# Title Team Members TA Documents Sponsor
64 Virtual Grand Piano
Hammad Khan
Jeongsub Lee
Zhi Lu
Mickey Zhang design_review
We are proposing to build an electronic system that behaves just like a grand piano without there being any physical object to receive key presses. We are planning to build the entire piano with 88 keys with sustain and touch pedals to authentically reflect the characteristics of a grand piano.

[Idea Post:]

To isolate the location and motion characteristics of a key press we plan to use multiple camera modules facing the player’s fingers which would be equipped with reflective material at the fingertips and accelerometers attached to each finger to provide information about the touch force. The input from each of the camera modules would be processed in real time using an FPGA and relayed to an audio synthesizer that would play the note on a speaker with the appropriate note and amplitude. We are planning to build the audio synthesizer to control aspects of the produced sound but only when we are done implementing the controller module.

We believe this would be a challenging project for senior design due to the complexities involved in processing and isolating each of the user’s finger locations in three dimensions in real-time and incorporating readings from the wireless accelerometers and sustain pedals. We have not encountered a virtual piano implementation similar to ours that uses camera sensors and accelerometers to isolate the user’s hand movements.

Prosthetic Control Board

Caleb Albers, Daniel Lee

Prosthetic Control Board

Featured Project

Psyonic is a local start-up that has been working on a prosthetic arm with an impressive set of features as well as being affordable. The current iteration of the main hand board is functional, but has limitations in computational power as well as scalability. In lieu of this, Psyonic wishes to switch to a production-ready chip that is an improvement on the current micro controller by utilizing a more modern architecture. During this change a few new features would be added that would improve safety, allow for easier debugging, and fix some issues present in the current implementation. The board is also slated to communicate with several other boards found in the hand. Additionally we are looking at the possibility of improving the longevity of the product with methods such as conformal coating and potting.

Core Functionality:

Replace microcontroller, change connectors, and code software to send control signals to the motor drivers

Tier 1 functions:

Add additional communication interfaces (I2C), and add temperature sensor.

Tier 2 functions:

Setup framework for communication between other boards, and improve board longevity.

Overview of proposed changes by affected area:

Microcontroller/Architecture Change:

Teensy -> Production-ready chip (most likely ARM based, i.e. STM32 family of processors)


support new microcontroller, adding additional communication interfaces (I2C), change to more robust connector. (will need to design pcb for both main control as well as finger sensors)


Addition of a temperature sensor to provide temperature feedback to the microcontroller.


change from Arduino IDE to new toolchain. (ARM has various base libraries such as mbed and can be configured for use with eclipse to act as IDE) Lay out framework to allow communication from other boards found in other parts of the arm.