
ECE 445

SENIOR DESIGN LABORATORY

DESIGN DOCUMENT

ZJUI Clickers for Undergraduate Version
2

Team #23

ZHENYU ZHANG

(zhenyuz5@illinois.edu)
BENLU WANG

(benluw2@illinois.edu)
LUOZHEN WANG

(luozhen2@illinois.edu)
SUHAO WANG (suhao2@illinois.edu)

Sponsor: Professor Fangwei Shao

March 20, 2024

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Solution . 1
1.3 Visual Aid . 2
1.4 High-level Requirement Lists . 2

2 Design 3
2.1 Block Diagram . 3
2.2 Subsystem Overview . 4
2.3 Power Subsystem Requirement . 4

2.3.1 Micro Lithium Battery . 5
2.3.2 Regulator . 5

2.4 Clicker Subsystem Requirement . 6
2.4.1 Transmit Module . 6
2.4.2 Display Module . 8
2.4.3 Hardware Process module . 9
2.4.4 Shell Design . 10

2.5 Software Subsystem Requirement . 12
2.5.1 Frontend Design . 12
2.5.2 Backend Design . 15
2.5.3 Authentication module . 17

2.6 External facility . 17
2.6.1 Wireless Receiving supply . 17

2.7 Tolerance Analysis . 18
2.7.1 MongoDB Analysis . 18
2.7.2 RabbitMQ Analysis . 18
2.7.3 Wi-Fi Analysis . 19

3 Cost & Schedule 22
3.1 Cost . 22

3.1.1 Labor Cost . 22
3.1.2 Parts Cost . 22

3.2 Schedule . 23

4 Ethics & Safety 23
4.1 Ethics . 23
4.2 Safety . 23

References 24

Appendix A Schedule 25

1

1 Introduction

1.1 Problem

In the contemporary educational landscape, the incorporation of technology within class-
rooms has witnessed a widespread adoption, yielding significant impacts on teaching
and learning practices. Among the various tools introduced to enhance classroom inter-
activity and streamline administrative processes, the I-clicker has emerged as a pivotal
instrument. This technological solution serves as an indispensable element in meeting
the digital demands of the classroom environment. By enabling the efficient collection of
attendance data and promoting interactive learning experiences through question-and-
answer sessions, the I-clicker empowers students to actively engage with academic mate-
rial, fostering a deeper understanding of complex concepts and improving overall learn-
ing outcomes.

However, despite its evident advantages, the present iteration of the I-clicker system is
confronted with inherent limitations that impede its ability to accommodate a substan-
tial user base. Issues such as limited capacity to handle higher user loads, significant
signal delays, and signal loss hamper the system’s efficacy. The preceding iteration of
the Clicker, known as Version 1, remained unfinished and underwent limited testing. It
exhibited a restricted capacity to accommodate a large user base, thereby rendering it in-
adequate for practical use. Furthermore, the absence of support for mobile applications
as an alternate means of participation fails to cater to the preferences of students who
favor mobile technology. To ensure a seamless and engaging educational experience for
all students, it is imperative to address these challenges and enhance the functionality of
the I-clicker system.In reality, there is already a mature commercial Clicker available in
the market, which enables functionalities such as mobile-based attendance and question-
and-answer features[1]. However, due to its expensive price and the inability to use it
in mainland China, we aspire to develop our own system with similar capabilities and
innovative features that support multi-platform synchronization.

1.2 Solution

In response to the aforementioned practical challenge, our project endeavors to augment
the system’s capacity to cater to a larger participant base of approximately 100-150 in-
dividuals. Furthermore, our objective encompasses the facilitation of diverse front-end
devices, encompassing mobile, PC, and Clicker interfaces. A crucial aspect of this en-
hancement involves expanding the receiver’s radius to encompass the spatial dimensions
of a typical classroom setting.

To realize these objectives, our team has formulated a comprehensive plan involving five
core components: front-end development, back-end implementation, Clicker design, re-
ceiver design, and shell design. Moreover, the system has been architected as a closed-
source solution, utilizing an internal Local Area Network (LAN) for signal transmission.
This strategic measure serves to safeguard the system’s integrity and mitigate the poten-
tial risks associated with external interference.

1

1.3 Visual Aid

Figure 1: Visual Aid

1.4 High-level Requirement Lists

• The system has been designed to accommodate a substantial number of students,
specifically supporting 100-150 individuals in a classroom environment to utilize
the answer function efficiently. By considering the system’s capacity to handle this
volume of users, it aims to ensure smooth and uninterrupted functionality for all
participants.

• The system has been optimized to ensure reliable signal transmission within a class-
room environment of approximately 100 meters in size. Within this range, users can
expect a strong and stable signal that enables them to effectively utilize the system’s
features, including the ability to answer questions. However, it’s important to note
that the system should not be designed to support long-distance signal transmission
beyond the specified classroom size to avoid cheating.

• The delay from the user pressing a button on a mobile phone, web page or Clicker
to the receiver receiving the signal does not exceed 2 s.

