from the starting point to the destination.

16

Implementation with MAVLink Python Package: The MAVLink Python package provides
a comprehensive set of tools for communicating with the UAV, offering functionalities such
as:

• Sending navigational commands and mission updates to the UAV.

• Receiving real-time status information, including location, battery level, and flight mode.

• Managing telemetry data to monitor and adjust flight parameters as needed.

This package is instrumental in bridging the gap between high-level operational commands
and the low-level directives understood by the UAV, ensuring that the subsystem can effectively
translate user intentions into actionable flight paths.

2.5.6 Verification and Results

The verification of the Planning & Control Subsystem involved a comprehensive evaluation of
its capabilities in interpreting flight missions, generating optimal routes, and controlling the
UAV during flight operations.

The methods and results of the verification process for the Planning & Control Subsystem are
summarized as follows:

1. Mission Interpretation Testing: The subsystem successfully interpreted various flight
missions specified in text files, accurately translating waypoints and other parameters
into executable commands for the UAV.

2. Route Generation Testing: BFS algorithm consistently generated optimal flight routes,
avoiding obstacles and adhering to operational constraints. The subsystem demonstrated
reliability in finding efficient paths even in complex environments.

3. Flight Control Testing: Flight control tests confirmed the subsystem’s capability to exe-
cute flight missions autonomously, including takeoff, landing, and waypoint navigation.
MAVSDK scripts facilitated smooth operation and precise control of the UAV.

4. Integration Testing: Integration tests revealed seamless communication between the Plan-
ning & Control Subsystem and other project modules. The subsystem effectively received
user-defined destinations from the UI subsystem, integrated AI-generated insights, and
utilized real-time environmental data from the Sensing subsystem for adaptive flight
planning.

Current Location Start Location Destination Route

0 4 0 0-1-2-3-5-4-2-1-0

2 7 1 2-3-5-6-7-6-5-3-2-1

7 4 1 7-6-5-4-5-3-2-1

Table 5: Table of Locations and Routes

After inspection, the output of the path is the same as the output we expected, which matches
the map we designed

17

Figure 16: UAV Flight mission by Planning & Routing Subsystem

2.5.7 Verification Table For Planning and Control Subsystem

The following is a table of validation items and results that we set for the subsystem:

Verification Item Simulation Re-
sults

Field Test Re-
sults

Terminal control for takeoff and
landing Pass Pass

Directional and distance flight Pass Pass

GPS coordinate-based flight Pass Pass

Route planning flight Pass Pass

Control flight using state.txt file Pass Pass

UI controlled flight Pass Pass

Asynchronous monitoring and
alerting Pass Pass

Asynchronous monitoring for
hovering at starting point Pass Pass

Table 6: Verification Items and Results

18

2.6 Sensor System

This section provides an overview of the sensor subsystem, detailing the specific sensors used
for measuring humidity, temperature, and angular rate. Each sensor’s type, model, and pri-
mary functionality are outlined to give a clear understanding of how they contribute to the
overall system.

2.6.1 Introduction

We want to connect a temperature and humidity sensor to a PCB board, powered by a drone,
with the sensor’s temperature and humidity measurements displayed on an external LCD
screen. This way, as the drone follows the user, the user can view real-time weather condi-
tions.

Here is the schematic diagram of our overall sensor section. From the diagram, we can see
that the entire circuit is controlled by the STM chip. Firstly, it converts the 5V regulated power
supply from the aircraft input to a 3.3V voltage. Then, it connects to the temperature and
humidity sensors as well as the speed sensor to obtain data. Subsequently, the acquired data is
transmitted to the LCD display screen by the microcontroller for displaying the results.

