Project

# Title Team Members TA Documents Sponsor
7 Mr. Clean Board
James Krein
Thomas Furlong
Soumithri Bala design_document0.pdf
final_paper0.pdf
proposal0.pdf
The team consists of James Krein (jkrein2) and Thomas Furlong (tfurlon2).

Web Board: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27527

For our project, we are aiming to create a small whiteboard erasing robot. The robot will be suspended on the board through magnetic force as well as friction. When activated by a push button, either on the robot itself or from a remote, the robot will begin erasing the entire board in one sweep.

We are imagining the robot having two to three wheels. The two wheels in the back will be driven by their own motors and the potential third up front will be on a swivel. The robot will use some type of edge detecting sensor to know when it has hit a side of the whiteboard. We are still considering ideas for detecting the edges. The robot will use an accelerometer to give it a sense of direction. After the robot is done erasing, it will return to a corner and wait to be called upon again. The whole system will be battery powered.

This project is appropriate for senior design because it combines hardware and software aspects. On the hardware side, we will have edge detecting sensors, an accelerometer, and motors. On the software side, we will have a microcontroller that controls the motors and makes sense of the sensor data.

From what we have found and what other TA’s have pointed out, there is no free-standing, portable erasing machine such as ours. The closest thing was a windshield wiper approach that was fixed to a whiteboard by rails. We believe that this robot will be different because it can be applied to any preexisting whiteboard.

Resonant Cavity Field Profiler

Salaj Ganesh, Max Goin, Furkan Yazici

Resonant Cavity Field Profiler

Featured Project

# Team Members:

- Max Goin (jgoin2)

- Furkan Yazici (fyazici2)

- Salaj Ganesh (salajg2)

# Problem

We are interested in completing the project proposal submitted by Starfire for designing a device to tune Resonant Cavity Particle Accelerators. We are working with Tom Houlahan, the engineer responsible for the project, and have met with him to discuss the project already.

Resonant Cavity Particle Accelerators require fine control and characterization of their electric field to function correctly. This can be accomplished by pulling a metal bead through the cavities displacing empty volume occupied by the field, resulting in measurable changes to its operation. This is typically done manually, which is very time-consuming (can take up to 2 days).

# Solution

We intend on massively speeding up this process by designing an apparatus to automate the process using a microcontroller and stepper motor driver. This device will move the bead through all 4 cavities of the accelerator while simultaneously making measurements to estimate the current field conditions in response to the bead. This will help technicians properly tune the cavities to obtain optimum performance.

# Solution Components

## MCU:

STM32Fxxx (depending on availability)

Supplies drive signals to a stepper motor to step the metal bead through the 4 quadrants of the RF cavity. Controls a front panel to indicate the current state of the system. Communicates to an external computer to allow the user to set operating conditions and to log position and field intensity data for further analysis.

An MCU with a decent onboard ADC and DAC would be preferred to keep design complexity minimum. Otherwise, high MIPS performance isn’t critical.

## Frequency-Lock Circuitry:

Maintains a drive frequency that is equal to the resonant frequency. A series of op-amps will filter and form a control loop from output signals from the RF front end before sampling by the ADCs. 2 Op-Amps will be required for this task with no specific performance requirements.

## AC/DC Conversion & Regulation:

Takes an AC voltage(120V, 60Hz) from the wall and supplies a stable DC voltage to power MCU and motor driver. Ripple output must meet minimum specifications as stated in the selected MCU datasheet.

## Stepper Drive:

IC to control a stepper motor. There are many options available, for example, a Trinamic TMC2100. Any stepper driver with a decent resolution will work just fine. The stepper motor will not experience large loading, so the part choice can be very flexible.

## ADC/DAC:

Samples feedback signals from the RF front end and outputs the digital signal to MCU. This component may also be built into the MCU.

## Front Panel Indicator:

Displays the system's current state, most likely a couple of LEDs indicating progress/completion of tuning.

## USB Interface:

Establishes communication between the MCU and computer. This component may also be built into the MCU.

## Software:

Logs the data gathered by the MCU for future use over the USB connection. The position of the metal ball and phase shift will be recorded for analysis.

## Test Bed:

We will have a small (~ 1 foot) proof of concept accelerator for the purposes of testing. It will be supplied by Starfire with the required hardware for testing. This can be left in the lab for us to use as needed. The final demonstration will be with a full-size accelerator.

# Criterion For Success:

- Demonstrate successful field characterization within the resonant cavities on a full-sized accelerator.

- Data will be logged on a PC for later use.

- Characterization completion will be faster than current methods.

- The device would not need any input from an operator until completion.

Project Videos