2

2 Design

2.1 Block Diagram

Our system architecture is delineated into three discrete subsystems: the power supply
subsystem, the clicker subsystem, and the software subsystem. The power supply sub-
system is tasked with furnishing power to the clicker subsystem, which serves as the
interface for students to transmit signals via button presses. Meanwhile, the software
subsystem encompasses essential components such as the back-end database and both
the front-end classroom interface and student clicker interface. Additionally, external re-
sources, including teachers’ computers for software deployment and existing routers for
local area network connectivity, are harnessed to augment system functionality. Through
rigorous database optimization, we ensure that data processing latency remains within
acceptable limits, not exceeding two seconds even under high volume conditions. Lever-
aging Wi-Fi technology, student check-ins are validated only within proximity to the
teacher’s device, ensuring accuracy and security. Our system architecture is designed
to support simultaneous usage by up to 100 students, facilitated by local area network
transmission and adherence to established protocols.

Figure 2: Block Diagram

3

2.2 Subsystem Overview

The power subsystem under consideration comprises several integral components, in-
cluding a 220V DC voltage source, adapters, and a series of batteries with a voltage range
of 3.3 V-5 V. These components play a crucial role in supplying power to the receiving
device by employing a DC-to-DC Converter Module. The fundamental objective of this
power supply system is to effectively support the clicker subsystem and the wireless re-
ceiving subsystem within the hardware segment.

The clicker subsystem encompasses a physical clicker equipped with Wi-Fi modules such
as the ESP8266 and a micro-controller (MCU). Additionally, the physical clicker is equipped
with auxiliary devices like display modules, display screens, and buttons. It can utilize
the Wi-Fi module to transmit command information to the receiving subsystem through
the local area network (LAN).

The software subsystem is aimed at developing a cross-platform classroom interaction
application that supports Windows, Mac, iOS, and Android. It is designed to efficiently
handle high-concurrency requests and includes a robust identity verification mechanism
to prevent cheating practices such as proxy attendance.

The wireless receiving unit, consisting of a wireless module and a micro-controller, is
basically outside the design scope of our project, and we will use existing equipment. Its
primary function revolves around receiving signals from the wireless sending subsystem
or the software subsystem and subsequently transferring the received data to the software
subsystem via a physical connection.

2.3 Power Subsystem Requirement

This subsystem ensures that students and teachers can use the system for a long time
without maintenance. This subsystem can power the clicker subsystem.

We need a DC power supply to power our microcontroller and OLED. Considering the
size of the microcontroller, OLED and energy consumption, we should choose a voltage
of 3.3 V-5 V and a current of more than 100 mA. Excessive voltage can easily cause irre-
versible damage to the microcontroller and screen, including but not limited to burning.

Initially, dry batteries were considered as the power supply option. However, they did not
meet the students’ convenience requirements. As a result, rechargeable lithium batteries
are being chosen instead.

The system involves pressing a button to wake up the ESP8266, sending a 1-second sig-
nal, and then entering the sleep state again. The signal transmission process consumes
approximately 100 mA, while the deep sleep power consumption specified in the ESP8266
data manual is 20 µA [2].

With 50 button presses per day, each lasting 1 second, and a 200 mAh lithium battery,

4

the battery can last for around 150 days after a full charge. Students will only need to
recharge the battery once per semester.

2.3.1 Micro Lithium Battery

We chose to employ the use of a micro lithium battery 701224 (fluctuating from 3.7 V to 4.2
V) shown in Figure 3 as the power source, which will be supplied along with the clicker in.

Figure 3: battery

Requirement Verification

• Make sure the battery
has at least 50 mA of
charge.

• Connect a fully charged (4.2 V) lithium battery to
the VDD and GND with suitable resistors so that
the current is approximately 200 mA.

• Discharge the battery at 200 mA for 15 minutes, us-
ing a voltmeter to ensure that the voltage is main-
tained above 3.7 V.

2.3.2 Regulator

In order to improve the utilization of battery energy consumption and prevent the chip
from overheating, we will use the classic LM1117 regulator to control the voltage from 3.7
V-4.2 V to 3.3 V, at the maximum current of 200 mA.

5

Figure 4: LM1117

Requirement Verification

• The voltage can be sta-
bilized to about 3.3 V,
and the error is not more
than 5%.

• It can support 200 mA
current.

• Get an adjustable power supply that can provide a
voltage range of 3.7 V-4.2 V.

• Connect the positive (+) of the power supply to the
input pin of the voltage regulator and the negative
(-) of the power supply to the ground (GND) pin of
the voltage regulator.

• Adjust the current from 0-200 mA to ensure that the
output voltage is 3.3 V and the error of the regulator
is within 5%.

2.4 Clicker Subsystem Requirement

This subsystem ensures that 100-150 students can send answers in a stable and efficient
manner. This subsystem can send signals to the wireless receiving subsystem.

2.4.1 Transmit Module

On the clicker side, we use the ESP8266 as the functional module for data transmission
to connect with the central processing module. The ESP8266 chip supports the standard
IEEE 802.11b/g/n Wi-Fi protocol, and is able to connect with the wireless network. It
realises wireless communication and data transmission through the built-in Wi-Fi mod-
ule. The microcontroller inside the clicker can connect to the teacher’s receiver through
this chip to achieve data exchange. It realises wireless communication and data trans-
mission functions through the built-in Wi-Fi module.The microcontroller inside Clicker

6

can be connected to the teacher’s receiving end through the chip to realise data exchange.
The ESP8266 chip is also characterised by its low power consumption, which enables it
to operate stably under low-voltage and low-power conditions. This also makes it ideal
for use in battery-powered scenarios, in line with Clicker’s needs. In addition, advanced
power management technology is integrated inside the chip, which enables intelligent
sleep and wake-up functions to further reduce energy consumption and ensure the single
battery life of the clicker.