Figure 17: Circuit Design

2.6.2 Temperature and Humidity Sensor

- Type & Model: DHT-11

- Functionality: We selected the DHT11 sensor mainly because of its simplicity, ease of use, and
low cost, as well as its ability to accurately measure environmental temperature and humid-

19

ity. Its digital output makes data reading and processing more convenient, and it offers high
accuracy and stability, providing reliable temperature and humidity measurements in various
environmental conditions to ensure flight safety and stability for our project.[4]

Figure 18: DHT 11 Outside
view

Figure 19: DHT11 pin dia-
gram

2.6.3 Accelerometer Sensor

- Type & Model: DA213B

- Functionality: The DA213B accelerometer sensor was chosen primarily for its high precision,
sensitivity, and stability. Capable of accurately measuring acceleration in three axial directions
with digital output, it offers convenient data reading and processing. Additionally, its low
power consumption and small footprint make it suitable for embedded systems and mobile
device applications. In our project, the DA213B sensor provides precise acceleration data for
attitude control and motion tracking, enhancing flight stability and accuracy.[5]

Figure 20: DA213B Outside
view

Figure 21: DA213B pin dia-
gram

2.6.4 LCD Display

- Type & Model: LCD1602

- Functionality: The LCD1602 screen was selected primarily for its simplicity and affordability.
It can display 16 columns and 2 rows of characters, providing basic text display functional-
ity. Utilizing the standard HD44780 controller, it communicates easily with microcontrollers
through a simple interface. Moreover, the LCD1602 screen has low power consumption, mak-
ing it suitable for embedded systems and mobile devices. In our project, it provides a conve-
nient way to display sensor data, system status, and user interface elements, simplifying user
interaction and making system operation more intuitive.

20

Figure 22: LCD1602 Outside
view

Figure 23: LCD1602 pin dia-
gram

2.6.5 Verification and Requirement

There are several functionalities we want to achieve for the sensor unit:

1. The stability of converting 1.5V voltage to 3V voltage.

2. Whether the two sensors can operate properly, achieve data measurement, and transmit
data.

3. Whether the LCD screen can display normally and show the data we need in real-time.

We verified these goals using the following verification methods.

1. Utilize a stable power supply to provide a 1.5V input voltage, connecting it to the voltage
conversion circuit. Measure the output voltage using an oscilloscope or digital multimeter
and record its value. Continuously observe the stability of the output voltage over a
period of time (e.g., 30 minutes to 1 hour), noting any fluctuation range. Repeat the test
steps to check the stability of the circuit under different temperature and load conditions.

Figure 24: Voltage Test

21

2. Connect the sensors to the test board and use an oscilloscope or microcontroller to read
the sensor’s output data. Simulate sensor operation under different environmental con-
ditions, such as varying temperature, humidity, and light levels, and observe the sensor’s
response. Verify whether the sensor output data matches the expected values and record
any anomalies. Test the data transmission functionality to ensure that sensor data can be
successfully transmitted to the microcontroller or other devices and correctly interpreted.

Environmental Condition Temp. (°C) Humidity (%) Output T(°C) Output Humidity (%)

Indoor Environment 25 50 24.8 51

Indoor Environment 25 50 24.9 50

High Temp.and Humidity 40 80 41.2 79

High Temp.and Humidity 40 80 40.9 81

Table 7: Test Data for DHT11 Sensor

Speed (m/s) Result (m/s)

0.1 0.09

0.5 0.48

1.0 1.05

2.0 2.02

Table 8: Accelerometer Performance Test

3. Connect the LCD screen to the test board and provide appropriate power. Send test data
to the LCD screen and observe whether the screen displays correctly. Check whether the
LCD screen can display various types of data, including text, numbers, and graphics.
Under simulated working conditions such as temperature changes and vibration, verify
whether the LCD screen can stably display data. If possible, conduct long-term testing to
confirm the stability and durability of the LCD screen.

Test Scenario Temperature (°C) Display Content Display Result

Outdoor Environment 28 Text: ”Hello World” Displayed Correctly

Outdoor Environment 30 Numbers: ”12345” Displayed Correctly

Outdoor Environment 25 Graphics Displayed Correctly

Table 9: LCD Screen Test Data

22

2.7 Tolerance Analysis

Ensuring the robustness of the UAV system involves conducting a thorough tolerance analysis.
This analysis focuses on identifying potential vulnerabilities within the system, assessing risks,
and devising strategies to mitigate these risks.

