Project

# Title Team Members TA Documents Sponsor
68 Stereo Phase Corrector: Stereo-way to Heaven
David Simley
Rosemary Montgomery
Kyle Michal design_document1.pdf
design_document2.pdf
design_document3.pdf
final_paper1.pdf
presentation1.pptx
proposal1.pdf
proposal2.pdf
Names: Dave Simley and Rosemary Montgomery
NetID: simley2, rjmontg2
Web Board Post: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=30822

Listening to music through a nice stereo can really brighten the atmosphere. Whether it's a quiet Sunday or an evening with friends, music can complement many occasions. What one may not realize, however, is that interference patterns greatly affect the quality of the sound.

Say someone has a stereo in their living room, but likes to listen to music while preparing food in the kitchen. Destructive phase relationships can cause the listener to hear music that's tinnier and lacking warmth.

What we are proposing is a four speaker array which we can use to “steer” the sound into a single direction. Our design will use one or more IR sensing cameras to detect where the listener is in the room and apply a linear time delay to the speakers to direct the sound towards the listener.

The array of speakers create overlapping signals with the peak intensity of sound across all frequencies extending out along a line directly from the center of the array. By applying a linear time delay across the array, the line of peak intensity steers away from the center at an angle which changes the direction. With the help of IR sensors, we can track where a person is in the room and use this information to adjust how much we need to angle our line of peak intensity so that it runs through our listener.

Our main reach goal is to incorporate Bluetooth into our project. For example, we would use Bluetooth as the method of inputting music into our speaker array. We could also use Bluetooth to adjust the volume and sound, as well as turn the IR tracking capabilities on and off.

Resonant Cavity Field Profiler

Salaj Ganesh, Max Goin, Furkan Yazici

Resonant Cavity Field Profiler

Featured Project

# Team Members:

- Max Goin (jgoin2)

- Furkan Yazici (fyazici2)

- Salaj Ganesh (salajg2)

# Problem

We are interested in completing the project proposal submitted by Starfire for designing a device to tune Resonant Cavity Particle Accelerators. We are working with Tom Houlahan, the engineer responsible for the project, and have met with him to discuss the project already.

Resonant Cavity Particle Accelerators require fine control and characterization of their electric field to function correctly. This can be accomplished by pulling a metal bead through the cavities displacing empty volume occupied by the field, resulting in measurable changes to its operation. This is typically done manually, which is very time-consuming (can take up to 2 days).

# Solution

We intend on massively speeding up this process by designing an apparatus to automate the process using a microcontroller and stepper motor driver. This device will move the bead through all 4 cavities of the accelerator while simultaneously making measurements to estimate the current field conditions in response to the bead. This will help technicians properly tune the cavities to obtain optimum performance.

# Solution Components

## MCU:

STM32Fxxx (depending on availability)

Supplies drive signals to a stepper motor to step the metal bead through the 4 quadrants of the RF cavity. Controls a front panel to indicate the current state of the system. Communicates to an external computer to allow the user to set operating conditions and to log position and field intensity data for further analysis.

An MCU with a decent onboard ADC and DAC would be preferred to keep design complexity minimum. Otherwise, high MIPS performance isn’t critical.

## Frequency-Lock Circuitry:

Maintains a drive frequency that is equal to the resonant frequency. A series of op-amps will filter and form a control loop from output signals from the RF front end before sampling by the ADCs. 2 Op-Amps will be required for this task with no specific performance requirements.

## AC/DC Conversion & Regulation:

Takes an AC voltage(120V, 60Hz) from the wall and supplies a stable DC voltage to power MCU and motor driver. Ripple output must meet minimum specifications as stated in the selected MCU datasheet.

## Stepper Drive:

IC to control a stepper motor. There are many options available, for example, a Trinamic TMC2100. Any stepper driver with a decent resolution will work just fine. The stepper motor will not experience large loading, so the part choice can be very flexible.

## ADC/DAC:

Samples feedback signals from the RF front end and outputs the digital signal to MCU. This component may also be built into the MCU.

## Front Panel Indicator:

Displays the system's current state, most likely a couple of LEDs indicating progress/completion of tuning.

## USB Interface:

Establishes communication between the MCU and computer. This component may also be built into the MCU.

## Software:

Logs the data gathered by the MCU for future use over the USB connection. The position of the metal ball and phase shift will be recorded for analysis.

## Test Bed:

We will have a small (~ 1 foot) proof of concept accelerator for the purposes of testing. It will be supplied by Starfire with the required hardware for testing. This can be left in the lab for us to use as needed. The final demonstration will be with a full-size accelerator.

# Criterion For Success:

- Demonstrate successful field characterization within the resonant cavities on a full-sized accelerator.

- Data will be logged on a PC for later use.

- Characterization completion will be faster than current methods.

- The device would not need any input from an operator until completion.

Project Videos