Figure 5: Schematic

7

Requirement Verification

• Support for the IEEE 802.11b/g/n
Wi-Fi protocol: The ESP8266 chip
should be capable of connecting to
wireless networks using the stan-
dard Wi-Fi protocols mentioned.

• Wireless Communication and Data
Transmission: The chip should en-
able wireless communication and
data transmission through its built-
in Wi-Fi module, allowing the mi-
crocontroller inside the clicker to
connect with the teacher’s receiver
and exchange data. It should sup-
port transmission at 300 bps-4.5
Mbps.

• The ESP8266 chip should operate
efficiently under low-voltage and
low-power conditions, making it
suitable for battery-powered sce-
narios like the Clicker.

• Confirm Wi-Fi Protocol Sup-
port: Consult the ESP8266 chip’s
datasheet or documentation to
ensure that it supports the IEEE
802.11b/g/n Wi-Fi protocol.

• Test Wireless Connectivity: Use the
ESP8266 chip in the clicker and at-
tempt to connect it to a Wi-Fi net-
work. Verify that it establishes
a stable connection and is able to
transmit data wirelessly at approx-
imately 4.5 Mbps.

• Measure Power Consumption:
Monitor the power consumption
of the ESP8266 chip while it is in
operation. This can be done by
measuring the current drawn by
the chip with oscillators. We will
combine this part with the battery
verification.

2.4.2 Display Module

The inclusion of a 0.96 inch OLED screen in the clicker apparatus serves the purpose of
furnishing users with requisite feedback. The chosen OLED screen is capable of accom-
modating a broad spectrum of power inputs, spanning from 3.3 V to 5 V. Noteworthy is
its minimal power consumption rate, standing at a mere 0.04 W. Equipped with a res-
olution of 128 * 64 pixels, the screen ensures clarity of visual output. Furthermore, its
wide viewing angle surpassing 160 degrees enhances user engagement. Communication
between the OLED screen and the ESP8266 development board is facilitated through the
utilization of the IIC protocol.

8

Figure 6: OLED

Requirement Verification

• Communication In-
terface: The display
module should support
IIC (I2C) communica-
tion, as it is connected
to the ESP8266 develop-
ment board using this
interface.

• Power Consumption:
The power consumption
of the display module
should be low, with a
specified value of 0.04
W.

• To ascertain whether the OLED can be connected to
the ESP8266, first consult the ESP8266’s datasheet
and the OLED module’s specifications to confirm
their supported communication interfaces and con-
nection methods. Next, establish the correct connec-
tions and write test code to verify if the OLED mod-
ule can successfully connect to the ESP8266. Adjust
the connection method or code logic based on test
results until a stable and reliable connection is con-
firmed.

• Measure Power Consumption: Use a power meter
or measure the current drawn by the display mod-
ule while it is in operation. Verify that the power
consumption matches the specified value of 0.04 W
or is within an acceptable range.

2.4.3 Hardware Process module

We use the NodeMCU development board (CP2102), which works with the ESP8266, as
the signal processing module. It can send the information pressed by the user through
the button to the receiver through the ESP8266 module.

9

Figure 7: Nodemcu

Requirement Verification

• Nodemcu must be able
to receive input from the
buttons.

• It can both receive and
transmit over UART at a
speed of 4.5 Mbps.

• Button Input: Connect the button to the NodeMCU
board according to its specifications. Verify that the
board can detect the button press and process the
corresponding signal.

• UART communication:
1. Connect the NodeMCU board to a computer

with USB-UART and open a serial terminal such
as Putty.

2. Configure the serial terminal to use the appropri-
ate COM port and set the baud rate to 4.5 Mbps.

3. Write a simple program to send data from the
NodeMCU board to the serial terminal. Ensure
all characters match those sent.

2.4.4 Shell Design

The exterior design of the clicker will employ 3D printing technology, leveraging the
available resources in the school laboratory to expedite bulk production of the casing.

10

The design will be tailored to accommodate the form factors of internal components such
as the microcontroller, battery, and button layout. Incorporating buckles within the shell
will secure these components, safeguarding the internal circuitry from potential damage
due to environmental factors, thereby ensuring operational resilience and longevity of the
device.

Figure 8: shell design

11

Requirement Verification

• The design of the shell needs to
be able to wrap the internal cir-
cuitry, protect the internal circuitry
from changes in the external en-
vironment, and ensure the normal
use of functions

• To test the iClicker’s ability to with-
stand impact, drop the iClicker
from a height of 60cm and observe
whether it continues to function
properly.

2.5 Software Subsystem Requirement

This subsystem ensures that the signal range requirements in the high level requirement
can be met, and because of the optimized architecture used in the backend, we expect to
make the system more responsive. This subsystem, on the one hand, acts as the client
that sends the signal, on the other hand, acts as the management side that processes the
database information and finally displays the statistical results. It can receive data from
the wireless receiving subsystem.