2.7.1 Route Planning Stability

Route planning is susceptible to various environmental factors that can affect the UAV’s ability
to navigate effectively. These factors include wind, physical obstacles, and the presence of
visitors within the campus.

Risks:

• Wind can significantly alter the UAV’s course, leading to deviations from the planned
route and potentially unsafe conditions.

• Obstacles such as trees and buildings may not only hinder the UAV’s path but also pose
a risk of collision.

• Visitors moving unpredictably through the campus can introduce dynamic variables,
complicating the UAV’s navigation and safety protocols.

Wind’s impact on UAV navigation can be analyzed using vector mathematics, specifically the
wind triangle theory. The ground speed vector (V⃗g) of the UAV is the vector sum of its airspeed
vector (V⃗a), which is the speed and direction relative to the air, and the wind speed vector (V⃗w),
which represents the speed and direction of the wind. This relationship is given by:

V⃗g = V⃗a + V⃗w (1)

2.7.2 GPS Locating Error

Global Positioning System (GPS) technology is crucial for UAV navigation, offering real-time
location data that guides the UAV’s flight path. However, GPS signals can be subject to in-
terference from environmental factors, such as atmospheric conditions, buildings, and signal
jamming, leading to potential errors in location accuracy.

Risks:

• Mission Failure: Critical missions requiring precise location data, such as aerial photog-
raphy or targeted delivery, could fail due to inaccurate positioning.

GPS locating error (Egps) can be influenced by several factors, including signal propagation
delay, atmospheric conditions, and multipath errors. The total error can be modeled as a com-
bination of these factors:

Egps = Epropagation + Eatmospheric + Ereceiver (2)

23

3 Cost and schedule

3.1 Cost Analysis

3.1.1 Labor

The labor cost is calculated based on the working hours and wage pricing of each team member.
We set the hourly wage at 100 RMB based on market research and the skill levels of team
members. Considering the total project duration of 8 weeks with 40 hours of work per week,
the total working hours per team member are: 320 hours. Therefore, the labor cost per team
member is:

100 RMB/hour × 320 hours = 32000 RMB

We chose an hourly wage of 100 RMB, which is based on market wage levels and the skill and
experience levels of team members. According to survey data from the Institute of Electrical
and Electronics Engineers (IEEE) [6], the average salary for graduates in Electrical and Com-
puter Engineering (ECE) is around 200,000 RMB per year. Calculated on a full-time basis, the
average hourly wage is approximately 100 RMB.

3.1.2 Parts

The table below provides a breakdown of the parts and their estimated costs:

Description Manufacturer Part # Quantity Cost (RMB)

Drone PixHawk MFP450 1 5174

Mavlink Module Amovlab - 1 680

Temperature Sensor Aosong DHT11 2 10

Acceleration Sensor MiraMEMS DA213B 2 15

LCD Screen Touglesy LCD1602 1 20

PCB Board Custom - 1 50

Simple Application Server Alibaba Cloud - 1 49 per month

ChatGPT4 API OpenAI - 1 240 per month

Table 10: Parts List and Estimated Costs

3.1.3 Grand Total

The grand total cost of the project can be calculated by summing up the labor cost and the cost
of parts:

• Labor: 32,000 RMB

• Parts: 6,819 RMB

Grand Total: 32000 + 6819 = 38,819 RMB

24

4 Conclusion

4.1 Achievement

In this project, we implemented an AI-based campus tour guide assistant. We utilized a drone
as the guiding platform to facilitate a seamless campus tour experience while providing infor-
mative responses to users’ inquiries. The AI agent network system we developed prioritizes
responsiveness, ensuring prompt and relevant answers to users’ requests. This system not only
offers guidance on campus exploration but also addresses user queries comprehensively.

Moreover, we emphasized the importance of a clean and user-friendly interface, enabling easy
access to the service. A well-designed interface enhances user engagement and satisfaction,
enhancing the overall tour experience.

