# Title Team Members TA Documents Sponsor
57 Wireless MIDI Controller Glove
Allan Belfort
Michael Brady
Sarah Palecki
Anthony Caton
Glove that creates MIDI signals which can be processed by hardware or software to play/modify MIDI music

Uses flex sensors in fingers to add effects on a linear scale
-Bend finger past threshold to trigger effect
-Further bending of fingers will alter the effect linearly
Uses accelerometer to track tilt of hand to adjust other effects
-Could control volume with up/down tilt and pan position with left/right tilt
-Will smooth signal from sensor as well as have a tilt threshold to prevent unintended changes
Sensors will be connected to an MCU that encodes the MIDI signal. The MIDI signal is broken into 3 bytes that identify the signal type and data, which corresponds to notes and effects.
Will work with computer DAW (Digital Audio Workstation) or sequencer by sending MIDI signals over usb or MIDI cable. We plan on adding bluetooth integration in order to use the glove wirelessly, if time permits.

Power will come from 5V USB initially when physically connected and a battery if bluetooth integration can be achieved.

What makes our project unique? There are other motion tracking devices and gloves out there but they don’t use flex sensors to control effects like we intend or accelerometers for tilt control. We also aim to achieve low latency for quicker effects which is not available from any other similar device.


Aashish Kapur, Connor Lake, Scott Liu


Featured Project

# People

Scott Liu - sliu125

Connor Lake - crlake2

Aashish Kapur - askapur2

# Problem

Buses are scheduled inefficiently. Traditionally buses are scheduled in 10-30 minute intervals with no regard the the actual load of people at any given stop at a given time. This results in some buses being packed, and others empty.

# Solution Overview

Introducing the _BusPlan_: A network of smart detectors that actively survey the amount of people waiting at a bus stop to determine the ideal amount of buses at any given time and location.

To technically achieve this, the device will use a wifi chip to listen for probe requests from nearby wifi-devices (we assume to be closely correlated with the number of people). It will use a radio chip to mesh network with other nearby devices at other bus stops. For power the device will use a solar cell and Li-Ion battery.

With the existing mesh network, we also are considering hosting wifi at each deployed location. This might include media, advertisements, localized wifi (restricted to bus stops), weather forecasts, and much more.

# Solution Components

## Wifi Chip

- esp8266 to wake periodically and listen for wifi probe requests.

## Radio chip

- NRF24L01 chip to connect to nearby devices and send/receive data.

## Microcontroller

- Microcontroller (Atmel atmega328) to control the RF chip and the wifi chip. It also manages the caching and sending of data. After further research we may not need this microcontroller. We will attempt to use just the ens86606 chip and if we cannot successfully use the SPI interface, we will use the atmega as a middleman.

## Power Subsystem

- Solar panel that will convert solar power to electrical power

- Power regulator chip in charge of taking the power from the solar panel and charging a small battery with it

- Small Li-Ion battery to act as a buffer for shady moments and rainy days

## Software and Server

- Backend api to receive and store data in mongodb or mysql database

- Data visualization frontend

- Machine learning predictions (using LSTM model)

# Criteria for Success

- Successfully collect an accurate measurement of number of people at bus stops

- Use data to determine optimized bus deployment schedules.

- Use data to provide useful visualizations.

# Ethics and Safety

It is important to take into consideration the privacy aspect of users when collecting unique device tokens. We will make sure to follow the existing ethics guidelines established by IEEE and ACM.

There are several potential issues that might arise under very specific conditions: High temperature and harsh environment factors may make the Li-Ion batteries explode. Rainy or moist environments may lead to short-circuiting of the device.

We plan to address all these issues upon our project proposal.

# Competitors

Accuware currently has a device that helps locate wifi devices. However our devices will be tailored for bus stops and the data will be formatted in a the most productive ways from the perspective of bus companies.