2.5.1 Frontend Design

• Student Android App

Our Android front-end technology stack centers around the Kotlin programming lan-
guage, chosen primarily for its excellent safety features, conciseness, and high interoper-
ability with Java. Kotlin significantly reduces common programming errors, such as null
pointer exceptions, through its null safety design. This not only enhances code safety
but also greatly boosts developer productivity. Supported officially by Google, Kotlin en-
sures our application can continuously integrate the latest technological advancements
and best practices, securing its sustainable development in the future.

Furthermore, development is carried out in the Android Studio integrated development
environment (IDE), leveraging its array of efficient tools and features like code auto-
completion, performance analysis, and a visual layout editor to accelerate the develop-
ment process. By incorporating the Jetpack library suite, including LiveData and View-
Model components, building responsive UIs becomes effortless, while Room database
simplifies data operations, ensuring high application performance and smooth user ex-
perience. This choice of technology stack not only optimizes the development process but
also lays a solid foundation for the app’s long-term maintenance and upgrade, ensuring
it can evolve to meet future user needs and expectations.

12

Figure 9: Android Design IDE

Requirement Verification

• Develop an Android app using ei-
ther the Flutter or Kotlin technol-
ogy stack.

• The Android app must run
smoothly on mainstream models
and include a feature for answering
questions during classes.

• Student iOS App

In our iOS frontend tech stack, we have made the strategic decision to utilize Flutter as the
primary development framework. This choice is motivated by Flutter’s exceptional ca-
pability for building high-performance, visually appealing applications across multiple
platforms, including mobile, web, and desktop, from a single codebase. Flutter distin-
guishes itself through rapid development cycles facilitated by its hot reload feature. This
allows developers to instantly see the effects of their changes in real-time, maintaining
the application state, which significantly speeds up the development process by enabling
quick experimentation with UI designs and bug fixes. The framework employs Dart as
its programming language, which merges the best aspects of dynamic languages with
the efficiency of ahead-of-time compilation to native code, making it particularly suitable
for front-end development. Dart, in combination with Flutter’s comprehensive widget
library and reactive framework, enables developers to craft complex, custom interfaces
with smooth animations and transitions that enhance user experiences.

13

For development within this tech stack, Visual Studio Code has been chosen as the in-
tegrated development environment (IDE). Visual Studio Code supports Flutter develop-
ment by offering a lightweight, yet powerful environment with rich features such as ad-
vanced code editing, debugging, and extension support. This IDE choice complements
Flutter’s flexibility and efficiency, providing an excellent toolset that boosts productiv-
ity for developers accustomed to different environments. Although Visual Studio Code
is now our primary IDE, Flutter projects can still be integrated with Xcode for specific
iOS-related tasks, such as app icon configuration, provisioning profile management, and
other necessary adjustments for iOS deployment. This approach ensures that we can still
leverage essential native tools and settings while benefiting from Flutter’s cross-platform
development capabilities. Adopting Flutter, paired with Visual Studio Code, empowers
our development team to produce a consistent and high-quality user experience across all
platforms, streamlining the development process, enhancing our ability to quickly adapt
to market changes, and simplifying long-term app maintenance and iteration.

Figure 10: iOS Design IDE

14

Requirement Verification

• Develop an iOS app using the Flut-
ter technology stack.

• The iOS app must run smoothly
on mainstream models and include
a feature for answering questions
during classes.

• Teacher Web Interface

For our web interface, we’ve chosen React as the cornerstone of our frontend tech stack.
React is a popular JavaScript library developed by Facebook, known for its efficiency in
building interactive and complex user interfaces. Its component-based architecture al-
lows for the development of reusable UI components, promoting code reusability and
simplification of the development process. This architecture not only accelerates the de-
velopment cycle but also ensures consistency across the application. React’s virtual DOM
(Document Object Model) is another key feature that enhances the performance of web
applications by minimizing direct DOM manipulation, leading to faster rendering times
and a smoother user experience.

To complement React, we integrate tools like Redux for state management, enabling us
to maintain a predictable state across the entire application in a centralized store. This is
particularly useful in complex applications with large amounts of data and interactions,
as it simplifies state management and facilitates communication between components.
For routing, we use React Router to manage navigation within our application, ensuring
that users can seamlessly move between different parts of our web interface without page
reloads, mimicking the feel of a native application.

Requirement Verification

• Develop a web application using
the React technology stack.

• Teachers can assign in-class ques-
tions through the web application
and obtain statistics on students’ re-
sponses.

2.5.2 Backend Design

Our software system’s backend design is centered around the use of an SQL database,
providing strong support for managing structured data such as user information and
transaction records. The choice of an SQL database is crucial for ensuring data accuracy
and reliability due to its strict data consistency, transaction management, and complex

15

query capabilities. To enhance the system’s ability to handle high concurrency and ac-
commodate the diversity and scalability of database content, we have also integrated
MongoDB, a NoSQL database. The incorporation of MongoDB allows our system to han-
dle unstructured or semi-structured data more flexibly, such as log files and JSON data.
Its schema-less nature facilitates rapid development and iteration, while its high perfor-
mance and horizontal scaling capabilities enable the system to easily manage growing
user bases and surges in data volume.