Additionally, our system incorporates a sophisticated agent distribution and mapping mecha-
nism. Requests are intelligently routed to the most suitable agent capable of addressing specific
services. Furthermore, the system optimizes agent selection to ensure the highest accuracy in
response aggregation. By merging and organizing responses from multiple agents, we deliver
a cohesive and comprehensive user experience, enhancing the effectiveness of our AI-based
campus tour guide assistant.

4.2 Uncertainties

Despite the well-structured design, there are still uncertainties that are left to explore for this
project. For instance, we still doesn’t fully tested the cases where the UAV is far away to the
central control unit. We also didn’t detect whether human follows the drone. This can be
supported by a fusion with computer vision.

4.3 Future Work

Due to the assumptions we made in this project, and the uncertainties left to investigate, there
are a series of future work to accomplish:

• Fuse with computer vision to detect the human presence, and even gesture to boost the
human-UAV interaction

• Extend the distance UAV can receive signal by setting more than 1 central controls.

4.4 Ethical and Safety Considerations

The development and deployment of the AI-guided tour guide drone raise important ethical
considerations that must be addressed. [7] Safety is important in the development and op-
eration of the AI-guided tour guide drone. Several safety measures will be implemented to
mitigate risks and ensure the well-being of users and developers. Firstly, the drone’s hardware
and software systems will undergo rigorous testing and validation to ensure their reliability
and stability. Emergency shutdown protocols will be in place to address malfunctions or emer-
gencies promptly. Secondly, strict battery safety protocols will be enforced to prevent accidents
related to lithium polymer (LiPo) batteries. This includes regular inspection, proper storage,
and careful handling to minimize the risk of fire or explosion.

25

References

[1] OpenAI, J. Achiam, S. Adler, et al., Gpt-4 technical report, 2024. arXiv: 2303.08774 [cs.CL].
[2] L. Weng, “Prompt engineering,” lilianweng.github.io, Mar. 2023. [Online]. Available: https:

//lilianweng.github.io/posts/2023-03-15-prompt-engineering/.
[3] P. Zhao, H. Zhang, Q. Yu, et al., Retrieval-augmented generation for ai-generated content: A

survey, 2024. arXiv: 2402.19473 [cs.CV].
[4] Aosong Electronics Co., Ltd. “Aosong Product 21.” (2024), [Online]. Available: http : / /

www.aosong.com/products-21.html (visited on 04/19/2024).
[5] MiraMEMS. “MiraMEMS Product 1.” (2024), [Online]. Available: http://www.miramems.

com/product-1.html (visited on 04/19/2024).
[6] “IEEE (Institute of Electrical and Electronics Engineers) Salary Survey,” 2022.
[7] IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available: https://www.ieee.org/about/

corporate/governance/p7-8.html (visited on 02/08/2020).

26

https://arxiv.org/abs/2303.08774
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://arxiv.org/abs/2402.19473
http://www.aosong.com/products-21.html
http://www.aosong.com/products-21.html
http://www.miramems.com/product-1.html
http://www.miramems.com/product-1.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html

Appendix A Requirement & Verification Table

Table 11: Subsytem Index Table

Subsystem Name Subsystem Index(S-Index)

AI Powered Response Generation Subsystem 1

User Interface Subsystem 2

Planning and Control Subsystem 3

Sensor Unit Subsystem 4

Table 12: Requirement & Verification Table

S-Index Requirement Verification Points

1 Detect user intent with
at least 25% accuracy

Test with a diverse
set of input queries

and verify the accuracy
of intent detection.

2

1 Detect user intent with
at least 50% accuracy

Continue testing and refining
to achieve higher accuracy. 2

1 Generate response within
60 seconds

Measure retrieval time with
various queries to ensure

performance within the initial
time limit.

2

1 Generate response within
40 seconds

Measure retrieval time with
various queries to ensure
performance within the

initial time limit.

2

1 Generate response within
30 seconds

Optimize system to improve
performance and meet the

final time requirement.
1

1 Can fetch correct external
material with 20% accuracy

Testing the agent’s RAG
accuracy by using manually
labeled dataset containing

30 questions for
4 testing locations.

1

1 Can fetch correct external
material with 50% accuracy

Testing the agent’s
RAG accuracy by using

manually labeled dataset
containing 30 questions
for 4 testing locations.