To manage communication and asynchronous processing, particularly under high load
scenarios, the backend incorporates RabbitMQ, a message queue system. RabbitMQ
serves as the backbone for handling communication between different services in the
backend, ensuring that data processing remains efficient and reliable, even during peak
usage times. This approach aids in maintaining the responsiveness and stability of the ap-
plication, crucial for providing a seamless user experience. The combination of MongoDB
and RabbitMQ in the backend is strategic, catering to the need for high performance, scal-
ability, and reliability in handling concurrent operations and data management.

Figure 11: Backend System Diagram

Requirement Verification

• Develop a backend system utiliz-
ing an SQL database for man-
aging structured data, including
user information and transaction
records. Incorporate RabbitMQ for
efficient and reliable communica-
tion and asynchronous processing
under high load scenarios.

• The backend must reliably man-
age structured data using the SQL
database and ensure efficient com-
munication between services with
RabbitMQ, maintaining system re-
sponsiveness and stability even
during peak usage times.

16

2.5.3 Authentication module

The application includes a robust identity verification mechanism. When a user first logs
in on a device, the system automatically recognizes and collects the device’s unique iden-
tifiers, such as device ID, MAC address, or serial number. Then, during the device reg-
istration phase, the user’s account information is associated with the unique identifier of
the device used and is securely stored on the server. This means each student’s account
can only be bound to a specific device. When users attempt to log in, the system verifies
whether the device identifier being used to access matches the one bound to the account.
This mechanism ensures that each account can only be operated on its bound device,
effectively preventing the possibility of logging in using someone else’s device.

When binding a new device or changing a bound device, the system requires users to
go through a secondary verification to confirm the legitimacy of the device binding or
change request. Additionally, the system continuously monitors and records the process,
including tracking every login attempt and device change activity. Through this contin-
uous monitoring, the system can promptly detect and prevent fraudulent activities like
proxy attendance, thereby maintaining the integrity and fairness of the system.

Requirement Verification

• Implement an identity verification
system that binds user accounts to
their devices using unique iden-
tifiers (e.g., device ID, MAC ad-
dress). Include a secondary verifi-
cation process for device changes or
new bindings.

• Ensure the system only allows ac-
count access from the bound de-
vice, with successful secondary ver-
ification for any device change. The
system must track and monitor all
login attempts and device changes
to prevent fraudulent activities.

2.6 External facility

2.6.1 Wireless Receiving supply

This part ensures that it can meet the high level requirement for the signal range. The
Unit can receive the signal stably within a certain range and convert the signal into data
for transmission to the software system for processing.

Our receiver unit features 8 antennas and utilizes MTK’s MT7986A CPU, which is a quad-
core processor operating at 2.0 GHz. It is manufactured using a 12 nm process, ensuring
efficient heat control. The memory configuration consists of 512 MB of DDR4 RAM and
128 MB of flash storage.

For the 2.4 GHz frequency band, our receiver supports up to 8 OFDMA users. On the
other hand, the 5GHz frequency band can accommodate up to 16 OFDMA users. The

17

RF chip utilized for the 5 GHz band is the MT7976AN, which supports 4x4 MIMO. It
enables a maximum data rate of 4804 Mbps with a 160 MHz bandwidth and 1024-QAM
modulation. The amplifier chip for the 5 GHz band is the RTC66568.

As for the 2.4 GHz band, we employ four external FEM chips, specifically the RTC66266
model. This configuration allows for a maximum data rate of 1147 Mbps. To meet our
requirement of supporting 100 mobile devices, our receiver can handle a load of up to 248
units. This is achieved through openwrt system code override.

2.7 Tolerance Analysis

2.7.1 MongoDB Analysis

MongoDB’s robust tolerance capabilities, including features like replication and shard-
ing, are further exemplified by its performance in handling operations efficiently. For
instance, in a scenario where 10,000 search operations are conducted, MongoDB’s per-
formance is markedly superior, taking only 0.55 milliseconds per operation, compared to
4.47 milliseconds in a traditional SQL database[3]. This efficiency, alongside its flexible
write concern levels and schema-less design, highlights MongoDB’s suitability for ap-
plications requiring rapid data retrieval and high availability. However, it’s essential to
balance these benefits with effective data governance, especially given the potential for in-
consistencies in its schema-less nature[4]. This combination of features and performance
makes MongoDB an attractive choice for applications where speed and fault tolerance are
critical.

2.7.2 RabbitMQ Analysis

In a teacher-student interactive Q&A application, employing RabbitMQ as the message
queue greatly enhances the efficiency and stability of the database system. RabbitMQ’s
asynchronous message processing accelerates application responsiveness and decouples
various system components, such as the teacher and student interfaces, reducing their
interdependencies. Additionally, RabbitMQ excels in load balancing, effectively prevent-
ing system overloads during peak periods, and offers remarkable fault tolerance by safely
storing messages in case of processing failures[5].

However, the introduction of RabbitMQ is not without drawbacks. Firstly, it increases
system complexity, necessitating additional maintenance and management, especially
for applications aimed at being user-friendly. Secondly, RabbitMQ can become a per-
formance bottleneck in scenarios of high load or heavy message traffic, particularly when
message size increases or the number of clients surges. For instance, test data shows that
when the number of clients increases from 1 to 20, the average message processing time in
RabbitMQ increases from 2 milliseconds to 16 milliseconds. Furthermore, this processing
time tends to escalate more rapidly as the number of clients continues to grow[5].

This aspect is particularly crucial in our designed teacher-student interactive Q&A ap-
plication. Given the potential need to support over 100 student users simultaneously,

18

the increased latency due to a higher number of clients could lead to unexpected delays,
failing to meet the minimal response time requirement of 500 milliseconds and adversely
affecting user experience. Therefore, ensuring the effective operation of RabbitMQ under
high-load conditions through appropriate configuration optimizations and performance
testing becomes critically important.

2.7.3 Wi-Fi Analysis

The IEEE802.11 standard operates within a freely available frequency band, such as 2.4GHz,
which is shared by numerous wireless technologies, including Bluetooth, 3G, and cord-
less telephony. This shared frequency environment gives rise to the possibility of signal
overlap and RF interference when wireless devices operating within the same band trans-
mit signals.

CSMA/CA (Carrier-sense multiple access with collision avoidance) is a network multi-
ple access method utilized in computer networks. It employs carrier perception to ensure
that nodes initiate transmission only when they sense that the channel is free, thereby
avoiding collisions. When transmission occurs, nodes transmit their packet data in its
entirety, following the successful carrier sensing process[6].

In our project, the Wi-Fi receiving device, utilizing CSMA/CA collision detection, en-
countered competition from other routers within the classroom environment. It is worth
noting that in areas such as schools, where routers are extensively deployed, only one de-
vice on the same channel can receive or send a signal simultaneously. However, in cases
where the load capacity of the receiving device is insufficient, the distribution of multiple
receiving devices becomes necessary.

In the context of CSMA/CA, the Wi-Fi signal operates on three non-overlapping chan-
nels. If the total number of routers exceeds three, it becomes imperative to consider the
potential implications of interference and signal-to-noise ratio (SNR). Specifically, the uti-
lization of CSMA/CA may lead to a lower overall throughput[7]. This slower response
may pose challenges in meeting the high-level requirement of achieving 100-150 users.

In our project, we employed a research paper’s model to estimate the receiver through-
put[8]. The model, operating under the assumption of an ideal error-free channel, in-
corporates various aspects crucial to wireless communication systems. These include
arbitrary packet arrival rates, channel access delays due to collisions and other station
transmissions, resetting of transmission retry counters, combined media access methods,
arbitrary packet length assignment, and the existence of beacon frames. To analyze the
system, the interface queue at each site is modeled using an M/G/1 queue, which pro-
vides a suitable framework for inspecting our project. This model’s comprehensive con-
sideration of relevant parameters and its utilization of the M/G/1 queueing approach

19

contribute to its applicability and effectiveness in estimating receiver throughput accu-
rately.

The probability q, representing the likelihood of an empty message interface queue, can
be approximated using the following expression:

q = 1− ρ (1)

Under the assumption that the model of the arriving signal follows a Poisson distribution
with a rate of λ, we express the probability as follows:

pi = e−λT (2)

where the probability pi is the probability that queue is empty after successful transmis-
sion and followed back-off. T is the average time spent by the system at the upper row of
the Markov chain.

Additionally, the collision probability (p) in a CSMA/CA network can be approximated
using the formula:

prob = 1− (1− p)N (3)

where p represents the probability of collision, and N denotes the number of contending
nodes. These mathematical models enable the evaluation of CSMA/CA-based networks,
considering factors such as collision avoidance and channel contention.

A refined formula, derived by combining the three aforementioned formulas and incor-
porating additional relevant equations, was obtained, omitting the need for explicitly
including the transmission probability λ:

S = C
(1− pl)psE[P]

E[Ψ] + psTs + (1− ps)Tc + pll(E[B] + Tc)
(4)

E[P] is the average IP packet length; C is the beacon coefficient; Ts is the average time
that the channel is busy due to successful transmission, and Tc is the average time that
the channel is busy due to collision; pl is the probability that the packet will be dropped
because the maximum number of retry attempts has been reached; E[B] is the average
number of slots required for the back counter to reach zero; E[ψ] is the expectation of a
random value; ps is the probability that the system will successfully transmit[8].

In the figure below, exponential time periods with a rate of lambda=25 were configured,
accompanied by a fixed payload size of 1000 bytes for access. The channel’s bit rates were
set at 1148 Mbps, and the resulting throughput was examined for verification purposes.
Through the calculations performed, it was determined that exceeding 100 clients would
lead to sub-optimal optimization of the receiver’s throughput. However, despite this lim-
itation, the application requirements could still be met due to the relatively short length
of the transmitted signal.

20

Figure 12: Throughput Vs Number of STA

21

3 Cost & Schedule

3.1 Cost

3.1.1 Labor Cost

According to a report on employment data released by Chinese Education Online[9],fresh
graduates with a bachelor’s degree in computer science earn about ¥6,800 a month,or
¥42.5 an hour. Fresh graduates of mechanical engineering earn around ¥6,000 a month,
or ¥37.5 an hour. We have 8 weeks this semester. Assuming that each person spends 10
hours on the graduation project every week, we will spend a total of 8*10 = 80 hours on
this project.