2

Continued on next page

27

Table 12 continued from previous page

S-Index Requirement Verification Points

1 Can fetch correct external
material with 70% accuracy

Testing the agent’s
RAG accuracy by using

manually labeled dataset
containing 30 questions
for 4 testing locations.

1

1

Generated answers must match
the user’s intent with

an accuracy of at
least 25% in given dataset

Compare generated answers
from the dataset containing
30 questions with human

labeled answer to calculate
initial accuracy.

3

1

Generated answers must match
the user’s intent with

an accuracy of at
least 50% in given dataset

Compare generated answers
from the dataset containing
30 questions with human

labeled answer to
calculate initial accuracy.

3

2
The web server must handle and

route messages with less than
2 seconds latency

Test message routing on the server
under load and measure latency 2

2

The client interface
must provide intuitive

access for users to submit queries
and control the UAV

Conduct usability testing with
participants to assess ease of use

and intuitiveness
1

2

UAV command buttons must send
correct instructions

to the UAV subsystem
with 100% accuracy

Test each button and verify that
the correct command is sent to

the UAV subsystem
1

2
The web server must send
instructions and questions

separately to different hosts

Test two hosts
if they receive correct messages 1

2
Obtain the user’s
GPS position as

the starting position

Test if the two hosts
receive the GPS signal 1

2
The host which process

the questions can
display answers correctly

Check if the UI can
display reasonable answers 2

2
The host which process

the instructions can
send commands to UAV

UAV can take-off,
Stop, Continue, Land
correctly and in time

2

3
Must accurately process user
commands and drone status

within 10 second

Perform stress testing with
simultaneous user commands and

verify response time
3

Continued on next page

28

Table 12 continued from previous page

S-Index Requirement Verification Points

3
Must accurately process user
commands and drone status

within 1 second

Perform stress testing with
simultaneous user commands and

verify response time
3

3 Must optimize the UAV route
based on the current status

Test with different scenarios
(no-fly zones, different areas) to verify

route optimization
3

3
Should maintain a secure and
encrypted connection to the

remote server

Verify the encryption standards
and conduct penetration testing

to assess security
1

3 Must integrate seamlessly with
the PX4 APIs for flight control

Execute a series of flight tests
to ensure proper integration

and control
1

4 Power supply successfully
power the hardware unit Power supply LED works correctly 1

4 Sensors can operate properly Connect the sensors to the test board
Use oscilloscope to read the output data. 2

4 LCD screen can display normally

Connect the LCD screen to the test board
Provide appropriate power.

Send test data to the LCD screen
Check if the screen displays correctly.

2

1,2
3,4 End to End works correctly

Can complete a guide
for appointed locations

while iteracting with visitors
5

29

	Introduction
	Problem and Solution Overview
	Motivation
	Visual Aid
	High-level requirements list
	External Subsystem: Motion Control Subsystem (UAV)

	Design
	Block Diagram
	Design Motivation
	AI-powered response generation subsystem
	System Architecture and Design Overview
	Data side effort: Multi-media Data Collection
	Agent side effort: Intent Identification and Retrieval
	Agent side effort: Protection Sub-Unit
	Goals and Verification

	User Interface
	Subsystem Architecture and Design
	Input and Output of the Subsystem
	Frontend Development
	Remote Server Setup
	Verification and Results

	Planning & Control Subsystem
	Notation and Explanation
	Subsystem Architecture and Design
	Input and Output of the Subsystem
	Data Collection and Tagging
	Algorithms for Subsystem
	Verification and Results
	Verification Table For Planning and Control Subsystem

	Sensor System
	Introduction
	Temperature and Humidity Sensor
	Accelerometer Sensor
	LCD Display
	Verification and Requirement

	Tolerance Analysis
	Route Planning Stability
	GPS Locating Error

	Cost and schedule
	Cost Analysis
	Labor
	Parts
	Grand Total

	Conclusion
	Achievement
	Uncertainties
	Future Work
	Ethical and Safety Considerations

	References
	Appendix Requirement & Verification Table