Table 1: Labor cost
Name Major Hourly Salary Hours Needed Total Cost

Zhenyu Zhang ECE 42.5 80 3400

Benlu Wang ECE 42.5 80 3400

Suhao Wang ECE 42.5 80 3400

Luozhen Wang ME 37.5 80 3000

Total 13200

3.1.2 Parts Cost

Table 2: Parts Cost
Description Quantity Manufacturer/Vendor Cost/Unit Total Cost

Mi AX6000 Router 1 Mi/ JD 449 449

ESP8266 NodeMcu 3 Xintai Microelectronics/Taobao 15 45

0.96 OLED screen 3 Xintai Microelectronics/Taobao 5 15

Breadboard 3x7cm 3 Jicheng Technology/Taobao 1.25 3.75

Dupont wire 100 Jicheng Technology/Taobao 0.05 5

3D Printing Consumables 1 Qipang Technology/Taobao 49 49

Membrane button 3*4 3 Chenyi Technology/Taobao 10 30

Total 596.75

22

3.2 Schedule

See the Appendix A.

4 Ethics & Safety

4.1 Ethics

Everything we do is in compliance with the IEEE Code of Ethics.

During the design and development of our products, we always adhere to the highest
ethical standards and avoid any violations of the law. We ensure that the privacy of the
users of our products is protected, regardless of the transmitting terminal. We guarantee
to collect only the personal data we need, including but not limited to account informa-
tion, device information, location information, locally stored bio metric information, etc.
We will use 2.4 GHz, 5 GHz Wi-Fi as the data transmission medium, and we will strictly
control the emission power of the RF module to prevent the radiation from harming the
user. This is our adherence to Article 1 of the IEEE Code of Ethics[10].

Based on respect for human rights, our devices are open for use by everyone, regardless
of race, religion, gender, disability, age, nationality, sexual orientation, gender identity or
gender expression. This is our adherence to Article II of the IEEE Code of Ethics[10].

4.2 Safety

In terms of product safety, our central processing modules use 12 V-19 V DC. Although
the voltage of all equipment is lower than the safe voltage for human beings, we always
pay attention to the risk of short-circuits and leakage that may exist inside the electrical
equipment, and comply with the safety rules in order to prevent the user from suffering
from unintentional electrical injuries.

In order to prevent all accidents that may occur during the operation of the central pro-
cessing module, as well as to prevent injuries to people, we will design the enclosure to
isolate the module from the external environment, and in order to prevent the enclosure
from harming people, we will avoid the appearance of sharp bends in order to maximise
the protection of the user.

23

References

[1] M. L. UK. “Iclicker.” (2024), [Online]. Available: https://www.macmillanlearning.
com/ed/uk/digital/iclicker (visited on 03/26/2024).

[2] E. Systems. “”ESP8266 Technical Reference”.” (2020), [Online]. Available: https :
//www.espressif .com/sites/default/files/documentation/esp8266- technical
reference en.pdf (visited on 03/21/2024).

[3] B. Dipina Damodaran, S. Salim, and S. M. Vargese, “Performance evaluation of
mysql and mongodb databases,”

[4] S. H. Aboutorabiª, M. Rezapour, M. Moradi, and N. Ghadiri, “Performance evalua-
tion of sql and mongodb databases for big e-commerce data,” in 2015 international
symposium on computer science and software engineering (CSSE), IEEE, 2015, pp. 1–7.

[5] V. M. Ionescu, “The analysis of the performance of rabbitmq and activemq,” in 2015
14th RoEduNet International Conference-Networking in Education and Research (RoE-
duNet NER), IEEE, 2015, pp. 132–137.

[6] W. contributors. “”CSMA/CA”.” (2024), [Online]. Available: https://en.wikipedia.
org/wiki/Carrier-sense multiple access with collision avoidance (visited on 03/07/2024).

[7] J. E. W. Vijay K. Garg, Wireless and Personal Communications. Prentice Hall, 1996.
[8] J. Sudarev, L. White, and S. Perreau, “Performance analysis of 802.11 csma/ca for

infrastructure networks under finite load conditions,” in 2005 14th IEEE Workshop
on Local & Metropolitan Area Networks, 2005, 6 pp.–6. DOI: 10.1109/LANMAN.2005.
1541535.

[9] M. Research. “”2023 Jobs Blue Book Released, Monthly Earnings of College Gradu-
ates Revealed”.” (2023), [Online]. Available: https://news.eol.cn/yaowen/202306/
t20230612 2435553.shtml (visited on 06/12/2023).

[10] IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7-8.html (visited on 02/08/2020).

24

https://www.macmillanlearning.com/ed/uk/digital/iclicker
https://www.macmillanlearning.com/ed/uk/digital/iclicker
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://en.wikipedia.org/wiki/Carrier-sense_multiple_access_with_collision_avoidance
https://en.wikipedia.org/wiki/Carrier-sense_multiple_access_with_collision_avoidance
https://doi.org/10.1109/LANMAN.2005.1541535
https://doi.org/10.1109/LANMAN.2005.1541535
https://news.eol.cn/yaowen/202306/t20230612_2435553.shtml
https://news.eol.cn/yaowen/202306/t20230612_2435553.shtml
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html

Appendix A Schedule

Table 3: Benlu Wang’s Schedule

Date Task

3.18-3.24 Plan and prepare the project, determine its scope and objectives,
and set up team communication and collaboration tools.

3.24-3.31 Develop basic UI components and layout, integrate Jetpack com-
ponents such as LiveData and ViewModel, and develop Room
database related functions.

4.1-4.7 Optimize and test the Android front-end, focusing on enhancing
performance and user experience.

4.7-4.14 Develop the iOS front-end, implement state management and
routing for Flutter, and integrate necessary iOS-related functions
such as app icon configuration.

4.15-4.21 Optimize and test the iOS front-end, write unit tests and integra-
tion tests to address potential issues and vulnerabilities in iOS
applications.

4.22-4.28 Develop the web front-end, understand the requirements and
functions of web applications, develop basic UI components and
layouts, achieve state management and route navigation, and in-
tegrate React Router for page navigation.

4.29-5.5 Integrate, test, and deploy the project, integrating Android, iOS,
and web front-ends, conducting overall performance testing and
user experience testing, and resolving cross-platform compatibil-
ity issues.

5.6-5.12 Complete project documentation and finalize the final report.

5.13-5.19 Prepare slides and complete any remaining tasks.

25

Table 4: Zhenyu Zhang’s Schedule

Date Task

3.24-3.31 Analyze and understand the requirements of the Android appli-
cation, and configure the Android Studio development environ-
ment.

4.1-4.7 Conduct code reviews and refactoring, and write unit tests and
integration tests for the Android front-end.

4.7-4.14 Analyze system requirements and design the SQL database
model. Configure the SQL database server to ensure reliabil-
ity and security. Integrate the MongoDB database to ensure
compatibility with the SQL database. Configure the RabbitMQ
message queue system for internal communication and asyn-
chronous processing.

4.15-4.21 Design and implement the device identification and binding
mechanism, collect unique identifiers of devices. Develop logic
to associate user account information with device identifiers and
store it on the server. Develop login authentication logic to en-
sure that users can only log in using bound devices. Implement
a secondary verification mechanism for device replacement and
binding new devices.

4.22-4.28 Configure the system log function to record user login and device
replacement activities. Set up a monitoring system to monitor the
health and security of the system in real-time. Conduct security
audits to check for potential vulnerabilities and security risks in
the system. Fix vulnerabilities and security issues found, and
conduct system re-testing and validation.

4.29-5.5 Integrate, test, and deploy the project, integrating Android, iOS,
and web front ends. Conduct overall performance testing and
user experience testing to resolve cross-platform compatibility is-
sues.

5.6-5.12 Complete project documentation and finalize the final report.

5.13-5.19 Prepare slides and complete any remaining tasks.

26

Table 5: Luozhen Wang’s Schedule

Date Task

3.18-3.24 Determine the labor requirements for the project.

3.24-3.31 Purchase the required equipment from online sources.

4.1-4.7 Design the Printed Circuit Board (PCB) for the project.

4.7-4.14 Install the PCBs and other components, and conduct testing.

4.15-4.21 Develop a detailed design for the housing of the project.

4.22-4.28 Optimize the housing design and debug the internal circuitry.

4.29-5.5 Perform practical tests of the project in a classroom environment.

5.6-5.12 Demonstrate and optimize solutions to any identified problems.

5.13-5.19 Prepare presentation slides and complete any remaining tasks.

Table 6: Suhao Wang’s Schedule

Date Task

3.18-3.24 Implement the TCP connection of ESP8266 module.

3.24-3.31 Utilize the ESP8266 client to send information in JSON format
through the HTTP protocol.

4.1-4.7 Test the button display using a breadboard and integrate it into
the sending function.

4.7-4.14 Add the power subsystem and test the rectifier.

4.15-4.21 Integrate the clicker subsystem and power subsystem, complete
the PCB design, obtain finished products, and perform a prelim-
inary software system test.

4.22-4.28 Optimize the clicker design, identify innovative points, and write
the final paper.

4.29-5.5 Test the clicker subsystem in the classroom setting.

5.6-5.12 Prepare a PowerPoint presentation for the demonstration.

5.13-5.19 Complete all remaining tasks.

27

	Introduction
	Problem
	Solution
	Visual Aid
	High-level Requirement Lists

	Design
	Block Diagram
	Subsystem Overview
	Power Subsystem Requirement
	Micro Lithium Battery
	Regulator

	Clicker Subsystem Requirement
	Transmit Module
	Display Module
	Hardware Process module
	Shell Design

	Software Subsystem Requirement
	Frontend Design
	Backend Design
	Authentication module

	External facility
	Wireless Receiving supply

	Tolerance Analysis
	MongoDB Analysis
	RabbitMQ Analysis
	Wi-Fi Analysis

	Cost & Schedule
	Cost
	Labor Cost
	Parts Cost

	Schedule

	Ethics & Safety
	Ethics
	Safety

	References
	Appendix Schedule

